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On biaccessible points in Julia sets of polynomials

by

Anna Z d u n i k (Warszawa)

Abstract. Let f be a polynomial of one complex variable so that its Julia set is
connected. We show that the harmonic (Brolin) measure of the set of biaccessible points
in J is zero except for the case when J is an interval.

1. Introduction. In the recent paper [Za] S. Zakeri proved that if the
Julia set of a quadratic polynomial f(z) = z2 + c is locally connected,
then the set of biaccessible points has Brolin measure zero except when
f(z) = z2 − 2.

He also mentioned the conjecture (due to Hubbard and Lyubich) that
this phenomenon should be general. I show how to verify it.

If the Julia set of a polynomial is connected, then A∞, the basin of
attraction of ∞, is simply connected and we can take a Riemann map R :
D → A∞ so that 0 is mapped to ∞. If J(f) is locally connected then R
extends continuously to the closed disc. In general, it is no longer the case,
but for Lebesgue a.e. θ ∈ S1 the Riemann map has a nontangential limit
at θ [Po] and we can define the harmonic measure (evaluated at ∞) on
J(f) = ∂A∞ as the image of the Lebesgue measure in S1 under R.

The pull back of f , g = R−1 ◦ f ◦ R, is just g(z) = zd where d is the
degree of f .

Since the Lebesgue measure is invariant and ergodic under g, its image
is invariant and ergodic under f . It is also the measure of maximal entropy.
In the dynamical context it is often called the Brolin measure.

The Lebesgue measure on S1 will be denoted by m, and the harmonic
measure by ω. An important property of ω is that its Jacobian is constant
and equal to d.
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We do not assume J(f) to be locally connected. Let P ⊂ S1 be the set
of points x so that the radial limit of R exists at x. As we have noticed, P
is the set of full measure.

We will use the notation R(x) for x ∈ S1 even for the non-locally con-
nected case, meaning by R(x) the limit R(rx) as r → 1 (if it exists).

By construction, ω-a.e. point x ∈ J(f) is a landing point of some ray (i.e.
there is θ so that R(r exp(iθ))→ x as r → 1). A point is called biaccessible
if it is a landing point of two rays. By general topological reasons, only
countably many points in the boundary of a simply connected domain admit
three or more landing rays [Po].

We denote by A the set of θ ∈ S1 so that the limit limr→1R(rθ) exists
and there exists exactly one θ′ ∈ S1, θ′ 6= θ, such that limr→1R(rθ) =
limr→1R(rθ′). Observe that if θ ∈ A then g(θ) ∈ A unless θ lands in a
critical point of f .

Thus, J(f) is divided (up to a set of measure zero) into two f -invariant
subsets: the biaccessible points and the set of points admitting one landing
ray only.

By ergodicity, the measure of one of these sets is zero, the measure of
the other is one.

We are going to prove

Theorem. If f is a polynomial so that the Julia set J(f) is connected
then the harmonic measure of the biaccessible points is zero except when
J(f) is an interval.

2. Proof. Let

Aδ = {x ∈ A : there exists y 6= x with d(x, y) < δ, R(x) = R(y)}
(here, d is the distance in S1). We start with a lemma:

Lemma 1. Assume that A is dense. Then for every δ > 0 there exists an
arc L ⊂ S1 such that diam(L) < δ and A ∩ L ⊂ Aδ.

P r o o f. Let R(x) = R(y) for some x, y ∈ A. These points divide S1 into
two arcs L1 and L2.

If R(w) = R(t) for some w ∈ L1 and t, then both w and t belong to
the same arc L1 (since rays cannot intersect). Thus, we have a shorter arc
L3 ⊂ L1 with endpoints w and t such that if x ∈ L3 and R(x) = R(y) then
y ∈ L3.

By density of A we could choose w to lie “almost” in the middle of the
arc L1. Then L3 is (in the worst case) almost twice shorter than L1. We
continue by induction.
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There are certainly many ways to deduce easily the statement of the The-
orem for expanding polynomials. (See [Ja] for the much stronger statement
that in this case the set A is countable.)

However, I give the proof for expanding maps in Propositions 1 and 2
below, in order to help the reader understand the general case.

Recall that the map f is called expanding (on its Julia set) if there
exists an integer m such that |(fm)′| > 1 in some neighbourhood of J(f).
A classical theorem says that f is expanding iff the closure of the orbit of
every critical point is disjoint from the Julia set.

If J(f) is connected and f|J(f) is expanding then J(f) is locally connected
([DH], Sec. 3), thus the Riemann map R extends continuously to the closed
disc.

Proposition 1. Let f be a polynomial with connected Julia set so that
f|J(f) is expanding. Then there exists δ > 0 such that for every arc L ⊂ S1

of length < δ the map R|L is a.e. one-to-one (with respect to the Lebesgue
measure).

P r o o f. We shall prove that m(Aδ) = 0 for small δ.
First, notice that f is a local homeomorphism in the neighbourhood

of J(f), i.e. there exists ε > 0 such that f is one-to-one in every ball with
diameter ε. Since R is continuous, there exists δ0 > 0 such that if d(x, y) < δ0
then d(R(x), R(y)) < ε.

Now, since R is a.e. at most two-to-one, there exists δ < δ0 such
that m(Aδ) < 1. Indeed,

⋂
δ Aδ = ∅ and Aδ1 ⊂ Aδ2 if δ1 ≤ δ2, thus

limδ→0m(Aδ) = 0.
We check that Aδ is g-invariant, g−1(Aδ) ⊂ Aδ. Let x ∈ Aδ. There exists

y with d(x, y) < δ such that R(x) = R(y). Let x1 = g−1
η (x) for some branch

of g−1. Let y1 = g−1
η (y). We have

f(R(x1)) = R(g(x1)) = R(g(y1)) = f(R(y1)).

By our choice of ε and δ this implies R(y1) = R(x1). It follows that g−1(Aδ)
⊂ Aδ, thus m(Aδ) = 0 by ergodicity of g.

Fix δ as in Proposition 1.

Proposition 2. If f|J is expanding , then m(A) = 0.

P r o o f. By Lemma 1 there exists an arc L such that A∩L ⊂ Aδ. Using
Proposition 1 we get m(A ∩ L) = 0, thus m(A) < 1 and, by ergodicity,
m(A) = 0.

Now, we pass to the general case.
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Definition. A point a ∈ S1 is called an end point if there exist sequences
an, bn ∈ A such that

an → a, bn → a, a ∈ (an, bn)

(where (an, bn) is the shorter arc joining an and bn in S1) and R(an) =
R(bn).

Notice that if a is an end point and θ ∈ (an, bn) ∩ A, then the corre-
sponding θ′ is in A ∩ (an, bn) as well, since the rays cannot intersect.

Notation. Consider the Jordan curve Jn defined as the union of three
arcs: R(ran), r ≥ 1/2, R(rbn), r ≥ 1/2, and the level line of Green’s function:
R
(

1
2ϕ
)
, ϕ ∈ (an, bn).

Denote by Vn the simply connected domain in C bounded by the union
of two arcs: R(ran) and R(rbn), and containing the level line R

(
1
2ϕ
)
, ϕ ∈

(an, bn).
Denote by On the simply connected domain bounded by Jn and not

containing ∞.

Lemma 2. If A is dense and J(f) is not an interval then there are
infinitely many end points.

P r o o f. First notice that (as indicated in the proof of Lemma 1) if R(a) =
R(b) then there are at least two ends, one in each arc bounded by a, b in S1.

Assume that there are more than two ends.
We build Thurston’s lamination. For θ ∈ A we join it to the correspond-

ing θ′ with a hyperbolic geodesic. Let L be the union of such geodesics, and
let L be the closure of L.

Now, it is easy to observe that if there are more than two ends then there
exists a gap (in Thurston’s terminology), i.e. the set D \ L is nonempty. A
gap is a component of D\L. But then (by invariance of lamination) there are
infinitely many gaps and, moreover, gaps are dense in D ([Th], Prop. 10.1).

This produces infinitely many ends.
Thus, we are left with the case of two ends a, b. Since the image (under

g) of an end is an end, we have

g({a, b}) ⊂ {a, b}.
Taking g2 instead of g, we may assume that g(a) = a.

Since a is a fixed point of g, there exists a radial limit of R along the ray
r · a, R(a) = x. This is a well known fact (due to Fatou); the reader may
find the proof in [P].

Let g−1
ν be the branch of g−1 in the cone

{rφ : 0 < r < 1, φ ∈ (am, bm)}
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such that g−1
ν (a) = a. (Here, am, bm are as in the definition of the end

point, sufficiently close to a.) Then there is a branch f−1
ν in Vm such that

f−1
ν = R−1 ◦ g−1

ν ◦R.
(Otherwise, the component of f−1(Vm) containing x would be a domain

bounded by a union of more than two rays,

R(rθ1), R(rθ′1), . . . , R(rθk), R(θ′k),

k > 1, r ≤ 1, R(θi) = R(θ′i). Notice that each pair θi, θ′i produces at least
one end different from a. For different pairs we get different ends. This gives
at least three ends.)

Observe that f−1
ν (Vm) ⊂ Vm since g−1

ν ((am, bm)) ⊂ (am, bm). Also, we
have cl((f−1

ν (Om)) ⊂ Om. This gives diam((f−1
ν )n(Om)) → 0. This implies

that ⋂

k

(Ok ∩ J) ⊂
⋂
n

(f−1
ν )n(Om) = {x}.

Now, consider the second end point b. Then either b is another fixed
point of g and the same reasoning applies, or g(b) = a.

Consider the domains O′k, V ′k build in the same way as in the previous
case, but corresponding to b.

Then f(O′k) can be taken as the family Ok corresponding to a and we
have

f
(⋂

k

(O′k ∩ J)
)
⊂
⋂

k

f(O′k ∩ J) ⊂
⋂

k

Ok ∩ J = {x}.

We conclude that
⋂
k(O′k ∩ J) is a point, which we denote by y.

Now, if p ∈ J , p 6= x, y, is a critical value, take a domain D in C bounded
by two pairs of rays, one pair am, bm corresponding to the end a, the other
one corresponding to the end b.

For m large, p is in D, by the above observation. If c is a critical point
such that f(c) = p, take a component of f−1(D) containing c. Its boundary
is built of more than two pairs of rays, each of them produces an end. Again,
there are more than two ends. It follows that x, y are the only critical values
in J .

Similarly, one can check that every preimage of x or y different from x, y
must be a critical point of degree two.

The only polynomials satisfying the above conditions are Chebyshev
polynomials (up to sign) (see e.g. [Z]). The corresponding Julia set is an
interval.

Under the assumption of Lemma 2 we fix a large integer M , an end point
a and the corresponding am, bm so that there are no critical values of f up
to order M in cl(Om).

To simplify notation, we denote this Om just by O.
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Now, we use a lemma which makes the situation similar to the expanding
case.

Lemma 3. If M is large enough, then there exists a countable family
{Us} of topological discs so that cl(Us) ⊂ O, cl(Us) are pairwise disjoint and

ω
(⋃

Us

)
= ω(O)

such that each Us is the image of O under an analytic branch of f−n(s)

defined in O (for some n(s) ≥M).

P r o o f. If f|J(f) is expanding then the construction below is simply the
first return map to O. Here, the construction of backward branches defining
Un’s is also based on the first return technique, but it has to be done in
the (Rokhlin) natural extension (the space of backward trajectories) after
restricting to the set of suitable branches. (See e.g. [FKS] or [PUbook] for
more details on natural extension.)

Define the space of trajectories by

X = {x̃ = (. . . , x−1, x0, x1, . . .) : xi ∈ S1, g(xi) = xi+1}.
The one-to-one map X → X is the left shift σ.

The measure m can be lifted to a measure m̃ which is σ-invariant and
ergodic. It is defined on cylinders by

m̃(X ∩ (. . .× S1 × S1 ×A−n × . . .×A0 × S1 × . . .))
= m(A0 ∩ g−1(A1) ∩ . . . ∩ g−n(An)).

Let π : X → S1 be the natural projection defined as π(x̃) = x0. Then
g ◦ π = π ◦ σ and π∗(m̃) = m.

(Actually, we do not need this general construction here, since g is iso-
morphic to the one-sided Bernoulli shift (1/d, 1/d, . . . , 1/d) and X,σ is sim-
ply the full two-sided shift.)

We consider all backward branches of g−n defined in the neighbourhood
of the arc [am, bm] in C.

We call such a branch good if the map R ◦ g−n ◦ R−1 extends to some
holomorphic branch of f−n defined in the whole O.

Lemma 4. If M is large enough, then there exists a set G⊂ π−1([am, bm])
such that m̃(G) > 0, π(G) = [am, bm] and if x̃ ∈ G then x−n is the image
of x0 under a good branch of g−n.

P r o o f. This is a simple version of a well known phenomenon; the idea
comes from [FLM].

First, we consider all (dM ) branches of g−M in the neighbourhood of
[am, bm]. By our choice of M,m they are all good. Among these branches
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there are at most d − 1 branches such that there is a critical value of f in
the image of O under the corresponding branch of f−M .

We exclude these wrong branches and continue (compose with branches
of g−1) with the remaining ones.

Thus, if an+M is the number of good branches of g−(n+M), we have

an+M+1 ≥ dan+M − (d− 1),

and so
an+M+1

dn+M+1 ≥
an+M

dn+M −
d− 1
dn+M .

Thus, if M has been chosen large enough, there is a constant t > 0 such
that

an+M

dn+M > t.

The set G is obtained by attaching to each point x ∈ [am, bm] the sequence
of its preimages under good branches chosen as above.

Remark. Actually, in this particular case of maximal entropy measure,
alreadyM = 2 is sufficient. Lemma 4 (and, consequently, the whole theorem)
can be proved in the similar way for a wider class of invariant measures
(including Gibbs states for Hölder continuous functions defined in S1). This
requires slightly more delicate estimates and large M .

Let σG : G→ G be the first return map to G under σ−1. For every x̃ ∈ G
let g−nη be the corresponding sequence of backward branches, set

x−n = g−nη (x0)

and let f−nη be the corresponding sequence of backward branches in O.
Now, π(σG(x̃)) = g−nη (x0) for some n. Let Ox̃ ⊂ O be the image of O

under the corresponding branch of f−n.
For two different x̃’s the domains Ox̃ are either disjoint or one is con-

tained in the other. (Recall that O is bounded by external rays landing at
the same point.)

Suppose that one domain is contained in another one, say f−(n+k)
η (O) ⊂

f−nν (O). Then going k steps back along the first branch we fall into the
domain O of the second branch, going n steps back we are in G (so all
further backward branches are defined in the whole O). But this means that
already after k steps back along the first branch we were in G, so this was
already the first return to G.

It follows that the domains are either disjoint or coincide.
Also,

⋃
x̃Ox̃ cover the domain O up to a set of measure zero (since

σG : G→ G is a measure preserving isomorphism) ([FKS], Ch. 1.5).
This is the cover we are looking for.
This ends the proof of Lemma 3.
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So we have a new map F defined m-a.e. in O by

F (z) = fn(s)(z)

for z ∈ Us. Let

X∞ =
∞⋂

k=0

F−k
(⋃

Us

)
.

We have the following easy

Proposition 3. F : X∞ → X∞ preserves the measure ω|X∞ .

P r o o f. Since the Jacobian of ω equals d, the degree of f , we have
ω(Us) = ω(O)/dn(s). Thus,

∑
s 1/dn(s) = 1. For any measurable subset

G of X∞ we have

ω(F−1(G)) =
∑
s

1
dn(s)

ω(G) = ω(G).

Remark. Notice that the construction which replaces the original map
by a piecewise expanding dynamics appeared in [Ma], then it was extended
to a larger class of measures in [DU] (see also [DMNU]). All these papers
deal with a more general dynamics of an arbitrary rational map. On the
other hand, the statement of Lemma 3 does not follow directly from those
results.

Proposition 4. For small δ we have m(Aδ ∩ (am, bm)) = 0.

P r o o f. Let Bδ = R(Aδ ∩ (am, bm)). Then Bδ ⊂ O. We check that Bδ is
F -invariant, even more: F−1(Bδ) ⊂ Bδ/d.

Indeed, let x ∈ Bδ. Then x is a landing point of two rays R(rθ), R(rθ′),
θ, θ′ ∈ (am, bm). Let y ∈ F−1({x}). Then y is the image of x under a
univalent branch of f−sν defined in O and the formula

g−sν (w) = R−1 ◦ f−sν ◦R(w)

defines a holomorphic branch of g−sν in

{w = rϕ : 1 > r ≥ 1/2, ϕ ∈ (am, bm)}.
Thus, for η = g−sν (θ), η′ = g−sν (θ′),

R(g−sν (rθ)) = f−sν (R(rθ))→ f−sν (x) = y.

But g−sν (rθ) = r−d
s

η, so R(rη)→ y as r → 1. Similarly, R(rη′)→ y. Since
η and η′ are obtained with the use of the same branch of g−s, d(η, η′) < δ/d.
So y ∈ Bδ/d.

Thus, we have verified that F−1(Bδ) ⊂ Bδ/d.
Now, since ω(Bδ)→ 0 as δ → 0 (because ω(

⋂
Bδ) = 0), we get
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ω(Bδ) = ω(F−1(Bδ)) ≤ ω(Bδ/d).

Using the same reasoning by induction we get

ω(Bδ) ≤ ω(Bδ/dk)→ 0

as k →∞. Since Bδ = R(Aδ∩(am, bm)), we conclude that m(Aδ∩(am, bm))
= 0.

Now, recall that we have started with the endpoint a ∈ (am, bm). For n
large we have

(an, bn) ⊂ (am, bm)

and d(an, bn) < δ with δ chosen as in Proposition 4. Thus A ∩ (an, bn) ⊂
Aδ∩(am, bm). This implies m(A∩(an, bn)) = 0, since m(Aδ∩(am, bm)) = 0.

But m(A) = 0 or m(A) = 1; the second possibility has been excluded,
thus m(A) = 0.

This ends the proof of the Theorem.

Added in proof (January 2000). Recently I received a preprint On support of dy-
namical laminations and biaccessible points in polynomial Julia sets by Stanislav Smirnov.
It contains an independent proof of the result stated here.

Smirnov’s approach is based on Beurling’s estimates on harmonic measure; then he
reduces the problem to my theorem on rigidity of the maximal measure ([Z]).
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(première partie), Publ. Math. d’Orsay, 84–02.

[FKS] S. Fomin, I. Kornfe ld and Ya. S ina i, Ergodic Theory , Springer, Berlin,
1982.
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