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PCA sets and convexity

by

Robert K a u f m a n (Urbana, IL)

Abstract. Three sets occurring in functional analysis are shown to be of class PCA
(also called Σ1

2) and to be exactly of that class. The definition of each set is close to the
usual objects of modern analysis, but some subtlety causes the sets to have a greater
complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].

I. Extreme points and integrals. Suppose that S is a subset of a
linear space; a classical problem in analysis concerns representation of ele-
ments of S by integrals over extreme points of S. The work of Choquet and
Bishop–de Leeuw [13] relies on compactness; the theorem of Edgar [8, 6]
relies on geometric properties of the space containing S and on set-theoretic
ideas. Our interest is in the set ι(exK) of elements which can be represented
by an integral over exK, where K is closed, bounded, convex, and separable.
More generally, let S be a co-analytic set in K; then y ∈ ι(S) means that
y =

T
x dµ(x), where µ is a probability measure in K such that µ∗(S) = 1.

(We write µ∗(S) because S need not be a Borel set.)

Theorem 1. The set ι(S) is a PCA set.

Theorem 2. For each PCA set Σ there is a closed , bounded , convex
set K in c0 such that Σ is homeomorphic to a closed subset of ι(exK).

Proof of Theorem 1. We denote by P ∗(S) the set of probability measures
occurring in the definition of ι(S). Let K1 be a compact metric space con-
tainingK as aGδ, so thatK1\S is an analytic set inK1. ThusK1\S = h(V ),
where h is a continuous function on some Gδ-set V . By a small adjustment
we can assume that h is continuous on a compact metric space Y1 ⊇ V and
that h(Y1) = K1.

Lemma 1. P ∗(S) is a co-analytic set in P (K1).
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P r o o f. Let M+(V ) be the set of probability measures µ in Y1 such
that µ(V ) > 0. If µ ∈ M+(V ) then (h∗µ)(K1 \ S) ≥ µ(V ) > 0 whence
h∗µ 6∈ P ∗(S). Conversely, if λ 6∈ P ∗(S) and λ(K1) = 1, then there is a
compact set Y2 ⊆ V such that λ(h(Y2)) > 1

2λ(K1 \ S) > 0. Thus it is easy
to see that λ = h∗µ for some µ such that µ(Y2) > 0 and so µ(V ) > 0.
Thus P ∗(S) is the complement of h∗(M+(V )). But M+(V ) is a Borel set,
in fact a set of type Gδσ, whence h∗(M+(V )) is analytic and P ∗(S) is
co-analytic.

Let (x∗m)∞n=1 be a total sequence of bounded linear functionals on the
B-space containing K, and let K1 be defined so that the functionals x∗m can
be extended continuously over K1. Then x ∈ ι(S) if and only if there is
a measure µ ∈ P ∗(S) such that x∗m(x) =

T
x∗m dµ for m ≥ 1; from this it

follows that ι(S) is a PCA set.

Proof of Theorem 2. Let Σ = p(S) where S is a co-analytic set in a
compact metric space X1 (and p is continuous on X1). Now [10, 12] there is
a closed, bounded, convex set K0 in P (X1)⊕ c0 such that exK0 is just the
set of points (δy, 0) with y ∈ S. Here P (X1) is realized as a compact subset
of c0, so that K0 ⊆ c0⊕ c0. A similar observation applies to the set M1(X1)
of measures on X1 of total variation at most 1. X2 is defined to be p(X1),
so that X2 ⊇ Σ.

Let x ∈ c0, λ ∈ P (X2), µ ∈ M1(X1). We define (µ, λ, x) ∈ K if there
is some ν ∈ P (X1) such that λ = p∗(ν), −ν ≤ µ ≤ ν, and (x, ν) ∈
K0. This is a convex set, which can be realized as a closed convex set
in c0. Suppose (µ, λ, x) is an extreme point in K; clearly, µ = ν or µ =
−ν. Thus an extreme point of K0 must take the shape (ν, p∗(ν), x) or
(−ν, p∗(ν), x), where (ν, x) ∈ K0. These can be extreme only if (ν, x) is
extreme in K0. It is easy to see that the extreme points of K are just
the elements (δy, p∗(δy), 0), (−δy, p∗(δy), 0) with y ∈ S. Since p(S) = Σ,
the elements (0, δz, 0) with z ∈ Σ are in the set ι(exK) as each is the
average of two extreme points. Conversely, if (0, δw, 0) is in ι(exK), it is
the resultant of an integral over certain elements (µ, λ, x). In this inte-
gral λ = δw a.e., and so, in view of the nature of exK0, w ∈ Σ. Thus
(0, δw, 0) is in ι(exK0) if and only if w ∈ Σ, and this is the meaning of
Theorem 2.

Introducing the interval −ν ≤ µ ≤ ν, and averaging measures of opposite
sign, allow us to “forget” the measures ν, thus increasing the complexity by
one degree. This idea can be traced back to Jayne and Rogers [9], where it
is used to pass from Borel sets to co-analytic sets.

Because there exist universal PCA sets Σ, when we have Theorem 2 for
such a set, it follows for all PCA sets at once.
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Representing PCA sets. It will be convenient to have at hand a represen-
tation of PCA sets. The main notion is this: A real function u on a product
set A×B is of type A1 if there is some a ∈ A such that u(a, b) 6= 0 for every
b ∈ B; otherwise u is of type A0. Let X be an uncountable Polish space and
F the metric space of increasing sequences of natural numbers.

(R) Let S be a PCA set in a Polish space M . Then there is a uniformly
continuous function u to [0, 1] on X × F ×M such that the partial
function u(·, ·,m) is of type A1 if and only if m ∈ S.

To define u we begin with a co-analytic set S1 in X×M whose projection
on M is S. Then (X ×M) \ S1 is analytic, and is therefore the image ψ(F )
of a continuous map ψ on F . We write ψ = (ψ1, ψ2) so that ψ1(F ) ⊆ X,
ψ2(F ) ⊆ M . Let Γ be the set {(ψ1(s), s, ψ2(s)) : s ∈ F}, let v be the
function which is distance to Γ (any metric can be used), and u = v/(1+v).
Since ψ is continuous, u(x, s,m) = 0⇔ x = ψ1(s), m = ψ2(s).

To verify that u has the necessary properties, we suppose that m0 ∈ S.
Then there is an x0 in X such that (x0,m0) ∈ S1. For every s in F ,
(ψ1(s), ψ2(s)) 6= (x0,m0), so that u(x0, s,m0) > 0. Thus the partial func-
tion u(·, ·,m0) is of type A1. Conversely, if m1 6∈ S, then for every x1 in X,
(x1,m1) 6∈ S1. Thus there is an s in F such that x1 = ψ1(s), m1 = ψ2(s),
and thus ψ(x1, s,m1) = 0. That is, the partial function u(·, ·,m1) is not of
type A1.

We use (R) in the case when X is a symmetric set in a Banach space, i.e.
X = −X; in fact, X is the sphere in a space of dimension at least 2. We can
define ũ on X×F ×M so that it is even with respect to X, i.e. ũ(x, s,m) =
ũ(−x, s,m). To attain this we add to S1 the set obtained from it by the
map (x,m) 7→ (−x,m), which is co-analytic and has the same projection.
We define u as before, and take finally ũ = min(u(x, s,m), u(−x, s,m)).
The main point of the variant is this: when m0 ∈ S, then there is some x0

such that (x0,m) and (−x0,m) belong to S1. Then u(x0, s,m0) > 0 and
u(−x0, s,m0) > 0 for every s, i.e. ũ(x0, s,m0) > 0 for every s.

II. Norms and extreme points. Let X be a separable B-space with
norm | · | and N(X) the set of all norms ‖ · ‖ equivalent to | · |, i.e. satisfying
c1‖x‖ ≤ |x| ≤ c2‖x‖ for all x, with some constants 0 < c1 ≤ c2 < ∞.
Provided with the pointwise (product) topology, N(X) is not quite a metric
space but each set {p ∈ N(X) : k−1p(x) ≤ |x| ≤ kp(x)} is a compact metric
space, and each set {p ∈ N(X) : p(x) ≤ k|x|} is a σ-compact metric space.
(We shall gloss over this quibble.)

An interesting subset of N is the class R of rotund (strictly convex)
norms; this chapter uses a device from a remarkable theorem of B. Bossard
[3, 4, 5].
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Theorem 3. Let X be separable and infinite-dimensional. Then R is a
true co-analytic subset of N(X), that is, R is not a Borel set.

The rotundity property of a norm is just the fact that every element of
the unit sphere defined by ‖ · ‖, i.e. the set {‖x‖ = 1}, is an extreme point
of that set. We denote by ε0 those norms such that the unit sphere has at
least one extreme point. When X has the Radon–Nikodým property (RNP)
then every norm has this property [6] and no other spaces are known with
this property.

Theorem 4. The set ε0 is of type PCA in N(X). When X = c0 the
following holds: For each set S of type PCA in a Polish space M , there is
a continuous map h of M into N(c0) such that

(i) h−1(ε0) = S,
(ii) the map h is continuous into the uniform topology on N(X), i.e. the

topology of uniform convergence on the unit ball of | · |.
The first assertion about ε0 is elementary; to prove it we write p for

elements in N(X). The function p(x) defined on N(X) × X is measurable,
since the set {p(x) ≤ a} is of type Fσ for each real a. Thus the subset of
N(X)×X ×X defined as

{(p, y, z) : p(y + z) = p(y) = p(y − z), z 6= 0}
is a Borel set. The set of pairs (p, y) such that p(y) = 1, and y is not an
extreme point of the unit ball defined by p, is an analytic subset of N(X)×X.
Thus ε0 is the projection on N(X) of a co-analytic set, whence ε0 is of class
PCA.

In the second part of Theorem 4, the space c0 enters in two distinct
places, so it seems best to write the details for a space X = Y ⊕ c0 with
Y of infinite dimension. Choosing Y = c0 we obtain the assertion for c0.
Theorem 2 does not depend on the norm | · |, and we will assume that
the norm of Y is locally uniformly rotund (LUR): whenever (yn) ⊆ Y ,
y0 ∈ Y , |y0| = |yn| = 1, and lim |y0 + yn| = 2, then lim yn = y0. Ev-
ery separable space can be provided with an LUR norm (Kadec, 1950)
[7].

Each element y0 in the unit sphere of Y is then strongly exposed: let
f0 ∈ Y ∗ be such that |f0| = 1, f0(y0) = 1. Every sequence (yn) in the unit
sphere of Y such that f0(yn)→ 1 must converge to y0.

Theorem 4 depends on a certain set in the unit sphere of c0 which is
homeomorphic to F but shares certain properties of compact sets. Let E0,
E(n1), E(n1, n2), E(n1, n2, n3), . . . be disjoint, infinite sets of positive inte-
gers, defined for n1 ≥ 1, n2 > n1 ≥ 1, etc. Let (nk) ∈ F ; then τ(nk) takes
value
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• 1 on the first n1 elements of E0,
• 2−1 on the first n2 elements of E(n1),
• 2−2 on the first n3 elements of E(n1, n2),
• . . .
• 0 elsewhere.

The map τ is continuous into the norm topology of c0. The set τ(F ) has com-
pact closure in RN in the product topology; moreover, the product topology
agrees with norm convergence in τ(F ). Let sj = (nk(j)) be a sequence in F
such that each sequence n1(j), . . . , nk(j) converges as j →∞ to a limit Nk
finite or ∞. If N1 =∞, then the pointwise limit of τ(nk(j)) equals 1 on E0,
and 0 elsewhere. If N1 <∞ and N2 =∞ then the limit equals 1 on the first
N1 elements of E0, 1/2 on all of E(N1), and 0 elsewhere, etc. Let H be the
closure of τ(F ) in the product topology in RN, and H∗ = H \τ(F ). Then H∗

is a countable set (vr)∞r=1 such that no sum
∑
crvr belongs to c0 unless all

cr = 0, where
∑ |cr| <∞. To explain this, we suppose that v1 = (∞,∞, . . .).

Then v1 = 1 on the infinite subset E0, while all of the remaining elements
of H∗ belong to c0 on the set E0. Hence c1 = 0. Similarly (1,∞,∞, . . .)
equals 2−1 on the infinite set E(1), while all of the remaining elements of
H∗ belong to c0 on E(1); for example, (2,∞,∞, . . .) vanishes on an E(1),
etc. The property referred to above (stated pedantically) is proved in

Lemma 2. Suppose S1, S2, . . . is a decreasing sequence of closed subsets
of τ(F ), and suppose that u ∈ co(Sr ∪−Sr) for each r. Then u =

T
xλ(dx),

where λ is a signed Borel measure, of variation at most 1, concentrated in⋂∞
r=1 Sr ≡ S.

P r o o f. Let Tr be the pointwise closure of Sr in RN. By standard limit
theorems in measure theory, there is a signed measure λ, of variation at
most 1, concentrated in T ≡ ⋂∞r=1 Tr such that u(k) =

T
x(k)λ(dx) for each

integer k = 1, 2, . . . However, u is an element of c0, whence λ can have no
mass in H∗. Indeed, the integral of λ over τ(F ) is in c0, by the remark at
the end of this paragraph. The remaining integral is a sum

∑
crvr, where

cr is the λ-measure of vr, and so each cr = 0, as explained above. Thus λ
is concentrated in Tr ∩ τ(F ) for each r, that is, in Sr, and this proves the
lemma. It is worthwhile remarking that every integral

T
x dλ(x) over τ(F ) is

a Bochner (strong) integral, so the sum is in co(τ(F ) ∪ −τ(F )).

Let θ be a uniformly continuous map of S1(Y ) × F into [0, 1] which is
even with respect to the first element, and let ‖ · ‖θ be the norm on Y ⊕ c0
whose unit ball is the closed convex hull of the set S(θ) := S1(Y )∪S1(c0)∪
{±θ(y, s)y ± τ(s) : y ∈ S1(Y ), s ∈ F}.

Lemma 3. Let y0 ∈ S1(Y ), x0 ∈ c0, x0 6= 0. If ‖(y0, x0)‖θ ≤ 1, then x0

is in the closed convex hull of the set {±τ(s) : θ(y0, s) = 1}.
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P r o o f. We apply Lemma 2 to the sequence of closed sets Fr = {τ(s) :
θ(y0, s) ≥ 1 − r−1}. Let f0 be the bounded linear function on Y which
exposes y0 strongly, and g0 a bounded linear functional on c0 such that
g0(x0) = 1. Let m be a natural number such that m > ‖g0‖. The linear
functional f0 +m−1g0 takes the value 1 +m−1 at (y0, x0), but its values on
S1(Y ) are at most 1, and on S1(c0) less than 1. Hence it attains a value at
least 1 +m−1 −m−2 on the third part of the set S(θ), i.e. at some element
±θ(ym, sm)ym ± τ(sm), with |ym| ≤ 1 and sm ∈ F . Then |θ(ym, sm)| ≥
1−m−1, |f0(ym)| ≥ 1−m−2, and m−1|g0(τ(sm))| ≥ m−1−m−2. As m→∞,
there is a choice of signs so that εmym → y0, and then θ(y0, sm)→ 1, since
θ is even and uniformly continuous. For large m, θ(y0, sm) ≥ 1 − r−1 and
|g0(τ(sm))| ≥ 1−m−1. Thus x0 is in the closed convex hull of ±Fr for every
r ≥ 1, and we can apply Lemma 2.

Thus the set mentioned at the conclusion of Lemma 3 is not empty.
(Clearly, no conclusions can be drawn if x0 = 0.)

Let X be the space of all sequences x = (y, u1, u2, . . .) with y ∈ Y ,
un ∈ c0, and limun = 0. The norm is sup ‖(y, un)‖θ ≡ ‖x‖θ, and clearly X
is isomorphic to Y ⊕ c0.

Lemma 4. (a) Suppose there is some y0 ∈ S1(Y ) such that θ(y0, s) < 1
for each s ∈ F . Then y0 = (y0, 0, 0, . . .) is extreme in the unit ball of X.

(b) If no element y0 of S1(Y ) has the property defined in (a), then the
unit ball of X has no extreme points.

P r o o f. (a) Suppose that y0 is an average of (y1, u1, u2, . . .) and (y2,−u2,
−u3, . . .), each of these having norm 1. Then |y1| ≤ 1, |y2| ≤ 1, 2y0 = y1+y2.
Since the norm of Y is rotund, y1 = y2 = y0. By Lemma 3, the inequalities
‖(y0, un)‖θ ≤ 1 imply that each un = 0; thus y0 is extreme.

(b) Let x = (y1, u1, u2, . . .) have norm 1. If |y1| < 1, then x cannot be
an extreme point. For we would have |y1| + |un| < 1 for large n, so there
would be some v 6= 0 in c0 such that ‖(y1, un+v)‖θ < 1, ‖(y1, un−v)‖θ < 1.
Thus |y1| must be 1, and each un is the resultant

T
τ(z) dλn(z) of an integral

over the set Σ defined as {s ∈ F : θ(y1, s) = 1}; the variation of λn is at
most 1. Moreover, since Σ is not empty, λn must have variation exactly 1.
The elements τ(z) of c0 have the value 1 at the first member of the set E(0),
so that ‖ T τ dλn‖ ≥ |λn(F )|.

But this implies that λn(F ) → 0 so that for large n the measures λ+
n

and λ−n are different from 0. From this and the inequality on
T
τ dλn, we see

that x cannot be extreme.
To complete the proof of Theorem 4, we make use of the representation

(R) of the previous section, taking for X the unit sphere S1(Y ) of Y . We
map an element m of M to the norm ‖ · ‖θ, where θ is the partial function
1−u(·, ·,m) defined on S1(Y )×F . The symmetry of θ on S1(Y ) is obtained
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in a remark to (R), and the continuity in point (ii) follows from the uniform
continuity of u.

III. Extreme points, redux. Let X be a separable B-space and E the
set of extreme points of its unit ball. Then NA denotes the set of linear
functionals that attain their norm on the unit ball, and NAE those that
attain their norm on E . When X∗ is provided with the w∗-topology, NA is
analytic and NAE is a PCA (Σ1

2) set.

Theorem. The space c0 can be provided with a norm | · | so that NAE
is then a complete PCA set.

Completeness of NAE will be established in the same form as in previous
sections, via a map ϕ which is continuous into the norm of c∗0. We observe
that NAE is analytic if E is a Borel set and also in certain other cases.
For if X has the Radon–Nikodým property (RNP), as `1 clearly has, then
NAE = NA. It seems likely, on the basis of [9, 10, 12], that `1 can be normed
so that E is not a Borel set.

We write ‖ · ‖ for a norm on X, the classical one for c0, but in fact this
norm plays almost no rôle in the proof. Let K be a closed, bounded, convex
set in X, let B be the unit ball for the norm ‖ · ‖, and let | · | be the norm
whose unit ball is B∼ = co

(
1
2B ∪K ∪ −K

)
. Henceforth E , NA, and NAE

refer to this norm. We introduce the following condition on functionals f
in X∗:

(∗∗∗) f ≥ 0 on K and sup f(K) > ‖f‖/2.
Then f ∈ NA (for the norm | · |) if and only if f attains its norm on K;
and if f ∈ NAE then f must attain its norm on exK. Conversely, always
subject to (∗∗∗), if f attains its norm at an element x0 of exK then x0 ∈ E ,
because f ≤ 0 on −K and f ≤ ‖f‖/2 < f(x0) on 1

2B. Thus f ∈ NAE.
Next we summarize the conclusions of [10, 12], beginning with a compact

metric space M , a co-analytic subset S of M , and the convex set P (M) of
probability measures. We represent K at first as a closed, bounded, convex
subset of P (M) ⊕ B, where B is the unit ball of c0; M has the following
properties:

(i) K contains the set P (M)⊕ (0).
(ii) The extreme points of K are the elements (δy, 0), with y ∈ S.

Next we replace P (M) by a representation in B: we map each measure µ
in P (M) to a sequence Lµ = (〈µ, gk〉)∞k=1 where (gk)∞k=1 is a total sequence
in C(M) and sup |gk| = o(1). Henceforth we construe K as a convex subset
of c0 ⊕ c0 ∼ c0.

The linear functionals we use in the theorem act on the first factor in
c0⊕c0, i.e. on the factor in which P (M) is represented. Suppose f = (bk)∞k=1
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is a sequence in `1 = c∗0. Its norm as a functional on c0 ⊕ c0 is of course∑ |bk|, whereas its value at the sequence Lµ is
∑∞
k=1 bk〈µ, gk〉. Hence (∗∗∗)

is true provided
∑
bkgk ≥ 0 everywhere in M and sup

∑
bkgk >

∑ |bk|/2.
If these conditions are satisfied, then f ∈ NAE if and only if

∑
bkgk attains

its supremum (on M) in the subset S.
We now specify that M is the circle of length 2π,

g2k+1 = (k + 1)−1/3 cos kt, k = 0, 1, 2, . . . ,

g2k = (k + 1)−1/3 sin kt, k = 1, 2, . . .

Then every function u in the class Lip1(M) admits exactly one expansion∑∞
k=1 bkgk with

∑ |bk| < ∞, and therefore there is a functional, written
α(u), such that 〈α(u), Lµ〉 ≡ T

u dµ. These assertions are consequences of
Parseval’s formula and Cauchy’s inequality. In fact, ‖α(u)‖ ≤ sup |u| +
c ess sup |u′|, with a certain constant c; a bit more work yields an upper
bound cδ−5 sup |u|+ cδ ess sup |u′|, for all δ ∈ (0, 1).

We can find co-analytic sets S which can be mapped continuously onto
any PCA set, for example the set WF of trees with no infinite branch. Since
the set of trees is 0-dimensional we can place S = WF in the arc (π/4, π/2)
of M . Let Σ be a PCA set in a metric space N of diameter at most 1, so
that Σ = h(S), a continuous image of S. We define F on M ×N by

F (t, y) = inf{|t− s|+ d(h(s), y)) : s ∈ S}
when t ∈M , y ∈ N . Then F is jointly continuous on M , 0 ≤ F ≤ 1+π < 5,
and |F (t1, y)−F (t2, y)| ≤ |t1−t2|. If y ∈ Σ then F (s, y) = 0 for some s ∈ S,
and the converse is true because h is continuous on S. Since |sin s| > 1/2
for each s in S, the remark above remains true for the function G(t, y) ≡
|sin t|F (t, y). Let η > 0 be a small constant. We define a map ψ from N into
`1 as follows. We apply α to the partial function 1− ηG(·, y). Each of these
functions on M has supremum 1 and is positive if 0 < η < 1/5. When η is
small enough, the resulting functional satisfies (∗∗∗); ψ(y) belongs to NAE
if and only if 1−ηG(s, y) = 1 for some s in S, that is, y ∈ Σ. The continuity
of ψ is a consequence of the refined inequalities written above.
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nach, thèse, Univ. Paris VII, 199?.

[4] —, Co-analytic families of norms on a separable Banach space, Illinois J. Math. 40
(1996), 162–181.



PCA sets and convexity 275

[5] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz’s theorems and renorming
of Banach spaces, J. Funct. Anal. 140 (1996), 142–150.

[6] R. G. Bourg in, Geometric Aspects of Convex Sets with Radon–Nikodým Property,
Lecture Notes in Math. 993, Springer, 1983.

[7] R. Devi l l e, G. Godefroy and V. Ziz le r, Smoothness and Renormings in Banach
Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993.

[8] G. A. Edgar, A noncompact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975),
354–358.

[9] J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct.
Anal. 26 (1977), 251–288.

[10] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19
(1987), 72–74.

[11] —, Topics on analytic sets, Fund. Math. 139 (1991), 217–229.
[12] —, Extreme points and descriptive sets, ibid. 143 (1993), 179–181.
[13] R. R. Phe lps, Lectures on Choquet’s Theorem, Van Nostrand Math. Stud. 7, Van

Nostrand, Princeton, NJ, 1966.

Department of Mathematics
University of Illinois
1409 West Green Street
Urbana, IL 61801, U.S.A.
E-mail: rpkaufma@math.uiuc.edu

Received 4 May 1999;
in revised form 29 November 1999


