On ergodicity of some cylinder flows

by

Krzysztof Frączek (Toruń)

Abstract. We study ergodicity of cylinder flows of the form

\[T_f : T \times \mathbb{R} \to T \times \mathbb{R}, \quad T_f(x, y) = (x + \alpha, y + f(x)) \]

where \(f : T \to \mathbb{R} \) is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let \(k \) be a natural number and let \(f \) be a function such that \(D^k f \) is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of \(D^k f \) have some good properties, then \(T_f \) is ergodic. Moreover, there exists \(\varepsilon_f > 0 \) such that if \(v : T \to \mathbb{R} \) is a function with zero integral such that \(D^k v \) is of bounded variation with \(\text{Var}(D^k v) < \varepsilon_f \), then \(T_{f+v} \) is ergodic.

1. Introduction. Assume that \(T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu) \) is an ergodic measure-preserving automorphism of a standard Borel space. Each measurable function \(f : X \to \mathbb{R} \) is called a cocycle. For every \(n \in \mathbb{Z} \), let

\[f^{(n)}(x) = \begin{cases} f(x) + f(Tx) + \ldots + f(T^{n-1}x) & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ -(f(T^n x) + f(T^{n+1} x) + \ldots + f(T^{-1}x)) & \text{if } n < 0. \end{cases} \]

Let \(\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\} \) be the one-point Aleksandrov compactification of \(\mathbb{R} \). Then \(r \in \overline{\mathbb{R}} \) is said to be an extended essential value of \(f \) (see [10]) if for each open neighbourhood \(U(r) \) of \(r \) and an arbitrary set \(C \in \mathcal{B} \) with \(\mu(C) > 0 \), there exists an integer \(n \) such that

\[\mu(C \cap T^{-n} C \cap \{ x \in X : f^{(n)} \in U(r) \}) > 0. \]

The set of extended essential values will be denoted by \(\overline{E}(f) \). The set \(E(f) = \overline{E}(f) \cap \mathbb{R} \) is called the set of essential values of \(f \). The skew product

\[T_f : (X \times \overline{\mathbb{R}}, \overline{\mathcal{B}}, \overline{\mu}) \to (X \times \overline{\mathbb{R}}, \overline{\mathcal{B}}, \overline{\mu}), \quad T_f(x, y) = (Tx, y + f(x)), \]

2000 Mathematics Subject Classification: Primary 37A05, 37C40.
Research partly supported by KBN grant 2 P301 031 07 (1994) and by Foundation for Polish Science.
K. Frączek

is said to be the cylinder flow. Here \(\tilde{\mu} \) denotes the product measure of \(\mu \) and infinite Lebesgue measure on the line. It is shown in [10] that \(E(f) \) is a closed subgroup of \(\mathbb{R} \) and it is the collection of periods of \(T_f \)-invariant functions, i.e.

\[
E(f) = \{ r \in \mathbb{R} : \forall \phi : X \times \mathbb{R} \to \mathbb{R}, \phi \circ T_f = \phi \cdot (x, y + r) = \phi(x, y) \ \tilde{\mu}\text{-a.e.} \}.
\]

In particular, \(T_f \) is ergodic iff \(E(f) = \mathbb{R} \).

We say that a strictly increasing sequence \(\{q_n\}_{n \in \mathbb{N}} \) is a rigid time for \(T \) if

\[
\lim_{n \to \infty} \mu(T^{q_n} \triangle A) = 0 \quad \text{for any } A \in \mathcal{B}.
\]

In [6], Lemańczyk, Parreau and Volný have proved

Proposition 1. Suppose that \(f : X \to \mathbb{R} \) is an integrable cocycle such that the sequence \(\{\|f^{(q_n)}\|_{L^1}\}_{n \in \mathbb{N}} \) is bounded, where \(\{q_n\}_{n \in \mathbb{N}} \) is a rigid time for \(T \). If

\[
\limsup_{n \to \infty} \left| \int_X e^{2\pi i f^{(q_n)}} \, d\mu \right| \leq c < 1
\]

for all \(l \) large enough, then \(T_f \) is ergodic.

We denote by \(\mathbb{T} \) the group \(\mathbb{R}/\mathbb{Z} \) which will be identified with the interval \([0, 1)\) with addition mod 1. Let \(\lambda \) denote the Lebesgue measure on \(\mathbb{T} \). Let \(< \subset \mathbb{T} \times \mathbb{T} \) be defined by: \(x < y \) iff \(0 < y - x < 1/2 \), where \(< \subset \mathbb{T} \times \mathbb{T} \) is the usual order on \([0, 1)\). By \(\{t\} \) we denote the fractional part of \(t \) and \(\|t\| \) is the distance of \(t \) from the set of integers.

Assume that \(\alpha \in [0, 1) \) is an irrational with continued fraction expansion

\[
\alpha = [0; a_1, a_2, \ldots].
\]

The natural numbers \(a_n \) are said to be the partial quotients of \(\alpha \). Put

\[
\begin{align*}
r_0 &= 0, \quad r_1 = 1, \quad r_{n+1} = a_{n+1}r_n + r_{n-1}, \\
s_0 &= 1, \quad s_1 = a_1, \quad s_{n+1} = a_{n+1}s_n + s_{n-1}.
\end{align*}
\]

The rationals \(r_n/s_n \) are called the convergents, and \(s_n \) is the \(n \)th denominator of \(\alpha \). We have the inequality

\[
\frac{1}{2s_ns_{n+1}} < \left| \alpha - \frac{r_n}{s_n} \right| < \frac{1}{s_ns_{n+1}}.
\]

For every nonnegative integer \(k \), let \(S_k \) denote the subset of irrational numbers \(\alpha \) such that

\[
\liminf_{n \to \infty} s_{n+1}^k \|s_n\alpha\| < \infty
\]

and let \(S^0_k \) denote the subset of irrational numbers \(\alpha \) such that

\[
\liminf_{n \to \infty} s_{n+1}^k \|s_n\alpha\| = 0.
\]

The above sets are residual in \(\mathbb{T} \).
A function $f : \mathbb{T} \to \mathbb{R}$ is said to be piecewise absolutely continuous (PAC for short) if there are $\beta_0, \ldots, \beta_k \in \mathbb{T}$ such that $f|_{(\beta_j, \beta_{j+1})}$ is absolutely continuous ($\beta_{k+1} = \beta_0$). Set

$$f_+(x) = \lim_{y \to x^+} f(y) \quad \text{and} \quad f_-(x) = \lim_{y \to x^-} f(y).$$

Let $a_j = f_+(\beta_j) - f_-(\beta_j)$ for $j = 0, \ldots, k$ and

$$S(f) = \sum_{j=0}^{k} a_j = -\sum_{j=0}^{k} f_-(\beta_j) - f_+(\beta_j) = -\int_{\mathbb{T}} Df(x) \, d\lambda(x).$$

Assume that $\alpha \in [0, 1)$ is irrational. Denote by $Tx = x + \alpha \mod 1$ the corresponding ergodic rotation on \mathbb{T}. We shall study skew products of the form

$$T_f : \mathbb{T} \times \mathbb{R} \to \mathbb{T} \times \mathbb{R}, \quad T_f(x, y) = (Tx, y + f(x)),$$

where $f : \mathbb{T} \to \mathbb{R}$ is a measurable cocycle with $\int_{\mathbb{T}} f \, d\lambda = 0$.

In [8], Pask has given a class of cocycles which are PAC with $S(f) \neq 0$, and has showed ergodicity for all irrationals α. Lemańczyk, Parreau and Volný [6] have proved that the class of cocycles considered in [8] is ergodically stable in the space $BV(\mathbb{T})_0$ of bounded variation functions with zero integral, i.e. if $f \in$ PAC with $S(f) \neq 0$ and Var$(f - g) < |S(f)|$, then T_g is still ergodic. It has been proved in [9] that if f is $k-1$ times differentiable a.e. and $D^{k-1}f$ is PAC with $S(D^{k-1}f) \neq 0$, then T_f is ergodic for $\alpha \in S_k$.

The aim of this paper is to study the ergodicity of T_f in the case where a derivative $D^k f$ of f is piecewise absolutely continuous (but not continuous) and $S(D^k f) = 0$.

Let k be a natural number. We denote by C^{k+BV}_0 the space of $k - 1$ differentiable functions $f : \mathbb{T} \to \mathbb{R}$ with zero integral such that $D^{k-1}f$ is absolutely continuous and $D^k f$ is of bounded variation. Set $C^{0+BV}_0 = BV_0$.

Observe that if $f : \mathbb{T} \to \mathbb{R}$ is a function of bounded variation with zero integral, then

$$\sup_{x \in \mathbb{T}} |f(x)| \leq \text{Var}(f). \quad (1)$$

Notice that if $f \in C^{k+BV}_0$, then Var$(D^j f) \leq \text{Var}(D^j f)$ for $j = 1, \ldots, k$. Indeed, since $D^{j-1}f$ is absolutely continuous, we have Var$(D^{j-1} f) = \int_{\mathbb{T}} |D^j f| \, d\lambda$ and $\int_{\mathbb{T}} D^j f \, d\lambda = 0$. From (1) we have

$$\text{Var}(D^{j-1} f) = \int_{\mathbb{T}} |D^j f| \, d\lambda \leq \sup_{x \in \mathbb{T}} |D^j f(x)| \leq \text{Var}(D^j f).$$

In C^{k+BV}_0 we define the norm $\|f\|_{k+BV} = \text{Var}(D^k f)$. With this norm, C^{k+BV}_0 becomes a Banach space. Let C^{k+PAC}_0 denote the subspace of functions $f \in C^{k+BV}_0$ such that $D^k f$ is piecewise absolutely continuous and let C^{k+AC}_0
denote the space of functions $f \in C^{k}_{0} + \text{PAC}$ such that $D^k f$ is absolutely continuous. Recall that the subspace of trigonometric polynomials is dense in $C^{k}_{0} + \text{AC}$ with respect to the C^{k+BV}_{0} norm.

Assume that $f \in C^{k}_{0} + \text{PAC}$ and $S(D^k f) = 0$. Suppose that $\alpha \in S^0_k$ and $0 = \beta_0 < \beta_1 < \ldots < \beta_d < 1$ are all the discontinuity points of $D^k f$. In this paper we will prove the following theorem.

Theorem 1.1 (Main Theorem). Let $k \in \mathbb{N}$ and $f \in C^{k}_{0} + \text{PAC}$ be such that $S(D^k f) = 0$. If there exists a sequence $\{q_n\}_{n \in \mathbb{N}}$ of denominators of α such that
\[
\lim_{n \to \infty} q_n^{k+1} \|q_n \alpha\| = 0 \quad \text{and} \quad \lim_{n \to \infty} \{q_n \beta_i\} = \gamma_i,
\]
where $\gamma_i \neq \gamma_j$ for $i \neq j$, $i, j = 0, \ldots, d$, then T_f is ergodic. Moreover, there exists $\varepsilon > 0$ such that if $v \in C^{k+BV}_{0}$ and $\|v\|_{k+BV} < \varepsilon$, then $T_f + v$ is ergodic.

2. Some generalizations of the Denjoy–Koksma inequality. In this section we prove some generalizations of the Denjoy–Koksma inequality which will be needed to prove the main theorem. Let Q_n be a partition of T into the intervals defined by the points $\{i \alpha\}^{s_n - 1}_{i = 0}$. Then for all n, each interval of Q_n has length $\|s_n - 1 \alpha\|$ or $\|s_n \alpha\|$.

Theorem 2.1. For a given nonnegative integer k there is a positive constant $M_k = M$ such that if $f \in C^{k+BV}_{0}$, then
\[
s_k^n |f(s_n)(x)| \leq M(1 + s_{n+1}^k \|s_n \alpha\|) \text{Var}(D^k f)
\]
for any natural n.

Proof (by induction on k). For $k = 0$ the inequality (2) is the ordinary Denjoy–Koksma inequality (see [5], p. 73).

Assuming (2) to hold for a certain k, we will prove that there exists $M_{k+1} > 0$ such that if $f \in C^{k+1+BV}_{0}$, then
\[
s_{n+1}^k |f(s_n)(x)| \leq M_{k+1}(1 + s_{n+2}^{k+2} \|s_n \alpha\|) \text{Var}(D^{k+1} f).
\]
Let I be an interval of size $\|s_n - 1 \alpha\|$. Then
\[
\left| \int_I f(s_n)(x) \, dx \right| = \left| \int_{\bigcup_{i=0}^{s_n - 1} T^i I} f(x) \, dx \right| = \left| \int_{T \setminus \bigcup_{i=0}^{s_n - 1} T^i I} f(x) \, dx \right|.
\]
Since
\[
T \setminus \bigcup_{i=0}^{s_n - 1} T^i I = \bigcup_{j=0}^{s_n - 1 - 1} T^j J,
\]
where J is an interval of size $\|s_n \alpha\|$, we have
If \(|I| = \|s_{n-1}\alpha\| + \|s_n\alpha\| \), then we split this into two chunks, one \(I_1 \) of size \(\|s_{n-1}\alpha\| \), the other \(I_2 \) of size \(\|s_n\alpha\| \). Then

\[
\left| \int_I f^{(s_n)}(x) \, dx \right| = \left| \int_{I_1} f^{(s_n)}(x) \, dx \right| + \left| \int_{I_2} f^{(s_n)}(x) \, dx \right| \leq 2\|s_n\alpha\| \text{Var}(D^{k+1}f).
\]

It follows that for each interval \(I \) of \(Q_n \) there is \(x_I \in I \) with

\[
|f^{(s_n)}(x_I)| \leq 4s_n\|s_n\alpha\| \text{Var}(D^{k+1}f).
\]

Indeed, if \(f^{(s_n)}|_I \) changes sign, then we can take \(x_I \) such that \(f^{(s_n)}(x_I) = 0 \). Assume that \(f^{(s_n)}|_I \) does not change sign. Suppose that

\[
|f^{(s_n)}(x)| \geq 4s_n\|s_n\alpha\| \text{Var}(D^{k+1}f)
\]

for any \(x \in I \). Then

\[
\left| \int_I f^{(s_n)}(x) \, dx \right| > |I|4s_n\|s_n\alpha\| \text{Var}(D^{k+1}f) > 2\|s_n\alpha\| \text{Var}(D^{k+1}f),
\]

a contradiction. Since \(f \) is absolutely continuous and the formula (2) is true for \(k \), we have

\[
|f^{(s_n)}(b) - f^{(s_n)}(a)| = \left| \int_a^b Df^{(s_n)}(x) \, dx \right|
\]

\[
\leq M_k(1 + s_n^{k+1}\|s_n\alpha\|) \text{Var}(D^{k+1}f) \frac{|b - a|}{s_n^k}
\]

for all \(a, b \in \mathbb{T} \). If \(x \in I \in Q_n \), then

\[
|f^{(s_n)}(x) - f^{(s_n)}(x_I)| \leq 2\|s_{n-1}\alpha\| \frac{M_k(1 + s_n^{k+1}\|s_n\alpha\|)}{s_n^k} \text{Var}(D^{k+1}f)
\]

\[
\leq \frac{2M_k}{s_n^{k+1}}(1 + s_n^{k+1}\|s_n\alpha\|) \text{Var}(D^{k+1}f)
\]

and finally

\[
s_n^{k+1}|f^{(s_n)}(x)| \leq s_n^{k+1}|f^{(s_n)}(x) - f^{(s_n)}(x_I)| + s_n^{k+1}|f^{(s_n)}(x_I)|
\]

\[
\leq (2M_k(1 + s_n^{k+1}\|s_n\alpha\|) + 4s_n^{k+2}\|s_n\alpha\|) \text{Var}(D^{k+1}f)
\]

\[
\leq (2M_k + 4)(1 + s_n^{k+2}\|s_n\alpha\|) \text{Var}(D^{k+1}f). \quad \blacksquare
\]

Corollary 2.1. Assume that \(\alpha \in S_k \) and \(\{q_n\}_{n \in \mathbb{N}} \) is a sequence of denominators of \(\alpha \) such that the sequence \(\{q_n^{k+1}\|q_n\alpha\|\}_{n \in \mathbb{N}} \) is bounded. Then there is a constant \(K \geq 1 \) such that

\[
q_n^{k}|f^{(s_n)}(x)| \leq K\|f\|_{k+BV}
\]
for any \(f \in C_0^{k+BV} \) and \(n \in \mathbb{N} \). Moreover, if \(f \in C_0^{k+AC} \), then the sequence \(\{q_n^k f(q_n)\}_{n \in \mathbb{N}} \) uniformly converges to zero.

Proof. Notice that Theorem 2.1 implies the first part of the corollary. Since for every \(f \in C_0^{k+AC} \) there exists a sequence \(\{P_m \}_{m \in \mathbb{N}} \) of trigonometric polynomials with zero integral such that

\[
\lim_{m \to \infty} \|P_m - f\|_{k+BV} = 0,
\]

it suffices to show that for every trigonometric polynomial \(f \) with zero integral the sequence \(\{q_n^k f(q_n)\}_{n \in \mathbb{N}} \) uniformly converges to zero. Let

\[
f(x) = \sum_{m=-M}^{M} a_m e^{2\pi i mx}
\]

where \(a_0 = 0 \). Then

\[
|q_n^k f(q_n)(x)| = \left| q_n^k \sum_{m=-M}^{M} a_m \frac{e^{2\pi i q_n x} - 1}{e^{2\pi i \alpha} - 1} \right|
\]

\[
\leq 2q_n^k \sum_{m=-M}^{M} |a_m| \frac{m\|q_n \alpha\|}{\|m \alpha\|} = q_n^k \|q_n \alpha\| \sum_{m=-M}^{M} 2|m|\frac{|a_m|}{\|m \alpha\|}.
\]

It follows that \(q_n^k f(q_n) \) uniformly converges to zero, which completes the proof.

3. Ergodicity of differentiable cocycles. We need auxiliary lemmas.

Lemma 3.1. Let \(0 = \beta_0 < \beta_1 < \ldots < \beta_d < \beta_{d+1} = 1 \) and let \(a_1, \ldots, a_{d+1} \) be real numbers with zero sum. Consider a function \(h : \mathbb{T} \to \mathbb{R} \) with zero integral given by

\[
h = h(0) + \sum_{i=1}^{d+1} a_i 1_{[\beta_i, 1]}.
\]

Then \(h(0) = \sum_{i=1}^{d+1} a_i \beta_i \) and

\[
h^{(q)} = h^{(q)}(0) + \sum_{s=0}^{q-1} \sum_{i=1}^{d+1} a_i 1_{[\beta_i - s\alpha, 1]}
\]

for any natural \(q \), where \(T : \mathbb{T} \to \mathbb{T} \) is the rotation through \(\alpha \).

Proof. Since \(\int_T h \, d\lambda = 0 \) and \(a_1 + \ldots + a_{d+1} = 0 \), we have

\[
0 = h(0) + \sum_{i=1}^{d+1} a_i (1 - \beta_i) = h(0) - \sum_{i=1}^{d+1} a_i \beta_i.
\]
For all $a, b, x \in \mathbb{T}$, we have

$$1_{[b, 1)}(x + a) - 1_{[b, 1)}(a) = 1_{[b-a, 1)}(x) - 1_{[1-a, 1)}(x).$$

It follows that

$$h(x + a) - h(a) = \sum_{i=1}^{d+1} a_i(1_{[\beta_i, 1)}(x + a) - 1_{[\beta_i, 1)}(x))$$

$$= \sum_{i=1}^{d+1} a_i(1_{[\beta_i-a, 1)}(x) - 1_{[1-a, 1)}(x)) = \sum_{i=1}^{d+1} a_i(1_{[\beta_i-a, 1)}(x).$$

Therefore

$$h^{(q)} = h(0) + \sum_{s=0}^{q-1} \sum_{i=1}^{d+1} a_i(1_{[\beta_i-s, 1)}$$

for any natural q. ■

Lemma 3.2. Let $I \subset \mathbb{R}$ be an interval and k be a natural number. If P is a real polynomial of the form $P(x) = c_k x^k + \ldots + c_0$, $c_k \neq 0$, then there exists a closed subinterval $J \subset I$ with $|J| \geq |I|/4^k$ such that

$$x \in J \Rightarrow |P(x)| \geq k! |c_k|(|I|/4)^k.$$

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with continuous derivative. Suppose that there exists a closed interval $I \subset \mathbb{R}$ such that $|Df(x)| \geq a > 0$ for any $x \in I$. We first show that there exists an interval $J \subset I$ with $|J| \geq |I|/4$ and $|f(x)| \geq a|I|/4$ for any $x \in J$. Without loss of generality we can assume that $Df(x) \geq a > 0$ for any $x \in I$. Suppose that for every interval $J \subset I$ with $|J| \geq |I|/4$ there exists $x \in J$ such that $|f(x)| < a|I|/4$. Since f increases on I, we can find $x, y \in I$ such that $x - y \geq |I|/2$ and $|f(x)|, |f(y)| < a|I|/4$. It follows that

$$a|I|/2 \leq a|x - y| \leq |f(x) - f(y)| < a|I|/2,$$

a contradiction. Applying the above fact to derivatives of P we obtain our assertion. ■

Let $f \in C_0^{k+\text{PAC}}$ be such that $S(D^k f) = 0$. Let $\alpha \in S_0^k$ and let $0 = \beta_0 < \beta_1 < \ldots < \beta_d < 1$ be all the discontinuities of $D^k f$. Suppose that there exists a sequence $\{q_n\}_{n \in \mathbb{N}}$ of denominators of α such that

$$\lim_{n \to \infty} q_n^{k+1} \|q_n \alpha\| = 0 \quad \text{and} \quad \lim_{n \to \infty} \{q_n \beta_i\} = \gamma_i,$$

where $\gamma_i \neq \gamma_j$ for $i \neq j$, $i, j = 0, \ldots, d$. It is clear that the function f can
be represented as $f = g + h$, where $g \in C_0^{k+AC}$, $h \in C_0^{k+FAC}$ and D^kh is constant on each interval (β_i, β_{i+1}). Then

$$D^kh_+(\beta_i) - D^kh_-(\beta_i) = D^kf_+(\beta_i) - D^kf_-(\beta_i) = a_i \neq 0$$

for $i = 0, \ldots, d$ and

$$D^kh_+ = D^kh_+(0) + \sum_{i=1}^{d+1} a_i 1_{[\beta_i, 1)}$$

with $D^kh_+(0) = \sum_{i=1}^{d+1} a_i \beta_i$. By Lemma 3.1,

$$(4) \quad D^k h_+^{(q)} = D^k h_+^{(q)}(0) + \sum_{s=0}^{q-1} \sum_{i=1}^{d+1} a_i 1_{[\beta_i - s\alpha, 1)}$$

for any natural q. Let σ be a permutation of the set $\{0, 1, \ldots, d\}$ such that

$$0 = \gamma_{\sigma(0)} < \gamma_{\sigma(1)} < \ldots < \gamma_{\sigma(d)} < \gamma_{\sigma(d+1)} = 1,$$

where $\sigma(0) = \sigma(d + 1)$. For given $1 \leq i \leq d + 1$ and $0 \leq j < q_n$, let $t^{(j)}_i$ be the unique integer satisfying $0 \leq t^{(j)}_i < q_n$ and

$$t^{(j)}_i p_n + j = [q_n \beta_i] \mod q_n,$$

where $\{p_n/q_n\}_{n \in \mathbb{N}}$ is the sequence of convergents of α. Then

$$\beta_i - t^{(j)}_i \alpha = \frac{[q_n \beta_i]}{q_n} + \frac{\{q_n \beta_i\}}{q_n} - t^{(j)}_i \frac{p_n}{q_n} - t^{(j)}_i \frac{\delta_n}{q_n}$$

$$= \frac{j}{q_n} + \frac{1}{q_n} \left(\{q_n \beta_i\} - t^{(j)}_i \delta_n \right) \mod 1,$$

where $|\delta_n| = \|q_n \alpha\|$. It follows that

$$\beta_{\sigma(0)} - t^{(j)}_{\sigma(0)} \alpha \lesssim \beta_{\sigma(1)} - t^{(j)}_{\sigma(1)} \alpha \lesssim \ldots \lesssim \beta_{\sigma(d)} - t^{(j)}_{\sigma(d)} \alpha \lesssim \beta_{\sigma(0)} - t^{(j + 1)}_{\sigma(0)} \alpha$$

for $j = 0, \ldots, q_n - 1$. Let $0 \leq j \leq q_n - 1$ and $0 \leq i \leq d$. Set

$$t^{(j)}_i = \begin{cases} (\beta_{\sigma(i)} - t^{(j)}_{\sigma(i)} \alpha, \beta_{\sigma(i + 1)} - t^{(j)}_{\sigma(i + 1)} \alpha) & \text{if } 0 \leq i < d, \\ (\beta_{\sigma(d)} - t^{(j)}_{\sigma(d)} \alpha, \beta_{\sigma(0)} - t^{(j + 1)}_{\sigma(0)} \alpha) & \text{if } i = d. \end{cases}$$

Lemma 3.3. If $x \in t^{(j)}_i$, then

$$D^k h_+(q_n)(x) = \sum_{m=1}^{d} a_m \{q_n \beta_m\} + \sum_{n=0}^{i} a_m.$$
Proof. Let $x \in I_i^{(j)}$. From (4), we have

$$D^{k}h_{+}^{(q_{n})}(x) = D^{k}h_{+}^{(q_{n})}(0) + \sum_{l=0}^{q_{n}-1} \sum_{m=1}^{d+1} a_{m} 1_{[\beta_{\sigma_{m}}^{l} - \ell^{(l)}_{\sigma_{m}}\alpha_{1}]}(x)$$

$$= D^{k}h_{+}^{(q_{n})}(0) + \sum_{l=0}^{q_{n}-1} \sum_{m=1}^{d+1} a_{m} + \sum_{m=1}^{d+1} a_{m} 1_{[\beta_{\sigma_{m}}^{l} - \ell^{(l)}_{\sigma_{m}}\alpha_{1}]}(x)$$

$$= D^{k}h_{+}^{(q_{n})}(0) + \sum_{m=1}^{d} a_{m}.$$

Moreover

$$D^{k}h_{+}^{(q_{n})}(0) = \sum_{j=0}^{q_{n}-1} D^{k}h_{+}(j\alpha) = \sum_{j=0}^{q_{n}-1} \left(D^{k}h_{+}(0) + \sum_{i=1}^{d} a_{i} 1_{[\beta_{i}]}(j\alpha) \right)$$

$$= q_{n} D^{k}h_{+}(0) + \sum_{i=1}^{d} q_{n}^{-1} \sum_{j=0}^{q_{n}-1} 1_{[\beta_{i}]}(j\alpha).$$

On the other hand,

$$\sum_{j=0}^{q_{n}-1} 1_{[\beta_{i}]}(j\alpha)$$

$$= \text{card}\{0 \leq j < q_{n} : \{j\alpha\} > \beta_{i}\}$$

$$= \text{card}\{0 \leq j < q_{n} : j\delta_{n}/q_{n} > [q_{n}\beta_{i}]/q_{n} + \{q_{n}\beta_{i}\}/q_{n}\}$$

$$= \text{card}\{0 \leq j < q_{n} : j\delta_{n}/q_{n} > [q_{n}\beta_{i}]/q_{n}\}$$

$$= q_{n} - [q_{n}\beta_{i}] - 1.$$

Therefore

$$D^{k}h_{+}^{(q_{n})}(0) = q_{n} \sum_{i=1}^{d} a_{i} \beta_{i} + \sum_{i=1}^{d} a_{i} (q_{n} - [q_{n}\beta_{i}] - 1)$$

$$= q_{n} \sum_{i=1}^{d} a_{i} \beta_{i} + \sum_{i=1}^{d} a_{i} ([q_{n}\beta_{i}] - q_{n}\beta_{i}) + a_{0}$$

$$= \sum_{i=1}^{d} a_{i} [q_{n}\beta_{i}] + a_{0}$$

and consequently

$$D^{k}h_{+}^{(q_{n})}(x) = \sum_{m=1}^{d} a_{m} [q_{n}\beta_{m}] + \sum_{m=0}^{q_{n}^{-1}} a_{m}. \quad \blackbox$$
Let $0 \leq j \leq q_n - 1$ and $0 \leq i \leq d$. Let $\tilde{I}^{(j)}_i$ denote the interval

$$(\beta_{\sigma(i)} - \ell_{\sigma(i)}^{(j)} \alpha + q_i^k\|q_n\alpha\|, \beta_{\sigma(i+1)} - \ell_{\sigma(i+1)}^{(j)} \alpha - q_i^k\|q_n\alpha\|)$$

if $0 < i < d$, and the interval

$$(\beta_{\sigma(d)} - \ell_{\sigma(d)}^{(j)} \alpha + q_i^k\|q_n\alpha\|, \beta_{\sigma(0)} - \ell_{\sigma(0)}^{(j+1)} \alpha - q_i^k\|q_n\alpha\|)$$

if $i = d$. Since $q_i^k \|q_n\alpha\| \to 0$ as $n \to \infty$, we have

$$|\tilde{I}^{(j)}_i| = \frac{1}{q_i^k} |\{q_i^k \beta_{\sigma(i+1)} - \{q_i^k \beta_{\sigma(i)}\} - \delta_n (\ell_{\sigma(i+1)}^{(j)} - \ell_{\sigma(i)}^{(j)}) - 2q_i^k \|q_n\alpha\|)|$$

for all n large enough.

Corollary 3.1. If $x \in \tilde{I}^{(j)}_i$, then

$$D^k h(q_i^{k+1})(x) = q_i^k \left(\sum_{m=1}^d a_m \{q_i^k \beta_m\} + \sum_{m=0}^i a_m \right).$$

Proof. For every $x \in T$, we have

$$D^k h(q_i^{k+1})(x) = D^k h(q_n)(x)$$

$$+ D^k h(q_n)(x + q_n \alpha) + \ldots + D^k h(q_n)(x + (q_i^k - 1)q_n \alpha).$$

If $x \in \tilde{I}^{(j)}_i$, then $x + lq_n \alpha \in I^{(j)}_i$ for $l = 0, 1, \ldots, q_i^k - 1$. It follows that

$$D^k h(q_i^{k+1})(x) = q_i^k \left(\sum_{m=1}^d a_m \{q_i^k \beta_m\} + \sum_{m=0}^i a_m \right).$$

Corollary 3.2. There exists a collection $\{J_j\}_{j=0}^{q_n-1}$ of pairwise disjoint closed intervals and there exist constants $0 < C < 1$, $M > 0$ such that

$$|J_j| \geq \frac{C}{q_n}$$

and $x \in J_j \Rightarrow |D h(q_i^{k+1})(x)| \geq M q_n$ for $j = 0, \ldots, q_n - 1$.

Proof. Fix

$$c_i = \sum_{m=1}^d a_m \gamma_m + \sum_{m=0}^i a_m.$$

At least one of the numbers c_i is not zero. Indeed, if we suppose that $c_i = 0$ for $i = 0, \ldots, d$, then $a_i = c_i - c_{i-1} = 0$ for $i = 0, \ldots, d$, which is impossible. Take i_0 such that $c_{i_0} \neq 0$. Set

$$b^{(i_0)} = \sum_{m=1}^d a_m \{q_i \beta_m\} + \sum_{m=0}^{i_0} a_m.$$
Since $D^k h(q_n^{k+1}) = q_n^k b^{(n)}$ on $\hat{T}_{i_o}^{(j)}$, we have

$$D h(q_n^{k+1}) (x) = q_n^k b^{(n)} x^{k-1} + P_j (x)$$
on $\hat{T}_{i_o}^{(j)}$, where P_j is a polynomial with $\deg(P_j) < k - 1$ ($j = 0, \ldots, q_n - 1$).

By Lemma 3.2, there exist closed subintervals $J_j \subset \hat{T}_{i_o}^{(j)}$ such that

$$|J_j| \geq \frac{1}{4^{k-1}} |\hat{T}_{i_o}^{(j)}| \geq \frac{\gamma_{\sigma(i_o+1)} - \gamma_{\sigma(i_o)}}{4^k q_n}$$
and if $x \in J_j$, then

$$|D h(q_n^{k+1}) (x)| \geq q_n^k |b^{(n)}| \left(\frac{|\hat{T}_{i_o}^{(j)}|}{4} \right)^{k-1} \geq \frac{1}{2} q_n^k \left(\frac{\gamma_{\sigma(i_o+1)} - \gamma_{\sigma(i_o)}}{4^k q_n} \right)^{k-1}$$
for $j = 0, \ldots, q_n - 1$. It follows that we can set

$$C = \frac{\gamma_{\sigma(i_o+1)} - \gamma_{\sigma(i_o)}}{4^k} \quad \text{and} \quad M = \frac{|c_{i_o}| (\gamma_{\sigma(i_o+1)} - \gamma_{\sigma(i_o)})^{k-1}}{4^k}.$$

Proof of Theorem 1.1. Notice that $\{q_n^{k+1}\}_{n \in \mathbb{N}}$ is a rigid time for the rotation $T x = x + \alpha$. By Corollary 2.1, the sequence $\{\|f + v\| (q_n^{k+1})\}_{n \in \mathbb{N}}$ is bounded, because $\|g (q_n^{k+1})\|_{\infty} \leq q_n^k \|g (q_n)\|_{\infty}$ and $f + v \in C_0^{k+BV}$.

By Proposition 1, it suffices to find $\varepsilon > 0$ such that $\text{Var}(D^k v) < \varepsilon$ implies

$$\lim_{n \to \infty} \left| \int_T e^{2\pi i l (f + v) (q_n^{k+1}) (x)} dx \right| \leq c < 1$$
for all l large enough.

Represent f as the sum of functions $g \in C_0^{k+AC}$ and $h \in C_0^{k+PAC}$, where $D^k h$ is constant on intervals $[\beta_j, \beta_{j+1})$. Since $\|g (q_n^{k+1})\|_{\infty} \leq q_n^k \|g (q_n)\|_{\infty}$, the sequence $\{g (q_n^{k+1})\}_{n \in \mathbb{N}}$ uniformly converges to zero, by Corollary 2.1. Therefore

$$\lim_{n \to \infty} \left| \int_T e^{2\pi i l (f + v) (q_n^{k+1}) (x)} dx - \int_{\frac{\beta_j}{q_n}} e^{2\pi i l (h + v) (q_n^{k+1}) (x)} dx \right| = 0.$$

It follows that it suffices to compute

$$\lim_{n \to \infty} \left| \int_T e^{2\pi i l (h + v) (q_n^{k+1}) (x)} dx \right|.$$

By Corollary 3.2, there exists a collection $\{J_j : j = 0, \ldots, q_n - 1\}$ of pairwise disjoint closed intervals and there exist $0 < C < 1$, $M > 0$ such that

$$|J_j| \geq \frac{C}{q_n} \quad \text{and} \quad x \in J_j \Rightarrow |D h(q_n^{k+1}) (x)| \geq M q_n$$
for \(j = 0, \ldots, q_n - 1 \). Let \(J_j = [a_j, b_j] \) for \(j = 0, \ldots, q_n - 1 \). Applying integration by parts we get

\[
\left| \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \\
\leq 1 - \sum_{j=0}^{q_n-1} |J_j| + \left| \sum_{j=0}^{q_n-1} b_j \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \\
\leq 1 - C + \left| \sum_{j=0}^{q_n-1} b_j \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \\
= 1 - C + \left| \sum_{j=0}^{q_n-1} b_j \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \\
\leq 1 - C \\
+ \left| \sum_{j=0}^{q_n-1} \left(\frac{e^{2\pi il(h+v)(q_n^{k+1})(b_j)}}{2\pi ilDh(q_n^{k+1})(b_j)} - \frac{e^{2\pi il(h+v)(q_n^{k+1})(a_j)}}{2\pi ilDh(q_n^{k+1})(a_j)} \right) \\
- \frac{b_j}{a_j} \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right|.
\]

Since \(|Dh(q_n^{k+1})(x)| \geq Mq_n \) for every \(x \in J_j \), we obtain

\[
\left| \sum_{j=0}^{q_n-1} \left(\frac{e^{2\pi il(h+v)(q_n^{k+1})(b_j)}}{2\pi ilDh(q_n^{k+1})(b_j)} - \frac{e^{2\pi il(h+v)(q_n^{k+1})(a_j)}}{2\pi ilDh(q_n^{k+1})(a_j)} \right) \right| \leq \frac{1}{lM\pi}
\]

and

\[
\left| \frac{b_j}{a_j} \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \leq \text{Var}_{a_j}^b \left(\frac{e^{2\pi il(h+v)(q_n^{k+1})}}{Dh(q_n^{k+1})} \right) \\
\leq \frac{2\pi l \text{Var}_{a_j}^b \left(v(q_n^{k+1}) \right)}{\inf_{(a_j, b_j)} |Dh(q_n^{k+1})|} + \text{Var}_{a_j}^b \left(\frac{1}{Dh(q_n^{k+1})} \right) \\
\leq \frac{2\pi l}{Mq_n} \int_\mathbb{T} |Dv(q_n^{k+1})| \, d\lambda + \frac{\text{Var}_{a_j}^b (Dh(q_n^{k+1}))}{M^2q_n^2}
\]

for \(j = 0, \ldots, q_n - 1 \). It follows that

\[
\left| \int_\mathbb{T} e^{2\pi il(h+v)(q_n^{k+1})(x)} \, dx \right| \leq 1 - C + \frac{1}{lM\pi} \\
+ \frac{1}{Mq_n} \int_\mathbb{T} |Dv(q_n^{k+1})| \, d\lambda + \frac{\text{Var}(Dh(q_n^{k+1}))}{2\pi lM^2q_n^2}.
\]
By Corollary 2.1, we have
\[\int_{\mathbb{T}} |Dv(q_n^{k+1})| \, d\lambda \leq q_n^k \int_{\mathbb{T}} |Dv(q_n)| \, d\lambda \leq Kq_n \|v\|_{k+BV}. \]

Moreover,
\[\text{Var}(Dh(q_n^{k+1})) \leq Kq_n^2 \|h\|_{k+BV}. \]

Indeed, for \(k = 1 \), we have
\[\text{Var}(Dh(q_n^{k+1})) \leq q_n \text{Var}(Dh) \]
and
\[\text{Var}(Dh(q_n^{k+1})) = \int_{\mathbb{T}} |D^2 h(q_n^{k+1})| \, d\lambda \leq q_n^2 \int_{\mathbb{T}} |D^2 h(q_n)| \, d\lambda \leq Kq_n^2 \text{Var}(D^k h) \]
for \(k > 1 \), by Corollary 2.1. It follows that
\[\limsup_{n \to \infty} \left| \int_{\mathbb{T}} e^{2\pi i l (h+v)(q_n^{k+1})} \, dx \right| \leq 1 - C + \frac{1}{LM} + \frac{K}{M} \|v\|_{k+BV} + \frac{K}{LM^2} \|h\|_{k+BV}. \]

Let \(v \in C_0^{k+BV} \). Suppose that \(\|v\|_{k+BV} < MC/K \). Then
\[\limsup_{n \to \infty} \left| \int_{\mathbb{T}} e^{2\pi i l (h+v)(q_n^{k+1})} \, dx \right| \leq 1 - \frac{1}{2} \left(C - \frac{K}{M} \|v\|_{k+BV} \right) < 1 \]
for all \(l \) large enough, which completes the proof. ■

References

Faculty of Mathematics and Computer Science
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: fraczek@mat.uni.torun.pl

Received 16 November 1998