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Dimensionsgrad for locally connected Polish spaces

by

Vitaly V. F e d o r c h u k (Moscow) and Jan v a n M i l l (Amsterdam)

Abstract. It is shown that for every n ≥ 2 there exists an n-dimensional locally
connected Polish space with Dimensionsgrad 1.

1. Introduction. All spaces under discussion are separable and metriz-
able. Let A and B be disjoint subsets of a space X. Recall that a closed set
S ⊆ X is said to be a partition in X between A and B if there are open sets
U and V in X such that A ⊆ U , B ⊆ V , X \ S = U ∪ V , and U ∩ V = ∅.
A different but related concept is that of a cut. Let A and B be disjoint
subsets of a space X. A closed set K ⊆ X is called a cut in X between A
and B if K ∩ (A ∪B) = ∅ and K ∩ Y 6= ∅ for every continuum (= compact
connected space) Y ⊆ X such that A ∩ Y 6= ∅ 6= B ∩ Y . In particular, if
there is no continuum Y ⊆ X which meets both A and B then ∅ is a cut
in X between A and B. So a partition is a cut; the converse need not be
true.

In 1913, Brouwer [2] presented the first definition of a dimensional invari-
ant intended for Polish spaces without isolated points (in the terminology of
his days: normal sets in the sense of Fréchet). He called it “Dimensionsgrad”.
A Polish space X has Dimensionsgrad 0 if it does not contain any contin-
uum of size larger than one, and has Dimensionsgrad less than or equal to
n ≥ 1 if for every pair A,B of disjoint closed subsets there exists a closed set
T ⊆ X which is a cut between A and B and has Dimensionsgrad less than
or equal to n− 1. If there is no positive n such that X has Dimensionsgrad
less than or equal to n then we say that it has Dimensionsgrad ∞.

It will be convenient to let DgX denote the Dimensionsgrad of X.
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As was pointed out by Urysohn to Brouwer, the notions of a partition
and a cut do not always agree, even in the case of compact spaces. For a
description of the troubles this caused in the early days of dimension theory,
see e.g. Johnson [10]. But it is easy to see that for locally connected Polish
spaces the notions are the same. This follows easily from the Mazurkiewicz
Theorem in [12].

If X is a compact space of Dimensionsgrad 0 then it contains no non-
trivial continuum, and hence is zero-dimensional in the (now) usual sense. If
moreover X is locally connected and DgX ≤ 1 then by the above remarks
any two disjoint closed sets can be partitioned by a zero-dimensional set,
i.e. the large inductive dimension of X is at most 1. The natural approach
is to try to continue this reasoning by induction. But we run into troubles
if we consider a locally connected compact space X with DgX ≤ 2. We can
only conclude that any two disjoint closed subsets of X can be partitioned
by a closed set of Dimensionsgrad at most 1. But such a partition is not
necessarily locally connected, and so this is a dead end.

In the book by Hurewicz and Wallman [9], one can read on page 4
that Dimensionsgrad and dimension agree in the realm of locally connected
spaces. No proof of their statement is given. Similar statements were re-
peated in several variations in several books, all without proofs: Aleksandrov
and Pasynkov [1, page 163] (for locally connected Polish spaces), Engelk-
ing [3, page 392] (for locally connected Polish spaces), Fedorchuk [5, page
106] (for locally connected Polish spaces), van Mill [13, page 189] (for locally
connected compact spaces) and Engelking [4, page 6] (for locally connected
Polish spaces).

Recently, in Fedorchuk, Levin and Shchepin [7] it was shown that for
an arbitrary compact space X we have DgX = dimX. So for compact
spaces there are no troubles and local connectivity plays no role. But for
complete spaces the above claims are false. The aim of this note is among
other things to show that for locally connected Polish spaces the gap between
Dimensionsgrad and dimension can be arbitrarily large.

We are indebted to the referee for some helpful comments.

2. The examples. Now we present our main result. Recall that a space
X is called hereditarily disconnected if X does not contain any connected
subspace of size larger than 1. A space X is said to be totally disconnected
if for any two distinct points x, y ∈ X there is a clopen (both open and
closed) set E ⊆ X such that x ∈ E ⊆ X \ {y}. It is clear that a totally
disconnected space is hereditarily disconnected (the converse need not be
true).

Our construction consists of two steps:



Dimensionsgrad for locally connected Polish spaces 79

A. The Hilbert cube Q can be embedded in a continuuum Z such that
dim(Z \ Q) = 1 and for any G ⊆ Q the set X(G) = G ∪ (Z \ Q) is
locally connected.

B. If G ⊆ Q is hereditarily disconnected then in X(G) each pair of dis-
joint closed sets can be separated by a partition which is hereditarily
disconnected (and thus has Dimensiongrad 0).

For the proof of Statement A we use a continuum due to Kuratowski [11,
§50, IV]. Let C be the continuum in the plane consisting of the segment
(0 ≤ x ≤ 1, y = 0), which we denote by C0, of the vertical segments (x =
m/2n+1, 0 ≤ y ≤ 1/2n) with 0 ≤ m ≤ 2n+1 and of the level segments
(0 ≤ x ≤ 1, y = 1/2n), where n = 0, 1, . . . Kuratowski used C as an example
of a locally connected continuum which is not hereditarily locally connected
while it is the union of two hereditarily locally connected subcontinua.

Let C1 denote C \ C0.
It is clear that every point of C0 has arbitrarily small neighborhoods U

in C such that U ∩ C1 is connected. Let U be the collection of all those
neighborhoods of points of C0.

Lemma 2.1. If G ⊆ C0 then G ∪ C1 is locally connected.

P r o o f. In fact, a point c ∈ G ⊆ G ∪ C1 has arbitrarily small neighbor-
hoods of the form

(U ∩G) ∪ (U ∩ C1),
where U ∈ U . This set is connected, since it contains the dense connected
subset U ∩ C1.

Let f : C0 → Q be a continuous surjection from C onto the Hilbert
cube Q. The map f defines a decomposition of C whose members are the
singletons from C1 and the sets f−1(q), q ∈ Q. It is well known and easy to
show that this decomposition is upper semicontinuous and that its quotient
space Z is compact and metrizable. Let g : C → Z be the quotient map. So
Z is the disjoint union of C1 and the Hilbert cube Q.

For G ⊆ Q let X(G) = G ∪ C1.

Lemma 2.2. X(G) is locally connected for every G ⊆ Q.

P r o o f. By Lemma 2.1, g−1[X(G)] is locally connected. Since the map
g is closed due to the compactness of C this implies that X(G) is locally
connected as well ([8, Lemma 3-21]).

Since the dimension of Z \ Q is clearly 1, this completes the proof of
Statement A. We proceed to proving Statement B.

Lemma 2.3. If G ⊆ Q is hereditarily disconnected then in X(G) each pair
of disjoint closed sets can be separated by a partition which is hereditarily
disconnected (and thus X(G) has Dimensiongrad at most 1).
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P r o o f. Let A and B be disjoint closed subsets of X(G). By Kura-
towski [11, §27.II] there is a partition S between A and B in X(G) such
that dim(S ∩ C1) ≤ 0. We claim that S is hereditarily disconnected. To
show this, let K be a connected subset of S. If K ∩ C1 6= ∅ then K is a
singleton since S ∩ C1 is zero-dimensional. So we may assume without loss
of generality that K ⊆ G. But then K is a singleton since G is hereditarily
disconnected.

Now that we proved Statements A and B, it remains to pick a suitable
G to complete the proof of our main result.

Theorem 2.4. For each n = 2, 3, . . . ,∞ there exists a locally connected
Polish space Xn such that DgXn = 1 < dimXn = n.

P r o o f. For any n ∈ N there exists a totally disconnected Gδ-set Yn in
Q (cf. [4, 6.2.A]) such that dimYn = n. (This interesting result is due to
Mazurkiewicz and has proved useful in the construction of various coun-
terexamples in dimension theory.) For every n ≥ 2 let Xn = X(Yn). Then
Xn is locally connected by Lemma 2.2. In addition, since totally discon-
nected spaces are hereditarily disconnected, DgXn ≤ 1 by Lemma 2.3. That
DgXn ≥ 1 is clear since Xn contains an interval.

Claim 1. Xn is a Polish space.

P r o o f. This is clear since the complement of Xn in the compact space Z
is an Fσ-subset of Z.

Claim 2. dimXn = n.

P r o o f. Observe that Yn is a closed n-dimensional subset of Xn. So
dimXn ≥ n. On the other hand, Xn \ Yn is a countable union of 1-dimen-
sional compacta. Hence dimXn ≤ n by the Countable Closed Sum Theo-
rem [4, 1.5.3].

This concludes the proof of the theorem.

Let us remark that there also is an infinite-dimensional locally connected
Polish space with Dimensionsgrad 1. It suffices to take the topological sum of
the spaces Xn in Theorem 2.4. This space is countable-dimensional. There is
also a strongly infinite-dimensional example since there is a strongly infinite-
dimensional totally disconnected Gδ-subset in Q (cf. [4, 6.2.4]). We do not
know whether there is a weakly infinite-dimensional such example which
is not countable-dimensional. It seems to us that Pol’s method from [14]
cannot be applied for answering this question.

3. Remarks. If in the definition of Dimensionsgrad we only consider
pairs A and B such that A consists of a single point then we get the definition
of dgX, the (small) dimensionsgrad. In Fedorchuk [6] it was shown that
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dgX = 1 for an arbitrary hereditarily indecomposable continuum X. This
result increased the interest in Brouwer’s dimension function, and it was
shown subsequently in Fedorchuk, Levin and Shchepin [7] that the following
statements are true for an arbitrary (metrizable) compactum X:

(1) DgX = dimX.
(2) dgX ≤ 2.

Remark 3.1. The proof of (1) consists of a few lines only. But it is based
on three deep results in dimension theory which were not known in 1913:
(a) the Countable Closed Sum Theorem, (b) the Addition Theorem, and (c)
the Gδ-Enlargement Theorem. It should also be mentioned that the equality
(1) holds for an arbitrary σ-compact space (the proof is the same as the one
in [7]).

Remark 3.2. As for the inequality (2), we remark that it holds for arbi-
trary spaces. The argument is the same as the one in [7]. The essential tool
for proving this is Proposition 1.1 from [6]: if K is a hereditarily indecom-
posable continuum then for any continuum (or singleton) A ⊆ K and closed
set B ⊆ K missing A there is a cut in K between A and B consisting of one
point only.
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