
FUNDAMENTA
MATHEMATICAE

163 (2000)

A dichotomy theorem for mono-unary algebras

by

Su G a o (Pasadena, CA)

Abstract. We study the isomorphism relation of invariant Borel classes of countable
mono-unary algebras and prove a strong dichotomy theorem.

1. Introduction. In this paper we consider countable mono-unary al-
gebras. A mono-unary algebra used to be defined as a pair 〈A, f〉 where
A is a set and f is a unary function from A into A. But here we shall
consider a slightly more general kind of structures, namely for which f is
a partial unary function on A. In model theoretic terms, let us fix a lan-
guage L = {R}, where R is a binary relation symbol, and consider countable
models of language L with the property

∀x∀y∀z(R(x, y) ∧R(x, z)⇒ y = z).

Then the binary relation R can be viewed as a partial unary function on the
model, and we call such models mono-unary algebras as well.

We denote by U the space of all countable mono-unary algebras with
domain ω, where ω is the set of all finite ordinals. Each model in U is nat-
urally coded by an element of 2ω×ω, thus by a real in the Cantor space. It
follows that the Borel structure of the Cantor space gives rise to a Borel
structure on U. Moreover, this Borel structure can be induced by a topology
that is Polish, i.e., complete metric and separable (see [Sa]). The isomor-
phism relation among all countable mono-unary algebras is now regarded as
an equivalence relation on the Polish space U. It is easy to check that this
equivalence relation is Σ1

1.
Let Lω1ω be the infinitary language formed under first-order formation

rules augmented by countable length conjunctions and disjunctions. For a
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sentence σ in Lω1ω, the space of all models of σ with domain ω is denoted by
Mod(σ). This is a Borel subset of the Polish space U; and, following [FS], we
say that Mod(σ) is an invariant Borel class. The isomorphism relation on
Mod(σ), denoted by ∼=σ, is then a Σ1

1 equivalence relation on the standard
Borel space Mod(σ).

The purpose of this paper is to investigate the complexity of the iso-
morphism relation ∼=σ for various σ. For this we use Borel reducibility to
compare the complexities of two equivalence relations. Suppose X and Y
are standard Borel spaces and E and F are equivalence relations on X and
Y , respectively. E is said to be Borel reducible to F , denoted E ≤B F , if
there is a Borel function θ : X → Y such that, for any x, y ∈ X,

xEy ⇔ θ(x)Fθ(y).

If A and B are two invariant Borel classes of countable models, then A
is Borel reducible to B, denoted A ≤B B, if ∼=¹A ≤B ∼=¹B as equivalence
relations. The notion is closely related to classification problems. In general,
if ∼=σ ≤B ∼=σ′ , then countable models of σ are considered no more difficult
to classify than those of σ′, since any classification of Mod(σ′) gives rise to
a classification of Mod(σ). An invariant Borel class of countable models is
Borel complete if any other invariant Borel class is Borel reducible to it. As
noted in [FS] the isomorphism relation on a Borel complete class must be
Σ1

1-complete as a subset of the (two-dimensional) Cantor space.
The main theorem in this paper is the following.

Theorem 1.1. Let σ be an Lω1ω sentence all of whose models are mono-
unary algebras. Then either ∼=σ is Borel or else Mod(σ) is Borel complete.

The proof of the main theorem will actually establish a stronger result
for first-order theories of mono-unary algebras.

Theorem 1.2. Let T be a first-order theory of mono-unary algebras.
Then the following statements are equivalent :

(i) There is a model M of T with sr(M) = ωM1 .
(ii) For any ordinal α < ω1, there is a model M of T with sr(M) =

ωM1 > α.
(iii) ∼=T is non-Borel.
(iv) Mod(T ) is Borel complete.

In the statements, sr(M) stands for the Scott rank of M , and ωM1 stands
for the first admissible ordinal relativized to the real coding M . The defini-
tions and properties of these concepts can be found in [Ba], Chapter VII.

Our main theorem generalizes earlier work on the number of countable
mono-unary algebras.
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Corollary 1.3 (Vaught Conjecture, Marcus–Miller–Steel). Let σ be an
Lω1ω sentence all of whose models are mono-unary algebras. Then σ has
either countably many or perfectly many models up to isomorphism.

Corollary 1.4 (The Glimm–Effros dichotomy). Let σ be an Lω1ω sen-
tence all of whose models are mono-unary algebras. Then exactly one of the
following is true:

(I) ∼=σ ≤B id(R), where id(R) is the identity relation on R.
(II) E0 ≤B ∼=σ, where E0 is the Vitali equivalence relation on R defined ,

for any x, y ∈ R, by xE0y ⇔ x− y ∈ Q.

To present the proofs we will also work with a concept which is closely
related to mono-unary algebras, defined below. A structure T = 〈T,<T 〉
is called a tree if <T is a partial order on T such that for any t ∈ T , <T

linearly orders the set {s ∈ T | s <T t}. A countable tree T is called simple
if it has a least element and for any t ∈ T , the set {s ∈ T | s <T t} is finite.
Note that our general concept of trees is quite different from that in graph
theory, where a tree is defined to be an acyclic graph. The major difference
is that our trees contain all linear orderings, which is not the case for graph
theoretic trees. The simple trees are closer to the graph theoretical concept.
One can view a simple tree as just a graph theoretic tree with a distinguished
element, namely the root. In fact simple trees were called countable rooted
trees of height ≤ ω in [FS]. If we consider the partial function of finding
the parent for each node in a simple tree, simple trees can be regarded as
countable mono-unary algebras. We denote the space of all simple trees by
Tω (following the phrasing of [FS]). Then Tω is an invariant Borel subset
of U.

The interest in these concepts arose from earlier results in model the-
ory and descriptive set theory. On the model theory side, the first-order
Vaught’s conjecture for mono-unary algebras was first established indepen-
dently by Miller (unpublished) and Marcus ([Ma]). Later Steel [St] proved
the infinitary version of Vaught Conjecture for trees.

On the descriptive set theory side, Friedman and Stanley studied in
[FS], among other things, the structure of ∼=¹Tω and showed that Tω is
Borel complete. It follows that U is also Borel complete. They also defined
an ω1-sequence {Sα}α∈ω1 of invariant Borel classes of simple trees. Recall
the following definition of α-completeness: an invariant Borel class A is α-
complete if Sα ≤B A. A basic question of the subject is whether an invariant
Borel class is Borel complete if it is α-complete for all α < ω1. Our theorem
answers the question for invariant Borel classes of mono-unary algebras.

Corollary 1.5. Let A be an invariant Borel class of mono-unary alge-
bras. If A is α-complete for all α < ω1, then A is Borel complete.
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For the history of Glimm–Effros dichotomy theorems for equivalence
relations, see e.g. [HKL] and [BK]. The classical theorem of [HKL] states
that all Borel equivalence relations satisfy the Glimm–Effros dichotomy.

The rest of this paper is organized as follows. In Sections 2 and 3 we
develop the technicalities needed for the proof of the main theorem. In par-
ticular, we establish the dichotomy for simple trees. Then in Section 4 we
prove the main theorem. In the last section we derive some corollaries and
give some remarks about further questions.

The work presented here is a part of the doctoral dissertation the author
submitted to UCLA in 1998. The research is partially supported by 1997-98
Alfred Sloan Dissertation Fellowship. The author thanks his thesis advisor
Greg Hjorth for many helpful conversations and the referee for the comments
on an earlier draft of this paper.

2. Scott ranks and automorphisms of simple trees. In this section
we concentrate on simple trees and prove some lemmas on the Scott ranks
and automorphisms. The aim is to prepare enough terminology and facts
for the proof of the key lemma in the next section. However, some of the
lemmas proved here might also be interesting in their own right. First let us
introduce some ad hoc notation for simple trees.

Let T be a simple tree and t be an element of T . We let Tt denote the
structure ({s ∈ T | t ≤T s}, <T ), that is, the subtree of T rooted by t. Then
Tt is also a simple tree. We define the level of t, l(t), to be the cardinality of
the set {s ∈ T | s <T t}. The parent of t, p(t), is the immediate predecessor
of t in T . An element s ∈ T is a child of t if p(s) = t. For any t1, t2 ∈ T ,
the meet of t1 and t2, m(t1, t2), is defined to be the largest element s ∈ T
with s ≤T t1 and s ≤T t2. If m(t1, t2) is neither t1 nor t2, then t1 and t2 are
incomparable. For n ≥ 1, we define an equivalence relation ∼ on all n-tuples
of T as follows. For ~s = (s0, . . . , sn−1) and ~t = (t0, . . . , tn−1),

~s ∼ ~t⇔ there is an automorphism τ : T → T such that τ(~s ) = ~t,

i.e., τ(si) = ti for all i < n.

The automorphism τ in the definition is called a witness for ~s ∼ ~t.
Lemma 2.1. Let T be a simple tree and ~s, ~t be n-tuples of elements of

T . Then ~s ∼ ~t if and only if both the following conditions hold :

(i) For any i < n, si ∼ ti.
(ii) For any i, j < n, l(m(si, sj)) = l(m(ti, tj)).

P r o o f. The “only if” direction is obvious. For the “if” direction, we pro-
ceed by induction on n. Choose τ witnessing (s0, . . . , sn−2) ∼ (t0, . . . , tn−2).
Let s ∈ T be maximal ≤ sn−1 with s ≤ si for some i < n− 1. Let t be the
corresponding element ≤ tn−1. If s = sn−1, then t = tn−1 and τ witnesses
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~s ∼ ~t. Assume s < sn−1 and t < tn−1, and let s′ ≤ sn−1, t′ ≤ tn−1 be chil-
dren of s, t respectively. Choose τ ′ witnessing sn−1 ∼ tn−1. So τ ′(s′) = t′.
We define τ ′′ witnessing ~s ∼ ~t.

If τ(s′) = t′, then let

τ ′′ = τ ′|Ts′ ∪ τ |(T \ Ts′).
Otherwise, let t∗ = τ(s′) and s∗ = τ−1(t′). Then τ∗ = τ(τ ′)−1τ witnesses
s∗ ∼ t∗. In this case let

τ ′′ = τ ′|Ts′ ∪ τ∗|Ts∗ ∪ τ |(T \ (Ts′ ∪ Ts∗)).
In both cases τ ′′ witnesses ~s ∼ ~t.

The following lemma relates the above study of automorphisms to the
Scott ranks of simple trees. For a comprehensive treatise of Scott analysis
see [Ba]. For a simple tree T , we denote the Scott rank of T by sr(T ). If α
is an ordinal and ~t ∈ T , we denote the canonical Scott α-type of ~t by ϕ~t,Tα .
The canonical Scott sentence is denoted by ϕT . Sometimes the superscipt
T is omitted if there is no confusion. We let ωT1 denote the ordinal height
of the least admissible set A containing T , that is, A = LωT1 [T ]. By a well
known result of Nadel sr(T ) ≤ ωT1 . The countable fragment of Lω1ω within
A is then denoted by LA.

Lemma 2.2. Let T be a simple tree and A be the least admissible set
containing T . The following are equivalent :

(i) sr(T ) < ωT1 .
(ii) For any ~t ∈ T , the set {~s ∈ T | ~s ∼ ~t } is in A.

(iii) For any t ∈ T , the set {s ∈ T | s ∼ t} is in A.

P r o o f. We show that (i)⇒(iii)⇒(ii).
For (i)⇒(iii), note that s ∼ t⇔ ϕsα = ϕtα, where α = sr(T ) < ωT1 .
(iii)⇒(ii) follows from the preceding lemma.
For (ii)⇒(i), let α = sr(T ) and let P~t = {~s ∈ T | ~s ∼ ~t } ∈ A. We then

see that the structure (T ,~t, P~t) ∈ A. Since

~s ∼ ~t⇔ ϕ~sα = ϕ
~t
α,

P~t is definable over the structure (T ,~t ) by some formula of Lω1ω without any
other parameters. By Theorem VII.7.5 of [Ba], P~t is definable over (T ,~t ) by
a formula ψ~t of LA without any other parameters. Let γ(~t ) be the rank of ψ~t.
Then γ(~t ) < ωT1 . Moreover, ~s ∼ ~t ⇔ ϕ~s

γ(~t )
= ϕ~t

γ(~t )
. Let γ0(~t ) be the least

ordinal γ such that for any ~s, ~s ∼ ~t⇔ ϕ~sγ = ϕ~tγ . Let β = sup{γ0(~t ) | ~t ∈ T }.
By boundedness, β < ωT1 . But sr(T ) ≤ β, since if (T , ~s ) ≡β (T ,~t ), then
~s ∼ ~t. This shows that sr(T ) < ωT1 .
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Lemma 2.3. Let T be a simple tree with sr(T ) = ωT1 . Then there is a
t ∈ T with sr(Tt) = ωT1 and infinitely many s ∈ T with s ∼ t.

P r o o f. Assume not. We then show that sr(T ) < ωT1 . By the preceding
lemma it is enough to check that for any t ∈ T , the set Pt = {s ∈ T | s ∼ t}
is in the least admissible set A containing T . We show this by induction
on l(t). If l(t) = 0 then t is the root, therefore Pt = {t} ∈ A. Suppose
l(t) > 0. If Pt is finite, then Pt ∈ A. If Pt is infinite, by our assumption
sr(Tt) < ωT1 . Let γ < ωT1 be a limit ordinal bigger than sr(Tt). We claim
that s ∼ t ⇔ p(s) ∼ p(t) and ϕsγ = ϕtγ . To see this, note that the second
condition on the right hand side implies that Ts and Tt are isomorphic to
each other. Let % be an isomorphism between Ts and Tt. Let τ be a witness
for p(s) ∼ p(t). If τ(s) = t, there is nothing further to prove. Otherwise, let
s∗ = τ−1(t) and t∗ = τ(s). Then %∗ = τ%−1τ |Ts∗ is an isomorphism between
Ts∗ and Tt∗ . Let

τ ′ = % ∪ %∗ ∪ τ |(T \ (Ts ∪ Ts∗)).
Then τ ′ witnesses s ∼ t. This proves the claim. The claim together with the
inductive hypothesis shows that Pt ∈ A.

3. The dichotomy for simple trees. In this section we prove the key
lemma and derive the strong dichotomy for simple trees. The plan is as
follows. We start with an Lω1ω sentence σ all of whose models are simple
trees. Suppose the quantifier rank of this sentence is λ < ω1. Suppose ∼=σ

is non-Borel. First we obtain a tree T in Mod(σ) which is complicated in
the sense that it has a large number of automorphisms moving its high rank
subtrees around. Then these high rank subtrees of T can be manipulated
so as to obtain a lot of different, in fact pairwise nonisomorphic trees. Fi-
nally, the conclusion is that the class of trees λ-equivalent to T , denoted by
Mod(≡λ T ), can code all simple trees in a faithful manner. This coding will
provide a Borel reduction of Tω into Mod(≡λ T ), thus proving that the class
Mod(σ) is Borel complete.

The following lemma is the key lemma which guarantees the existence of
a complicated tree described in the preceding paragraph. In the statement
of the lemma a subtree of a simple tree T means a substructure of T that
is closed under <T .

Lemma 3.1. Let T be a simple tree with sr(T ) = ωT1 . Then T contains
a subtree T 0 with the following properties:

(i) For any t ∈ T 0, sr(Tt) = ωT1 .
(ii) Any t ∈ T 0 has either one child or infinitely many children in T 0.

(iii) For any t ∈ T 0, there is u ∈ T 0 such that u ≥ t and u has infinitely
many children in T 0.

(iv) For any s, t ∈ T 0, if l(s) = l(t), then s ∼T t.
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P r o o f. We construct T 0 in ω many stages. At the end of each stage n
we obtain a subtree T 0

n of finite height satisfying (i) and (iv). By extending
T 0
n to T 0

n+1 we will meet the requirements (ii) and (iii). Let T 0
0 be the empty

subtree of T .
By Lemma 2.3, there is a t1 ∈ T with sr(Tt1) = ωT1 and there are

infinitely many s ∈ T with s ∼ t1. Without loss of generality we may
assume that there are infinitely many such s with p(s) = p(t1). This is
because, if the assumption fails for t1 we can instead consider p(t1), which
also has the property that sr(Tp(t1)) = ωT1 and there are infinitely many s
with s ∼ p(t1). Note that l(p(t1)) = l(t1) − 1. By an easy induction the
procedure stops before we reach the root of T .

Now let T 0
1 = {s ∈ T | s < t1 or (s ∼ t1 and p(s) = p(t1))}. Then

(i) and (iv) hold. For any t ∈ T 0
1 that is not a terminal node (ii) and (iii)

also follow from the definition. Note that Tt1 is definable from (T , t1) by a
quantifier free formula, so ω

Tt1
1 ≤ ωT1 = sr(Tt1). Hence by Nadel, ω

Tt1
1 = ωT1 .

Now suppose T 0
n has been defined. Fix an arbitrary terminal node tn

in T 0
n . Consider Ttn . By Lemma 2.3 and the argument above, we can find

tn+1 > tn with sr(Ttn+1) = ωT1 such that there are infinitely many s ∈ T
with s ∼ t and p(s) = p(tn+1). Let {tin}i∈ω be an enumeration of all terminal
nodes of T 0

n , with t0n = tn. For each i ∈ ω, let τi be a witness for tn ∼ tin.
Let S = {s ∈ T | s < tn+1 or (s ∼ tn+1 and p(s) = p(tn+1))}. Let T 0

n+1 =
T 0
n ∪

⋃{τi(S) | i ∈ ω}. Then (i) and (iv) hold for elements in T 0
n+1 and (ii)

and (iii) hold for elements in T 0
n .

Eventually let T 0 be the increasing union of all T 0
n . Then T 0 is as re-

quired.

If t ∈ T 0 has infinitely many children in T 0, we say that t is (infinitely)
splitting. Otherwise, t has only one child in T 0, and we say it is non-splitting.
For any t ∈ T 0, let l0(t) denote the cardinality of the set {s ∈ T 0 | s < t
and s is splitting} and call it the relative level of t in T 0.

Let σ be an Lω1ω sentence describing an invariant Borel class of simple
trees. Let λ > ω be a countable limit ordinal bigger than the quantifier rank
of σ. Suppose that ∼=σ is non-Borel. By a theorem of Sacks (see [St]) there
is a model T of σ with sr(T ) = ωT1 > λ. Let T 0 be the subtree of T given
by the preceding lemma.

We make use of the following lemma of Steel.

Lemma 3.2. Let T be a simple tree with sr(T ) = ωT1 and let λ < ωT1 be
a limit ordinal. Then id(2ω) ≤B ∼=¹Mod(≡λ T ).

In the statement, Mod(≡λ T ) is an abbreviation of Mod(ϕ∅,Tλ ). For a
proof of the lemma, see [St]. We define an infinite sequence U0,U1, . . . ,Ui, . . .
of simple trees by induction on i. For each i ∈ ω, we fix an arbitrary ti ∈ T 0
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with l0(ti) = i+ 1 and p(ti) splitting. Ui shall be chosen from Mod(≡λ Tti)
so that it is not isomorphic to any Tt for t ∈ T . In addition, Ui shall not
be isomorphic to any (Uj)t for j < i and t ∈ Uj . Since there are at most
countably many trees for Ui to avoid, such a Ui exists by the above lemma.

We are now ready to code Tω into Mod(≡λ T ). Given an arbitrary simple
tree S, we construct a simple tree S̃ by replacing some subtrees of T by some
Ui. To do this we first associate a t(s) ∈ T 0 with each s ∈ S so that the
following properties hold:

(1) p(t(s)) is splitting,
(2) l0(p(t(s))) = l(s),
(3) if s′ 6= s, then t(s′) and t(s) are incomparable, and
(4) if s′ < s, then p(t(s′)) < p(t(s)).

Specifically, the assignment can be constructed in a top down manner for
elements of S. For each s ∈ S, we first find a corresponding splitting element
in T 0 whose relative level is the same as l(s). This element should be greater
than p(t(p(s))) and incomparable with any other t(s′). Then we define t(s)
to be a child of this element. S̃ is then obtained from T by replacing all Tt(s)
by Ul(s). This finishes the construction.

It is easy to see that S 7→ S̃ is a Borel function. To see that it is a
reduction, let S1,S2 ∈ Tω. If S1

∼= S2, then S̃1
∼= S̃2, since any isomorphism

between S1 and S2 naturally induces an isomorphism between S̃1 and S̃2,
which was made possible by Lemma 3.1(iv). To see that if S̃1

∼= S̃2 then
S1
∼= S2, it is enough to show that S can in fact be recovered from S̃, as

done by the following procedure.
First we search for t ∈ S̃ of smallest level with S̃t ∼= U0. If no such t

exists then S is empty. If such a t exists then it follows from the definition
of the sequence {Ui}i∈ω that it is unique. This t corresponds to the root of
S. Next we remove S̃t from S̃ and in the intersection of the remaining part
with S̃p(t) search for occurrences of U1 in a similar manner to that above.
The occurrences of U1 correspond to the first level elements of S, again by
the definition of {Ui}i∈ω. In general, elements of level n in S are recovered
in the nth step of this procedure. And eventually all of S can be recovered.
Therefore, if S̃1

∼= S̃2, then the above procedures recover isomorphic trees,
thus S1

∼= S2.
In effect we have proven the following theorem.

Theorem 3.1. Let σ be an Lω1ω sentence all of whose models are simple
trees. Then either ∼=σ is Borel or Mod(σ) is Borel complete.

4. The main theorem. In this section we prove the main dichotomy
theorem for mono-unary algebras.
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Theorem 4.1. Let σ be an Lω1ω sentence such that Mod(σ) ⊆ U. Then
either ∼=σ is Borel or else Mod(σ) is Borel complete.

Recall that our official language L consists of a binary relation symbol R
which can be viewed as a partial function. Let us denote this partial function
by F , i.e., F (x) = y ⇔ R(x, y). We will use the notation Fn, n ∈ ω, in the
intuitive sense:

F 0(x) = x,

Fn(x) = y ⇔ ∃x1 . . . ∃xn(R(x, x1) ∧ . . . ∧R(xn−1, xn) ∧ xn = y), for n > 0.

Then one can define a partial order <F as follows:

x <F y ⇔ ∃n > 0(Fn(y) = x) ∧ ∀m(Fm(x) 6= y).

Let M ∈ U. For any x, y ∈M , x and y are said to be connected if there
are n,m ∈ ω such that Fn(x) = Fm(y). For each x ∈ M , the (connected)
component of x is Cx =def {y ∈ M | x and y are connected}. It is easy to
check that being connected is an equivalence relation and the components
are the equivalence classes, therefore giving a partition of M . M is connected
if every pair of elements in M are connected. There are only three kinds of
components C, as follows:

Type I : There is no <F -minimal element in C. With respect to <F , C
is an infinite tree without root. This happens when F (x) is always defined
for any x ∈ C, and Fn(x) 6= x for any n > 0 and x ∈ C.

Type II : There are more than one <F -minimal elements in C. In this case
the <F -minimal elements constitute a finite directed cycle with respect to
F . This happens when F (x) is always defined for any x ∈ C and Fn(x) = x
for some x ∈ C and n > 1.

Type III : There is a <F -least element in C. With respect to <F , C is
just a simple tree. This happens either when F (x) = x for some x ∈ C or
when F (x) is not defined for some x ∈ C. In either case the special element
is the root.

For each x ∈M , let Tx be the structure with domain

{y ∈M | ∃n(Fn(y) = x ∧ ∀m < n∀k > 0(Fm+k(y) 6= Fm(y))}
and the partial order <F . Then Tx is always a simple tree.

Lemma 4.1. Let M ∈ U be such that sr(M) = ωM1 . Then there is x ∈M
such that sr(Tx) = ωM1 .

P r o o f. We first claim that there must be a component C with sr(C) =
ωM1 . Assume not. Then for any x ∈ M , sr(Cx) < ωM1 . By boundedness,
there is a limit ordinal γ < ωM1 such that sr(Cx) < γ for all x ∈ M . We
demonstrate that sr(M) < γ + ω, hence a contradiction. For this it suffices
to show that for any ~a,~b ∈ M , if (M,~a ) ≡γ+ω (M,~b ) then there is an
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automorphism τ of M with τ(~a ) = ~b. Without loss of generality we may
assume all elements in ~a are in a single component, say C0. Then it follows
that all elements in ~b are in a single component as well, say C1. Moreover
(C0,~a ) ≡γ (C1,~b ). Since sr(C0) < γ, there is an isomorphism τ : C0 → C1

with τ(~a ) = ~b. It is then obvious that τ can be extended to an automorphism
of M .

Therefore we may assume that M is connected. To see that there is
x ∈M with sr(Tx) = ωM1 , we consider the three types of M . If M is of type
III, there is nothing to prove. If M is of type II, then M is the union of
finitely many simple trees with their roots tied together by a cycle. One of
these simple trees is as required. The only nontrivial case is when M is of
type I.

Suppose M is of type I and suppose that for any x ∈ M , sr(Tx) < ωM1 .
Then by boundedness there is a limit ordinal γ < ωM1 such that sr(Tx) < γ,
∀x ∈ M . We may assume that ωγ = γ. This ensures that sr(Tx, <F ) < γ
is equivalent to sr(Tx, R) < γ, so we can omit the relation in the following
computations. We shall demonstrate that sr(M) < γ+ω, hence a contradic-
tion. For this it suffices to show that for any ~a,~b ∈M , if (M,~a ) ≡γ+ω (M,~b )
then there is an automorphism τ of M with τ(~a ) = ~b.

Suppose ~a and ~b are n-tuples. Let x0 ∈M be maximal so that x0 ≤F ai
for all i < n. Let y0 ∈ M be the corresponding element for ~b. Then it
follows that (Tx0 ,~a ) ≡γ (Ty0 ,

~b ). Since sr(Tx0), sr(Ty0) < γ, there is an
isomorphism %0 between Tx0 and Ty0 so that %0(~a ) = ~b. Now for n > 0, let
xn = Fn(x0) and yn = Fn(y0). It follows from the assumption (M,~a ) ≡γ+ω

(M,~b ) that for each n > 0, Txn ≡γ Tyn . Hence for each n > 0 there is
an isomorphism %n between Txn and Tyn . By the proof of Lemma 2.3 we
may assume that %n|Txn−1 = %n−1 for all n > 0. Finally notice that M =⋃
n∈ω Txn =

⋃
n∈ω Tyn . Let τ =

⋃
n∈ω %n. Then τ is an automorphism of M

with τ(~a ) = ~b.

Now the proof of Theorem 4.1 follows the same line of proof as Theo-
rem 3.1.

Proof of Theorem 4.1. Let σ be an Lω1ω sentence describing an invariant
Borel subclass of U. Let λ > ω be a countable limit ordinal bigger than the
quantifier rank of σ. Suppose that ∼=σ is non-Borel. By Sacks’ Theorem there
is a model M of σ with sr(M) = ωM1 > λ. By Lemma 4.1 there is x ∈M such
that sr(Tx) = ωM1 = ωTx1 > λ. Therefore by the proof of Theorem 3.1 there
is a Borel reduction of Tω into Mod(≡λ Tx). This induces an embedding
of Tω into Mod(≡λ M), provided that the previous embedding was chosen
so that the isomorphic types of all Ty, y ∈ M , are avoided by the coding
blocks. This shows that Mod(≡λ M), hence ∼=σ, is Borel complete.
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5. Corollaries and remarks. Theorem 4.1 and the Glimm–Effros di-
chotomy for Borel equivalence relations ([HKL]) immediately yield the fol-
lowing corollary.

Corollary 5.1 (The Glimm–Effros dichotomy). Let σ be an Lω1ω sen-
tence such that Mod(σ) ⊆ U. Then either ∼=σ ≤B id(R) or else E0 ≤B ∼=σ.

The Glimm–Effros dichotomy in turn implies the well known result about
the number of countable models for an invariant Borel class of mono-unary
algebras.

Corollary 5.2 (Vaught Conjecture, Marcus–Miller–Steel). Let σ be an
Lω1ω sentence such that Mod(σ) ⊆ U. Then σ has either countably many or
perfectly many models up to isomorphism.

Moreover, we obtain a stronger result about first-order theories of mono-
unary algebras from the proofs of preceding sections.

Theorem 5.3. Let T be a first-order theory of mono-unary algebras.
Then the following statements are equivalent :

(i) There is a model M of T with sr(M) = ωM1 .
(ii) For any ordinal α < ω1, there is a model M of T with sr(M) =

ωM1 > α.
(iii) ∼=T is non-Borel.
(iv) Mod(T ) is Borel complete.

P r o o f. (i)⇒(iv) by the proof of Theorem 4.1. (iv)⇒(iii) by the result
of Friedman and Stanley that the isomorphism of any Borel complete class
is indeed Σ1

1-complete. (iii)⇒(ii) by Sacks’ Theorem. (ii)⇒(i) is obvious.

We now turn to the question of Friedman and Stanley. For each countable
ordinal α < ω1, let Sα be the class of well founded trees of rank α. Then
{Sα}α∈ω1 is an ω1-sequence of invariant Borel classes of simple trees. It is
known that

S0 <B S1 <B S2 <B . . . <B Sα <B . . .

Hence the isomorphism relations are strictly increasing in terms of Borel
reducibility. Another way to view the tower is that S2 can be identified with
ω, S3 with the reals (in the Cantor space), S4 with the space of countable
sets of reals, S5 with the space of countable sets of countable sets of reals,
etc. The isomorphism relations between trees are then viewed as the identity
relations of the corresponding objects. Moreover, each of the spaces can be
given a topology which is Polish.

The Scott sentence of any countable model can be viewed as an element
of Sα, where α is the Scott rank of the model. Thus the Scott analysis assigns
to each countable model an element of some classes in the above tower. When
we consider an invariant Borel class whose isomorphism relation is Borel,
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this assignment is then a Borel reduction by boundedness. This shows that
the Friedman–Stanley tower dominates all Borel isomorphism relations on
invariant Borel classes of countable models.

An invariant Borel class A is α-complete if Sα ≤B A. The question of
Friedman and Stanley is whether an invariant Borel class is Borel complete
if it is α-complete for all α < ω1. Our theorem answers the question for
invariant Borel classes of mono-unary algebras.

Corollary 5.4. Let A be an invariant Borel class of mono-unary alge-
bras. If A is α-complete for all α < ω1, then A is Borel complete.

P r o o f. If ∼=¹A is Borel then A ≤B Sα for some α < ω1, by the above
observation about Scott analysis. The hypothesis then implies that ∼=¹A is
non-Borel. Therefore A is Borel complete by Theorem 4.1.

Note that Theorem 4.1 cannot be generalized to arbitrary countable
models. In fact, let A be the class of countable abelian torsion groups. Then
∼=¹A is not Borel (Theorem 6 of [FS]), yet S4 6≤B A (Theorem 5 of [FS]).
This latter fact was strengthened in [HK] to E0 6≤B ∼=¹A. Hence A is not
Borel complete, in fact the Glimm–Effros dichotomy fails for it.

From a more abstract point of view, Theorem 4.1 can be viewed as
a first step toward a complete classification for ∼=σ with respect to Borel
reducibility. A further result along this line of research is contained in [Ga],
which states that for any invariant Borel class B with ∼=¹B Borel, there is
an invariant Borel class A of mono-unary algebras such that A ≤B B ≤B A.
However, it is not clear what ∼=T can achieve for first-order theories T of
mono-unary algebras.
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