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Expansions of the real line by open sets:
o-minimality and open cores

by
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Abstract. The open core of a structure R := (R, <, . . .) is defined to be the reduct
(in the sense of definability) of R generated by all of its definable open sets. If the open
core of R is o-minimal, then the topological closure of any definable set has finitely many
connected components. We show that if every definable subset of R is finite or uncountable,
or if R defines addition and multiplication and every definable open subset of R has finitely
many connected components, then the open core of R is o-minimal.

An expansion R of the real line (R, <) is o-minimal if every definable
subset of R is a finite union of points and open intervals (that is, has finitely
many connected components). Such structures—particularly, o-minimal ex-
pansions of the field of real numbers—have many nice properties, and are of
interest not only to model theorists, but to analysts and geometers as well.
(See e.g. [D2], [DM] for expositions of the subject.)

Conventions. Throughout, given A ⊆ R, “A-definable” means “definable
(in the structure under consideration) using parameters from A”, and “de-
finable” means “R-definable”. We use “reduct” and “expansion” in the sense
of definability, that is, given structures R1 and R2 with underlying set R,
we say that R1 is a reduct of R2—equivalently, R2 is an expansion of R1,
or R2 expands R1—if every A ⊆ Rn definable in R1 is definable in R2, for
every n ∈ N. (R0 denotes the one-point space {0}.)
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Here is the main result of this paper:

Theorem. Let Uγ ⊆ Rn(γ) be open, γ in some index set Γ . Then:

(a) The structure (R, <, (Uγ)γ∈Γ ) is o-minimal if and only if every de-
finable subset of R is finite or uncountable.

(b) The structure (R,+, ·, (Uγ)γ∈Γ ) is o-minimal if and only if every
open definable subset of R has finitely many connected components (if and
only if every discrete definable subset of R is finite).

Given an expansion R of (R, <), we define the open core of R, denoted
by R◦, to be the reduct of R generated by the collection of all open subsets
of Rn (n ranging over all positive integers) definable in R. Note that R◦

expands (R, <).

Corollary. Let R be an expansion of (R, <).

(1) If every definable subset of R is finite or uncountable, then R◦ is
o-minimal.

(2) If R expands (R,+, ·) and every open definable subset of R has
finitely many connected components, then R◦ is o-minimal.

The Theorem and Corollary hold with “∅-definable” in place of “defin-
able”, provided that the ∅-definable points of R are dense in R, in particular,
if R expands (R, <,+, 1). We obtain this modification as a corollary of the
proof of the Theorem, together with the following:

Proposition 1. Let R be an expansion of (R, <). Suppose that the
∅-definable points of R are dense in R. Then R is o-minimal if and only if
every ∅-definable subset of R has finitely many connected components.

Given an expansion R of (R, <), every boolean combination of open
sets definable in R is definable in R◦. Hence, by the cell decomposition
theorem for o-minimal structures, every o-minimal reduct of R is a reduct
of R◦. Given A ⊆ Rn definable in R, both the closure and the interior of
A are definable in R◦. So if R◦ is o-minimal, then R is, loosely speaking,
topologically close to being o-minimal. We make this precise:

Proposition 2. Let R be an expansion of (R, <) and suppose that R◦ is
o-minimal. Let n ∈ N and A be a finite collection of subsets of Rn definable
in R. Then there is a finite partition C of Rn into cells, definable in R◦,
such that for each A ∈ A and C ∈ C, either A is disjoint from C, or A
contains C, or A is dense and codense in C.

We prove Theorem (a) in Section 1. The proof of (b) requires minor
modifications, which we describe in Section 2. Section 3 contains the proof
of Proposition 2, as well as an application. We provide some examples and
counterexamples in Section 4.
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The proof of the Theorem uses only elementary real topology and the
notion of first-order definability. On the other hand, Sections 3 and 4 require
a fair amount of familiarity with o-minimality and associated model theory;
the expository paper by van den Dries [D2] contains a quick introduction
to the necessary material, as well as an extensive bibliography of original
sources.

Proposition 1 is elementary and easy to establish, so we do this right
away.

Notation. For A ⊆ Rm+n and x ∈ Rm, let Ax denote the fiber of A
over x, that is, the set {y ∈ Rn : (x, y) ∈ A}.

(It should be clear from context when subscripts indicate taking fibers
and when they are used as indices.)

Proof of Proposition 1. Let R be an expansion of (R, <). Suppose that the
∅-definable points of R are dense, and that every ∅-definable subset of R has
finitely many connected components. We show that every definable subset
of R has finitely many connected components (and hence R is o-minimal).

First, note that every nonempty ∅-definable subset of R contains a
∅-definable point of R. An easy induction then shows that for every n ∈ N,
every nonempty ∅-definable subset of Rn contains a ∅-definable point of Rn.

Let A ⊆ R be definable. It suffices to show that the boundary of A
is bounded and discrete (hence finite). Suppose otherwise. Now, A = Bu
for some n ∈ N, u ∈ Rn and ∅-definable B ⊆ Rn+1. Hence, the ∅-defin-
able set C, consisting of all x ∈ Rn such that the boundary of Bx is either
unbounded or not discrete, is nonempty. By the preceding paragraph, C
contains a ∅-definable y ∈ Rn. But the fiber By is a ∅-definable subset of R,
hence its boundary is finite; contradiction.

Before beginning the remaining proofs, we establish some notation, and
review some relevant elementary facts from topology.

Given A ⊆ Rn we let int(A) and cl(A) denote respectively the interior
and closure of A. The frontier of A, denoted by fr(A), is the set cl(A) \ A.
(Note: In general, the frontier of A is not equal to the boundary bd(A) =
cl(A) \ int(A).) We say that A has interior if int(A) 6= ∅, and that A has no
interior if int(A) = ∅.

A set A ⊆ Rn is locally closed if for each x ∈ A there is an open neigh-
borhood U of x such that U ∩A = U ∩ cl(A), or equivalently, if there exists
an open U ⊆ Rn such that A = cl(A)∩U . Any boolean combination of open
subsets of Rn is a finite union of locally closed sets. Given A ⊆ Rn, we put
lc(A) := A \ cl(fr(A)); in other words, lc(A) is the relative interior of A in
cl(A). Note that lc(A) is locally closed.
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Let R be an expansion of (R, <). It is easy to see that given definable sets
A ⊆ B ⊆ Rn with A relatively open in B, there is a definable open C ⊆ Rn
such that A = B ∩ C, and similarly with “closed” in place of “open”. In
particular, A ⊆ Rn is definable and locally closed if and only if there is a
definable open U ⊆ Rn such that A = cl(A) ∩ U . Consequently, for each
n ∈ N, the collection of all finite unions of locally closed definable sets in
Rn is a boolean algebra, and every locally closed A ⊆ Rn definable in R is
definable in R◦. If A ⊆ Rn is definable, then so is lc(A).

Remark. The complement of the locally closed definable set

{0} × ((−∞, 0) ∪ (0,∞)) ⊆ R2

is not locally closed.

1. Proof of part (a). Let Uγ ⊆ Rn(γ) be open, γ in some index set Γ .
Put R := (R, <, (Uγ)γ∈Γ ). Assume that every definable subset of R is finite
or uncountable. We show that every definable subset of R has finitely many
connected components.

1.1. A definable subset of R is locally closed if and only if it has finitely
many connected components.

P r o o f. It suffices to show that every definable open A ⊆ R is a finite
union of open intervals, and for this just note that the set of endpoints of
the bounded connected components of A is definable and countable, hence
finite.

It now suffices to show that every definable subset of R is a finite union
of locally closed definable sets, and for this it suffices to show that for every
n ∈ N, the projection of any locally closed definable set in Rn+1 on the
first n coordinates is a finite union of locally closed definable sets in Rn
(since then every definable set, in each Rn, is a finite union of locally closed
definable sets). In order to do this, we introduce a collection of definable
sets that is closed under projection and contains all finite unions of locally
closed definable sets.

Definition. A set A ⊆ Rn is Dσ if it is definable and a countable
increasing union of definable compact subsets of Rn. We sometimes write
“A ∈ Dσ(n)” or just “A ∈ Dσ”.

It is easy to check that finite unions and intersections of Dσ sets are
Dσ. If A ∈ Dσ(m) and if f : A → Rn is a continuous definable map, then
f(A) ∈ Dσ(n) and f−1{y} ∈ Dσ(m) for every y ∈ Rn; in particular, coor-
dinate projections, as well as the associated fibers, of Dσ sets are Dσ. Of
course, every Dσ set is Fσ.
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1.2. Every definable locally closed set is Dσ. Hence, if A ∈ Dσ(n) and
B ⊆ Rn is definable and locally closed , then A∩B, A∪B and A\B are Dσ.

P r o o f. Every open set is a countable union of compact boxes. Every
closed set A ⊆ Rn is the union of all sets A ∩ [−m,m]n, m ∈ N. Hence,
every definable locally closed set is Dσ. The complement of a locally closed
set is a finite union of locally closed sets.

1.3. A subset of R is Dσ if and only if it has finitely many connected
components.

P r o o f. Let A ⊆ R be Dσ. By 1.1, int(A) is a finite union of open
intervals. Since A \ int(A) is Dσ, we suppose that A has no interior. Write
A =

⋃
k∈NAk, with each Ak compact and definable. Each Ak has no interior,

so each Ak is finite (again by 1.1). Then A is countable, hence finite.

Given integers n and d with n ≥ d ≥ 0, we let Π(n, d) denote the
collection of all projection maps (x1, . . . , xn) 7→ (xλ(1), . . . , xλ(d)) : Rn→Rd,
where λ is a strictly increasing function from {1, . . . , d} into {1, . . . , n}.

Definition. The dimension of a nonempty set A ⊆ Rn, denoted by
dimA, is the maximal integer d such that πA has interior for some π ∈
Π(n, d). (Equivalently, d is the maximal integer such that, after some per-
mutation of coordinates, the projection of A on the first d coordinates has
interior.) Put dim ∅ := −∞.

Here is an outline of the rest of the proof: Since every locally closed
definable set is Dσ, and every coordinate projection of a Dσ set is Dσ, we
are reduced to showing that every Dσ is a finite union of locally closed
definable sets. In fact, we will show that given A ∈ Dσ, there exist m ∈ N
and B1, . . . , Bm, C ∈ Dσ such that: A = B1∪. . .∪Bm∪C; dim(Bi\lc(Bi)) <
dimBi for i = 1, . . . ,m; and dimC < dimA. We then finish by induction
on dimA.

We resume the proof. An easy induction using 1.3 shows that

1.4. Every 0-dimensional Dσ set is finite.

We note some easy facts about Fσ sets.

1.5. (1) Every Fσ set is meager or has interior.
(2) If (Ak)k∈N is a sequence of Fσ sets, then

dim
⋃

k∈N
Ak = max{dimAk : k ∈ N}.

(3) An Fσ set A ⊆ Rm+n has interior if and only if {x ∈ Rm :
Ax has interior} is nonmeager.

(4) Let ∅ 6= A ⊆ Rn be Fσ, d := dimA. Then {x ∈ Rd : dimAx > 0}
is meager.
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P r o o f. Items (1) and (2) are left to the reader.
For (3), let A ⊆ Rn be Fσ, say A is the countable union of closed sets

Ak, k ∈ N. Suppose that {x ∈ Rm : Ax has interior} is nonmeager. Then
there exist k ∈ N and an open box V ⊆ Rn such that the set {x ∈ Rm :
V ⊆ (Ak)x} is somewhere dense, say in some open box U ⊆ Rm. Then
U × V ⊆ Ak.

Now, (4) is obvious if d = 0 or d = n, so suppose that 0 < d < n. Let B
denote the projection of A on the first d coordinates. If B is meager, then
we are done, so suppose otherwise; then B has interior (since it is Fσ). Let
k ∈ {d+1, . . . , n} and π denote the map projecting the last n−d coordinates
on the kth coordinate. The image of A under the projection (v1, . . . , vn) 7→
(v1, . . . , vd, vk) has no interior (otherwise dimA > d). It follows from (3) that
{x ∈ B : dimπ(Ax) > 0} is meager. This is true for every k ∈ {d+1, . . . , n},
so {x ∈ B : dimAx > 0} is meager.

Next, we have an important technical lemma.

1.6. For every n, p ∈ N and A ∈ Dσ(n+ p), the set {x ∈ Rn : cl(A)x 6=
cl(Ax)} is meager.

We establish this by induction on n ≥ 1, showing the following in turn:

(1)n Every Dσ(n) has interior or is nowhere dense.
(2)n For every p ∈ N and A ∈ Dσ(n + p), the set {x ∈ Rn : cl(A)x 6=

cl(Ax)} is meager.

P r o o f. (1)1 is immediate by 1.3.
For (2)1, let p ∈ N and A ∈ Dσ(1 + p). It suffices to show that given an

open box U ⊆ Rp, the set

B := {x ∈ R : U ∩ cl(A)x 6= ∅, U ∩ cl(Ax) = ∅}
is meager. Let C ⊆ R denote the projection of A ∩ (R × U) on the first
coordinate; then C is Dσ and fr(C) is finite (by 1.3). Now note B ⊆ fr(C).

Suppose now that n > 1 and (1)m, (2)m hold for all m < n.
For (1)n, let A ∈ Dσ(n) with d := dimA. The result is clear if d = 0

(then A is finite) or d = n, so suppose that 0 < d < n. We must show that A
is nowhere dense, that is, cl(A) has no interior. Without loss of generality,
assume that the projection of A on the first d coordinates has interior. By
1.5(3), the set of all x ∈ Rd such that Ax has interior is meager. Hence, by
(1)n−d, the set of all x ∈ Rd such that Ax is nowhere dense is comeager. By
(2)d, the set of all points x ∈ Rd such that cl(A)x has interior is meager.
Now apply 1.5(3) again.

It follows from (1)n that the frontier of every Dσ(n) is nowhere dense.
(For any set X we have fr(X) ⊆ fr(int(X))∪ fr(X \ int(X)).) Using this, the
argument for (2)n now proceeds similarly to that for (2)1.
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Note the following (trivially) equivalent statement of 1.6:

1.7. For every n, p ∈ N and A ∈ Dσ(n+ p), the set {x ∈ Rn : fr(A)x 6=
fr(Ax)} is meager.

Remark. Another statement equivalent to 1.6 is that dim cl(A) = dimA
for every A ∈ Dσ, but we will not need this.

1.8. Let ∅ 6= A ∈ Dσ. Then dim fr(A) < dimA.

P r o o f. Let A ∈ Dσ(n), dimA := d. The result is easy if d = 0 (A is
finite) or d = n (the frontier of any set has no interior), so suppose that
0 < d < n. By 1.4 and 1.5(4), {x ∈ Rd : Ax is infinite} is meager, and hence
{x ∈ Rd : fr(A)x 6= ∅} is meager by 1.7. Then for every π ∈ Π(n, d), π fr(A)
has no interior (that is, dim fr(A) < d).

Definition. Given A ⊆ Rn we let reg(A) denote the set of all x ∈ A
such that dim(A ∩ U) = dimA for every neighborhood U of x. Note that
reg(A) is closed in A; hence, reg(A) and A \ reg(A) are Fσ if A is Fσ, and
similarly with “Dσ” in place of “Fσ”.

1.9. Let ∅ 6= A ∈ Fσ. Then dim(A \ reg(A)) < dimA.

P r o o f. Note that A\reg(A) is a countable union of Fσ sets, each having
dimension less than that of A, and apply 1.5(2).

Let ∅ 6= A ∈ Dσ. Applying the previous result, and recalling the para-
graph immediately preceding 1.4, we now seek B1, . . . , Bm ∈ Dσ such that
reg(A) is the union of the Bis, and dim(Bi \ lc(Bi)) < dimBi for each i.

Definition. Given ∅ 6= A ⊆ Rn and π ∈ Π(n, dimA), we let regπ(A)
denote the set of all x ∈ A such that π(A ∩ U) has interior for every neigh-
borhood U of x.

Note that regπ(A) is closed in A, hence both regπ(A) and A \ regπ(A)
are Fσ if A is Fσ, and similarly with “Dσ” in place of “Fσ”. We have
reg(A) =

⋃
π regπ(A) where π ranges over Π(n,dimA). For convenience,

we put regπ(∅) := ∅ for every π ∈ Π(n,m) and m ∈ {0, . . . , n}.
1.10. Let ∅ 6= A ⊆ Rn be Fσ, π ∈ Π(n,dimA). The following are equiv-

alent :

(1) regπ(A) 6= ∅.
(2) int(πA) 6= ∅.
(3) int(π regπ(A)) 6= ∅.
(4) dim regπ(A) = dimA.

P r o o f. (2)⇒(3) is the only nontrivial implication. It follows easily from
the definitions (and 1.5(1)) that π(A \ regπ(A)) is meager. Hence, if πA has
interior then π regπ(A) is nonmeager and Fσ, and thus has interior.
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Definition. Let π ∈ Π(n, d), 0 ≤ d ≤ n. A set A ⊆ Rn is π-regular if
dimA = d and A = regπ(A). (We also define ∅ to be π-regular for every
π ∈ Π(n,m) and 0 ≤ m ≤ n.)

Noting that U ∩ regπ(A) = regπ(U ∩A) for every A ⊆ Rn and open box
U ⊆ Rn, the following is immediate from 1.10:

1.11. Let ∅ 6= A ∈ Fσ and π ∈ Π(n,dimA). Then regπ(A) is π-regular.

1.12. Let ∅ 6= A ∈ Dσ(n) and let π ∈ Π(n,dimA) be such that A is
π-regular. Then dim(A \ lc(A)) < dimA.

P r o o f. Put d := dimA. The result is clear if d = 0 (since then A is
finite) or if d = n, so suppose that 0 < d < n. We may assume that π is the
projection on the first d coordinates. It now suffices to show that lc(A) is
dense in A, for then A\lc(A) ⊆ fr(lc(A)), and dim(A\lc(A)) < dimA by 1.8.
Since the intersection of A with any open box is Dσ and π-regular, we are
reduced to showing that lc(A) 6= ∅. Choose B ⊆ A closed and definable such
that πB has interior. (Such a B exists since πA is Dσ and has interior.) By
1.4, 1.5(4) and 1.6 (and the Baire Category Theorem) the set

{x ∈ π cl(A) : Bx has interior in cl(A)x}
=
⋃

j∈N
{x ∈ Rd : Bx ∩ Vj = cl(A)x ∩ Vj 6= ∅}

is nonmeager, where (Vj)j∈N is an enumeration of all open (in Rn−d) boxes
with rational vertices. Hence, there exists an open box V ⊆ Rn−d such that
the set

C := {x ∈ Rd : Bx ∩ V = cl(A)x ∩ V 6= ∅}
is somewhere dense, that is, there is an open box U ⊆ Rd such that C is dense
in U . Let W ⊆ U×V be an open box intersecting cl(A). Now, π(A∩W ) has
interior (since A is π-regular), so it contains a point of C; then W intersects
B. Since B is closed, we have B ∩ (U × V ) = cl(A) ∩ (U × V ). Hence,

A ∩ (U × V ) = cl(A) ∩ (U × V ) 6= ∅
and lc(A) 6= ∅.

End of proof of Theorem (a). Let A ∈ Dσ, d := dimA. We proceed by
induction on d ≥ 0 to show that A is a finite union of locally closed definable
sets. If d = 0, then A is finite, so assume d > 0 and that the result holds for
all d′ < d. By 1.9 and 1.11, we may reduce to the case that A is π-regular.
Apply 1.12 and note that A \ lc(A) is Dσ.

Corollary. Let Uγ ⊆ Rn(γ) be open, γ in some index set Γ . Suppose
that the points of R that are ∅-definable in the structure (R, <, (Uγ)γ∈Γ ) are
dense in R. Then (R, <, (Uγ)γ∈Γ ) is o-minimal if and only if every ∅-defin-
able subset of R is finite or uncountable.
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P r o o f. Throughout the proof of part (a), replace “definable” by “∅-def-
inable”, and use ∅-definable points instead of rational points as necessary.
Then apply Proposition 1.

2. Proof of part (b). First, note that in any expansion of (R, <,+),
the assumption that every definable open subset of R has finitely many
connected components is equivalent to the assumption that every definable
discrete subset of R is finite. (The midpoints of the bounded connected
components of a definable open subset of R form a definable discrete set.)

Again, let R be an expansion of (R, <) by open sets Uγ ⊆ Rn(γ), γ in
some index set Γ . Suppose that R defines addition and multiplication and
that every open definable subset of R has finitely many connected compo-
nents. We show that R is o-minimal.

It is immediate that:

2.1. A subset of R is locally closed and definable if and only if it has
finitely many connected components.

Definition. A set A⊆Rn is DΣ if there is a definable set X⊆(0,∞)×Rn
such that A =

⋃
r>0Xr, each fiber Xr is compact, and Xr ⊆ Xs for all

0 < r ≤ s.

2.2. Every locally closed definable A ⊆ Rn is DΣ.

P r o o f. If A is closed, we have A =
⋃
r>0{x ∈ A : |x| ≤ r}; if A is not

closed, then fr(A) is closed and nonempty, so

A =
⋃
r>0

{x ∈ cl(A) : |x| ≤ r & d(x, fr(A)) ≥ 1/r}.

(Here, | · | denotes the sup norm on Rn and d(·, fr(A)) denotes the associated
distance function.)

Note. The above statement can be strengthened: Given any locally
closed definable A ⊆ Rn there is a closed definable B ⊆ Rn+1 such that
B projects homeomorphically onto A. If A is closed, this is clear; otherwise,
put

B := {(x, t) ∈ cl(A)× (0,∞) : d(x, fr(A)) = 1/t}.
2.3. A subset of R is DΣ if and only if it has finitely many connected

components.

P r o o f. Let A ⊆ R be DΣ. Since int(A) is a finite union of open intervals,
we may assume that A has no interior. Write A =

⋃
Xr (as in the definition

of DΣ). Each Xr has no interior and thus is finite. Let B be the set of all
r > 0 such that Xs = Xr for all s in some open interval containing r. Then B
is open and definable, hence a finite union of open intervals. Now, (0,∞)\B
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has no interior—since (Xr) is an increasing family of finite sets—so it is
finite. Thus, there exists r > 0 such that Xr = Xs for all s ≥ r, that is,
A = Xr. Hence, A is finite.

End of proof of Theorem (b). Replace “Dσ” by “DΣ” in 1.4 through 1.12.

Similarly to Section 1, we obtain:

Corollary. Let Uγ ⊆ Rn(γ) be open, γ in some index set Γ . Then
the structure (R,+, ·, (Uγ)γ∈Γ ) is o-minimal if and only if every ∅-definable
open subset of R has finitely many connected components.

Remark. The only use of the assumption that R defines multiplication
was in the proof of 2.2, and there all we actually needed was a definable
decreasing homeomorphism from some interval (0, a) onto an interval (b,∞)
with a, b > 0. Hence, part (b) of the Theorem holds under the weaker as-
sumption that R defines addition and a homeomorphism between a bounded
interval and an unbounded interval. (We leave it to the interested reader to
apply this generalization appropriately throughout the rest of this paper.)

Every Fσ set A ⊆ Rn is the projection of a closed subset of Rn+1. (Write
A =

⋃
k∈NAk with each Ak closed; then A is the projection of the closed

set {(x, k) : k ∈ N, x ∈ Ak}.) As a corollary of Theorem (b), we obtain a
relativized version of this fact for expansions of the real field.

Corollary. Let R be an expansion of (R,+, ·) and let A ⊆ Rn be
definable. Then the following are equivalent :

(1) There exist p ∈ N and a closed definable B ⊆ Rn+p such that A is
the projection of B on the first n coordinates.

(2) A is DΣ.
(3) There exists a locally closed definable B ⊆ Rn+1 such that A is the

projection of B on the first n coordinates.
(4) There exists a closed definable C ⊆ Rn+2 such that A is the projection

of C on the first n coordinates.

P r o o f. We only prove that (2) implies (3).
Suppose that A is DΣ. If R has o-minimal open core, then A is a finite

union of locally closed definable sets, and hence the projection of a closed
definable subset of Rn+1 (see the note following 2.2). If the open core of
R is not o-minimal, then R defines an infinite discrete set, and thus an
unbounded discrete set S ⊆ (0,∞). Write A as the increasing union

⋃
r>0Xr

of a definable family of compact sets. Then A is the projection of the locally
closed (since S is discrete) definable set {(x, s) : s ∈ S, x ∈ Xs}.

Remark. Of course, in the above, if R defines an infinite discrete closed
subset of R, then every DΣ(n) is the projection of a closed definable subset
of Rn+1, but we do not know if an expansion of the real field which defines
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an infinite discrete subset of R necessarily defines an infinite discrete closed
subset of R.

In the remainder of this paper, we assume that the reader is familiar with
the basic topological and model-theoretic properties of o-minimal structures.

3. Proof of Proposition 2. Let R be an expansion of (R, <) and
suppose that R◦ is o-minimal. Let A be a finite collection of R-definable
subsets of Rn. We show that there is a finite partition C of Rn into cells such
that for each A ∈ A and C ∈ C, either A is disjoint from C, or A contains
C, or A is dense and codense in C.

We proceed by induction on n ≥ 0. If n = 0 there is nothing to do, so
we assume that n > 0 and that the result holds for lower values of n. Since
R◦ is o-minimal, there is a finite partition D of Rn into cells compatible
with the collection {cl(A), int(A) : A ∈ A}. It now suffices to find, for each
D ∈ D, a partition CD of D into cells such that for each C ∈ CD and A ∈ A,
either A is disjoint from C, or A contains C, or A is dense and codense in C.

Fix D ∈ D. First, suppose that D is an open cell. Let A ∈ A be such
that D ∩ A 6= ∅; then either D ⊆ int(A) or D ⊆ int(cl(A)) \ int(A), and in
the latter case A is dense and codense in D.

Now, suppose that D is a nonopen cell, say of dimension d < n. Then
there exists π ∈ Π(n, d) such that the restriction π|D maps D homeomorphi-
cally onto an open cell U ⊆ Rd. Permuting coordinates if necessary, we may
assume that π is the projection on the first d coordinates. Let f : U → Rn−d
denote the inverse of π|D, so D = gr(f) (the graph of f). Inductively, there
is a finite partition S of Rd into cells such that for each S ∈ S and each
B ∈ {U} ∪ {π(A ∩ D) : A ∈ A}, either S is disjoint from B, or S is con-
tained in B, or B is dense and codense in S. Hence, for each A ∈ A, either
gr(f |S) ∩A = ∅, or gr(f |S) ⊆ A, or A is dense and codense in gr(f |S).

Remarks. (i) In the above, note that if C ∈ C is open and C ′ ⊆ C is
an open cell intersecting some A ∈ A, then either C ′ ⊆ A or A is dense
and codense in C ′. Thus, by routine o-minimal arguments, it is easy to
strengthen the conclusion so that it holds with “decomposition” in place of
“finite partition”.

(ii) Suppose moreover in the above that R defines addition and multipli-
cation. Then the conclusion and the preceding remark hold with “Cp cell”
and “Cp decomposition” in place of “cell” and “decomposition”, for each
fixed p ∈ N.

(iii) We have confined our attention in this paper to expansions of the
real line. However, the definition of open core makes sense for expansions
of arbitrary dense linear orders without endpoints. Proposition 2 and the
preceding two remarks hold in this more general setting.
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The o-minimality of expansions of (R,+, ·) is closely linked with good
asymptotic behaviour of the definable unary functions. In particular, an
expansion of (R,+, ·) is o-minimal if and only if every definable unary func-
tion is ultimately either constant, or strictly monotone and Cp, for any fixed
p ∈ N. (The forward implication is true for o-minimal expansions of arbi-
trary ordered fields, but the reverse implication uses the fact that we are
working over R.) As an application of our work so far, we obtain a result
that is similar in spirit (but not nearly so tight).

Corollary. Let R be an expansion of (R,+, ·). Suppose that for each
definable unary function f there exists a continuous function g : (c,∞)→ R
such that |f(t)| ≤ g(t) for all t > c. Then:

(1) Every infinite definable subset of R has the cardinality of the con-
tinuum.

(2) Let f : R → R be definable and p be a positive integer. Then there
exist k ∈ N, c ∈ R and definable Cp functions g0 < . . . < gk : (c,∞) → R
such that each gi is either constant or strictly monotone, and the closure of
the graph of f |(c,∞) is equal to the union of the closures of the graphs of
g0, . . . , gk.

P r o o f. First, note that the supposition is equivalent to: For each defin-
able unary function f there are only finitely many r ∈ R with limt→r |f(t)|
= +∞.

(1) Let A ⊂ R be definable and infinite. Suppose that A is unbounded.
It suffices to show that A contains a transcendence base for R. Suppose
otherwise, and let α ∈ R be transcendental over A. Then f : R→ R given by

f(t) :=
{
y if there exist x, y ∈ A such that y(t− x) = α,
0 otherwise

is a well defined, definable unary function which is unbounded at every point
of A; contradiction. Now suppose that A is bounded; then it has a limit point
a ∈ R. By the previous case, the set {1/(x−a) : x ∈ A\{a}} has cardinality
that of the continuum, hence so does A.

(2) By (1), Theorem (b), and the previous Remark (ii), it suffices to show
that the graph of f is nowhere dense. Suppose otherwise; then the closure
of the graph of f contains an open box (a, b) × (c, d), with d ∈ R. Define
h : (a, b) → R by h(t) = 1/(d − f(t)) if f(t) < d and h(t) = 0 otherwise.
Then h is definable and unbounded at every x ∈ (a, b); contradiction.

4. Some examples and counterexamples. Let R be an expansion of
(R,+, ·). Consider the following conditions:

(1) R is o-minimal.
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(2) Every definable unary function is ultimately bounded by a continuous
function.

(3) Every infinite definable subset of R has the cardinality of the con-
tinuum.

(4) R◦ is o-minimal.
(5) For every n ∈ N, every definable subset of Rn is a finite union of

locally closed definable subsets of Rn.

The monotonicity and cell decomposition theorems for o-minimal struc-
tures yield (1)⇒(2) and (1)⇒(5) respectively; (2)⇒(3) is by the Corollary
in Section 3; and (3)⇒(4) is by Theorem (a). All of the converses fail.

Proposition 3. Let R be an o-minimal expansion of (R,+, ·) in a
countable language. Then there exist Y1, Y2, Y3 ⊆ R such that (R, Yi) satis-
fies condition (i+ 1), but not condition (i), for i = 1, 2, 3.

The above is a byproduct of results in the next two subsections.
In the third subsection, we prove the following, showing that (5)6⇒(1).

Proposition 4. Every set definable in (R,+, ·, αZ) is a finite union of
locally closed definable sets, where α > 1 and αZ := {αk : k ∈ Z}.

4.1. Dense pairs. We draw heavily in this subsection on results from
[D3]; all citations [. . . ] will be to that paper. We show that (4)6⇒(3) and
(3) 6⇒(2).

Let R be an o-minimal expansion of (R, <,+,−, ·, 0, 1) in a language
extending {<,+,−, ·, 0, 1}. Let M be (the underlying set of) a proper ele-
mentary substructure of R. Then M is dense in R, and the structure (R,M)
is an example of what is called a dense pair. The simplest example is the
expansion of the ordered field of real numbers by a predicate for the set of
real algebraic numbers.

By [Thm. 4], every open subset of R definable in (R,M) has finitely many
connected components, hence, by Theorem (b), the open core of (R,M) is
o-minimal. (Indeed, the open core of (R,M) is just R; see [Thm. 5].)

Proof of (4)6⇒(3). If the language of R is countable, then dcl(∅) is a count-
ably infinite elementary substructure of R, and the open core of (R, dcl(∅))
is o-minimal.

We will need the following easy facts:

Let K be a proper subfield of (R,+, ·) and I ⊆ R be an open interval.
Then:

(a) card(I ∩K) = card(K).
(b) card(I \K) = card(R).
(c) The structure (R,+, ·,K) defines a unary function whose graph is

dense in the plane.
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We leave the proofs of (a) and (b) to the reader. For (c), let α ∈ R \K,
and define f : R→ R by

f(t) :=
{
x if t = x+ αy ∈ K + α.K,
0 otherwise.

Note that by (c), the structure (R,M) certainly defines unary functions
that are not bounded at +∞ by any continuous function.

A set X ⊆ R is said to be M -small (with respect to R) if X is definable
in (R,M) and X ⊆ f(Mn) for some n ∈ N and f : Rn → R definable in R.

Lemma. Every infinite M -small subset of R has the cardinality of M .

P r o o f. Let X⊆R be infinite and M -small. Clearly, card(X)≤card(M).
By C1 cell decomposition and [Lemma 4.3], X contains a set of the form
f(U ∩Mn), where U ⊆ Rn is an open box, and f : U → R is C1 with no
critical points in U . For the case n = 1, this implies that f is injective on
the open interval U ; so card(X) ≥ card(f(U ∩M)) = card(M). If n > 1,
then there is an open box V ⊆ U such that some first partial derivative, say
∂f/∂xn, has no zeros in V . Write V := W × I with W ⊆ Rn−1 an open box
and I ⊆ R an open interval. Since Mn−1 is dense in Rn−1, there exists a
point Q ∈ W ∩Mn−1 such that t 7→ f(Q, t) : I → R is injective. Note that
{Q} × (I ∩M) ⊆ S.

Proof of (3) 6⇒(2). Suppose that the language of R is countable. We show
that M can be chosen so that every infinite subset of R definable in (R,M)
has the cardinality of the continuum.

Since the language of R is countable, there exist continuum-many proper
elementary substructures M of R such that the dcl-rank of R over M is
countably infinite. Choose such an M ; then card(M) = card(R). Let S ⊆ R
be infinite and definable in (R,M). By [Thm. 3(2)], either S is M -small
or S contains a set of the form I \ X, where X is M -small and I ⊆ R is
an open interval. If the former, then card(S) = card(R) by the preceding
lemma. Assume the latter. By the definition of M -small, there exists a finite
set A ⊆ R such that X ⊆ dcl(M ∪ A). Since the rank of R over M is
infinite, dcl(M∪A) is a proper subfield of (R,+, ·). Now note that S contains
I \ dcl(M ∪A).

Remark. We suspect that the infinite co-rank condition used above is
unnecessary, leading us to conjecture that every infinite subset of R defin-
able in a dense pair (R,M) has either the cardinality of M or that of the
continuum.

4.2. Generic predicates. The result below (more precisely, we describe
only a special case) is due to H. Friedman [unpublished] and was produced
essentially upon demand. It provides examples for (2)6⇒(1). We omit proofs.
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Let R be an expansion of (R, <). A set P ⊆ R is a generic predicate
for R if the following holds for each p ∈ N, open interval I ⊆ R, and
ε ∈ {0, 1}p: If f1, . . . , fp : I → R are definable, strictly monotone, and
fi(x) 6= fj(x) for every x ∈ I and 1 ≤ i < j ≤ p, then there is an injective
function φ : R → I such that for every x ∈ R and i = 1, . . . , p, we have
fi(φ(x)) ∈ P ⇔ εi = 1. (The use of the phrase “generic predicate” here is in
analogy with a concept from model-theoretic stability theory; see e.g. [CP].)
Obviously, any generic predicate P for R must be dense and codense in R,
so (R, P ) is not o-minimal.

Fact [Friedman]. Let R be an o-minimal expansion of (R,+, ·) in a
countable language. Then:

(1) There exist continuum-many Fσ generic predicates for R.
(2) Let P ⊆ R be a generic predicate for R and let f : R→ R be definable

in (R, P ). Then there exists a continuous function g : (c,∞)→ R definable
in R such that |f(t)| ≤ g(t) for all t > c.

Actually, the field structure is not needed: The result holds for any
o-minimal expansion R of the real line, in a countable language, that defines
a unary function F with F (x) > x for all x ∈ R. It can be shown directly,
even in this more general setting, that every infinite subset of R definable
in (R, P ) has the cardinality of the continuum, and thus that the open core
of (R, P ) is o-minimal.

4.3. Proof of Proposition 4. First, we need an easy result, the proof of
which we leave to the reader.

Lemma. Let X and Y be topological spaces and f : A→ Y be continuous
with A locally closed in X. Then f−1(B) is locally closed in X, for every
locally closed B ⊆ Y .

Fix a real number α > 1 and put αZ := {αk : k ∈ Z}. We show that
every set definable in (R,+, ·, αZ) is a finite union of locally closed definable
sets.

For each n ≥ 1 put Pn := {αnk : k ∈ Z}. Each Pn is discrete, hence
locally closed. Define the function λ : R→ R by λ(t) := max(αZ ∩ (0, t]) for
t > 0, and λ(t) := 0 otherwise. Put

R := (R, <,+,−, ·, 0, 1, α, λ, (Pn)n≥1).

Clearly, R is interdefinable with (R,+, ·, αZ), so we show that every definable
(in R) set is a finite union of locally closed definable (in R) sets.

Let A ⊆ Rn be definable. By [D1], R admits elimination of quantifiers,
so there exist m ∈ N, x ∈ Rm and quantifier-free ∅-definable B ⊆ Rm+n

such that A is equal to the fiber Bx. Since fibers of locally closed sets are
locally closed, we are reduced to showing that every quantifier-free ∅-defin-
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able set is a finite union of locally closed definable sets. By the lemma, this
reduces to showing that for each n ∈ N and n-ary term τ (in the language of
R) there is a finite partition S of Rn into locally closed definable sets such
that τ |S : S → R is continuous for each S ∈ S. This is easily established by
induction on complexity, using the lemma and noting that the restriction of
λ to each of the sets (−∞, 0), {0}, αZ and (0,∞) \ αZ is continuous.

The techniques used above fail for the structures (R,+, ·, 2Z, 3Z) and
(R,+, ·, G), where G := {2j3k : j, k ∈ Z}. (Since G is dense and codense in
(0,∞), it cannot be a finite union of locally closed subsets of R. Note also
that (0,∞) \ G is not Fσ.) Our understanding of these structures is quite
limited at present, and we close with the following questions:

(1) Is the open core of (R,+, ·, G) o-minimal?
(2) Is Z definable in (R,+, ·, 2Z, 3Z)?
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