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Compositions of simple maps

by

Jerzy K r z e m p e k (Katowice)

Abstract. A map (= continuous function) is of order ≤ k if each of its point-inverses
has at most k elements. Following [4], maps of order ≤ 2 are called simple.

Which maps are compositions of simple closed [open, clopen] maps? How many
simple maps are really needed to represent a given map? It is proved herein that every
closed map of order ≤ k defined on an n-dimensional metric space is a composition of
(n+ 1)k − 1 simple closed maps (with metric domains). This theorem fails to be true for
non-metrizable spaces. An appropriate map on a Cantor cube of uncountable weight is
described.

Borsuk and Molski [4] showed that every locally one-to-one map on a
compactum (1) (= compact metric space) is a composition of a finite number
of simple maps between compacta. They asked if there exists a map of finite
order which is not such a composition. Sieklucki [16] proved that every map
of finite order defined on a finite-dimensional compactum is a composition of
simple maps. He also constructed an infinite-dimensional counter-example.
Dydak [6] answered an analogous question: he showed that, if p is prime,
then the map z 7→ zp on the unit complex circle is not a composition of
locally one-to-one maps of order ≤ p − 1. This map is not a composition
of open maps of order ≤ p − 1 (cf. Baildon [1]) either (2). Recently, a new
proof of the Sieklucki theorem was presented in [12].

This paper aims to extend the Sieklucki theorem to arbitrary finite-
dimensional metrizable spaces. (By dimension we mean the covering dimen-
sion.) We prove that every closed map of order ≤ k with an n-dimensional
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finite-dimensional, zero-dimensional, Cantor cube.
(1) In [4, 6] such maps are called elementary .
(2) Observe that, if a map f = f2 ◦ f1 is a local homeomorphism, where f1 is a map

onto the domain of f2, then the following are equivalent: (a) both maps f1, f2 are local
homeomorphisms, (b) both are open, (c) both are locally one-to-one.
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metric domain is a composition of (n+ 1)k − 1 simple closed maps, whose
domains are metric. This upper bound of the number of simple maps is
better than those in [12, 16], and in the case n = 0 it is the best possible.
For maps defined on certain “thin” one-dimensional spaces (arcs, circles,
their subspaces, and others) the number is smaller than 2k − 1; namely,
it is k, and—under a certain condition—even k − 1. Also open [clopen]
maps on zero-dimensional spaces are represented as compositions of simple
open [clopen] maps. As an application we obtain Nagami’s result concern-
ing sharpness of the theorem on dimension-raising maps. Finally, we show
that the Cantor cube Dℵ1 admits a clopen map of order ≤ 3 which is not
composable of simple closed maps.

I wish to thank Professor Jerzy Mioduszewski for interesting and helpful
conversations on this subject.

0. Preliminaries. Recall the theorem on dimension-raising maps: If f
is a closed map of order ≤ k defined on a metric space X, then dim f(X) ≤
dimX+k−1 (cf. Engelking [7], Theorems 4.3.1, 1.12.2). Such a map cannot
lower dimension (cf. [7], Theorem 4.3.4). Thus, a simple closed map either
preserves dimension or raises it by one. We shall substantially use the fol-
lowing theorem by Morita: Every n-dimensional metric space is the image
of a zero-dimensional metric space of the same weight under a closed map
of order ≤ n+ 1 (see [7], Theorem 4.3.15).

Let us recall that the image of a metric space under a perfect map is
metrizable (see Engelking [8], Theorem 4.4.15). Therefore, whenever we ob-
tain a composition of surjective simple closed maps, and the first inner
domain is metrizable, then so are the subsequent ones.

Given a cover D of a set X, and a subset A of X, we write St(A,D) for the
star of A with respect to D, i.e. the union of all G ∈ D that intersect A. By
|A| ∈ N∪{∞} we denote the number of elements in A. We write D � A when
D refines A; then D ≺ A means that D � A and A 6= D. A decomposition
of X is a disjoint family of non-empty subsets of X whose union is X. The
words upper-semicontinuous, lower-semicontinuous, open-and-closed are ab-
breviated to u.s.c., l.s.c., and clopen respectively. For further terminology
see Engelking’s monographs [7, 8].

1. The zero-dimensional case. The core of this paper lies in the
following special case of our main result.

1.1. Theorem. Every closed [open, clopen] map f : X onto−→Y of order ≤ k
defined on a zero-dimensional metric space X is a composition f1◦ . . .◦fk−1

of k − 1 surjective simple closed [open, clopen] maps f1, . . . , fk−1.
Moreover , the fi can be chosen so that (f1 ◦ . . . ◦ fi)−1(y) has exactly

min{i+ 1, |f−1(y)|} elements for all y ∈ Y and i = 1, . . . , k − 1.
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Before the proof let us make a few remarks. Firstly, as noted earlier, if
the given map is closed, then the space Y and the domains of the maps
f1, . . . , fk−2 are metric. In the other case none of them need be Hausdorff.

We have found the best possible upper bound of the number of simple
closed maps. Indeed, the cube [0, 1]k−1 is the image of the Cantor set under a
closed map of order ≤ k (cf. the Morita theorem, see also [7], Problem 1.7.F).
If this map were a composition of less than k − 1 simple closed maps, the
theorem on dimension-raising maps would imply that dim [0, 1]k−1 < k − 1.

The foregoing theorem is a partial answer to Baildon’s problem [1]:
Which open maps of finite order are composable of simple open maps? (Bail-
don meant maps between compacta. Recall that the map z 7→ z3 of the unit
complex circle is not composable of simple clopen maps.)

1.2. Corollary (Nagami [14]; the separable case: Roberts [15]). Every
metric space Y with dimY ≤ n + k − 1 is the image of a metric space Z
with dimZ ≤ n and w(Z) ≤ w(Y ) under a closed map of order ≤ k.

P r o o f. Suppose that dimY = n + k − 1. The Morita theorem yields
a zero-dimensional metric space X with w(X) = w(Y ), and a closed map
f : X onto−→ Y of order ≤ n+ k. According to Theorem 1.1, this map is a
composition X = Xn+k

fn+k−1−−−→ . . .
f1−→ X1 = Y of surjective simple closed

maps. These can be chosen so that f1 ◦ . . . ◦ fk−1 is of order ≤ k. The
spaces X2, . . . , Xn+k−1 are metrizable and have the same weight as Y . The
theorem on dimension-raising maps implies that each of the simple maps
raises dimension by one. Hence dimXk = n.

Theorem 1.1 is a consequence of the following proposition.

1.3. Theorem. Let X be a zero-dimensional metric space, and D1 be
its decomposition into compact subsets. Then there exist decompositions
D2,D3, . . . of X into non-empty compact subsets such that :

(a) Dn+1 refines Dn for n ≥ 1.
(b) Each set G ∈ D1 is covered by exactly min{n, |G|} members of Dn.
(c) For every decreasing sequence of sets Gn ∈ Dn the intersection⋂

n∈NGn is a single point.
(d) If the decomposition D1 is u.s.c., then so are Dn.
(e) If D1 is l.s.c., then so are Dn.

Proof of Theorem 1.1. Suppose that f : X onto−→ Y is a map of order≤ k de-
fined on a zero-dimensional metric space X. Consider the decomposition D1

of X into the point-inverses under f , and take the decompositions D2,D3, . . .
described in Theorem 1.3. We can identify the spaces Y and X/D1. The as-
sertion (b) of Theorem 1.3 ensures that Dk consists of singletons, so we
identify X and X/Dk. Let fn : X/Dn+1 → X/Dn be the quotient projec-
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tion, i.e. it assigns a set G ∈ Dn to each member of Dn+1 contained in G.
The map f is a composition of the maps f1, . . . , fk−1 which have the desired
properties.

In order to prove Theorem 1.3, we need some preparations. Recall that
the Baire space B(m) is the set of all sequences (xn)n∈N in a fixed set of
cardinality m; the set B(m) is equipped with the metric given by

%[(xn)n∈N, (yn)n∈N] = max{1/n : xn 6= yn}
for any pair of different sequences (cf. [8], Example 4.2.12). Since each Baire
space B(m) is universal for the class of all zero-dimensional metric spaces
of weight ≤ m (see [8], Theorems 7.1.10, 7.3.15), we may assume that the
space X of Theorem 1.3 is contained in a B(m).

1.4. Lemma. There exists a well-ordered family of decompositions Aα of
B(m) into non-empty clopen subsets such that :

(a) B(m) is the only member of the first decomposition.
(b) In each Aα there is exactly one member which is the union of two

members in Aα+1. The other members of Aα also belong to Aα+1.
(c) If α is a limit ordinal , and if a sequence of sets Eβ ∈ Aβ , β < α, is

decreasing , then
⋂
β<αEβ belongs to Aα.

(d) All the families Aα together form a base of the topology for B(m).

P r o o f. In B(m) two balls of the same radius are either equal or dis-
joint. Hence, for each n ∈ N the family A0

n of all such balls of radius 1/n is
a decomposition of B(m). Put A0

0 = {B(m)}; write δ for the least ordinal of
cardinality m. We shall complete the sequence A0

0,A0
1,A0

2 . . . with decom-
positions Aξn, ξ < δ, so that the following sequence (read line after line) has
the desired properties:

A0
0,A1

0, . . . ,Aξ0, . . . ,
A0

1,A1
1, . . . ,Aξ1, . . . ,

A0
2,A1

2, . . . ,Aξ2, . . . ,
...

Take n ∈ N. For every set E ∈ A0
n choose a ball in A0

n+1 which is con-
tained in E. Arrange all the remaining balls from A0

n+1 in a transfinite
sequence A0, A1, . . . , Aξ, . . . , ξ < δ. Then define Aξn to consist of all the
balls Aτ for τ < ξ, and of the sets E \⋃τ<ξ Aτ for all E ∈ A0

n.

With a view to proving the upper-semicontinuity, we shall exercise a
condition which is equivalent to it in some cases. Given a decomposition Dn
of the space X in Theorem 1.3, we shall check that the set

⋃
G∈Dn G×G is
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closed in X×X. Clearly, this union is the graph of the multivalued function
which assigns G ∈ Dn to each point x ∈ G.

1.5. Proposition. Let f : X onto−→ Y be a map. If Y is a Hausdorff
space, then

⋃
y∈Y f

−1(y)× f−1(y) is closed in X ×X. The converse is true
whenever f is open.

The following proposition results from a theorem on multivalued func-
tions (cf. [2], Chapter VI, Theorem 7). A direct proof is also straightforward.

1.6. Proposition. Let A be an u.s.c. decomposition of a Hausdorff space
into compact subsets, and let a decomposition D refine A. If

⋃
G∈D G × G

is closed in X ×X, then D is u.s.c.

Proof of Theorem 1.3. (I) Let X be a zero-dimensional metric space, and
D1 be its decomposition into compact subsets. We regard X as a subspace
of B(m). Fix a well-ordered sequence of decompositions Aα of B(m), where
α < γ, described in Lemma 1.4. The conditions (b) and (c) imply that, if
α < β, then Aβ refines Aα. Write Aγ for the family of all singletons.

Fix G ∈ D1. Each decomposition Aα, α ≤ γ, induces the decomposition
of G that consists of all non-empty sets G ∩ E, E ∈ Aα. We can arrange
all the induced decompositions in the following sequence (let us agree on
∞+ 1 =∞):

DG1 � DG2 � . . . � DG|G| = DG|G|+1 = . . . = DG∞,
where DG∞ is the decomposition of G into singletons.

For each n ∈ N we define the decomposition Dn of X as the union of all
the families DGn , G ∈ D1. The properties of the sequence (Aα)α<γ guarantee
that the assertions (a)–(c) of Theorem 1.3 hold.

(II) We claim that, if the decomposition D1 is u.s.c., then each union⋃
G∈Dn G × G is closed in X × X. To prove this, take arbitrary points

x0, y0 ∈ X in different members of Dn. We shall indicate neighbourhoods
U0 3 x0, V0 3 y0 (subsets open in X) such that any two points x ∈ U0,
y ∈ V0 also belong to different members of Dn. Proposition 1.5 yields that
the complement of

⋃
G∈D1

G × G is open. Therefore the essential case is
when x0, y0 lie in the same G0 ∈ D1.

The family DG0
n has m = min{n, |G0|} members, and is induced by a

decomposition Aα, where α < γ. Hence G0 ⊂
⋃m
i=1Ei, where Ei ∈ Aα for

i = 1, . . . ,m; and x0 ∈ Ej , y0 ∈ Ek for some j, k ∈ {1, . . . ,m}, j 6= k. Write
W for the union of all G ∈ D1 contained in

⋃m
i=1Ei. As D1 is u.s.c., the set

W 3 x0, y0 is open.
Take x ∈ W ∩ Ej = U0, y ∈ W ∩ Ek = V0, and assume that x, y belong

to G ∈ D1. By the definition of W we have G ⊂ ⋃mi=1Ei, so Aα induces in
G a decomposition into l ≤ m members. This is DGl . Since Dn � Dl, the
points x, y belong to different members of Dn.
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Proposition 1.6 and the foregoing claim yield the assertion (d).
(III) We proceed to show (e). Assume that D1 is l.s.c., and consider

an open set U ⊂ X. We shall prove that every point in St(U,Dn) has a
neighbourhood contained in St(U,Dn).

Let x0 ∈ St(U,Dn). There is a y0 ∈ U in the member of Dn that in-
cludes x0. It sufices to consider the case y0 6= x0. Assume that x0, y0 ∈ G0

∈ D1. The family DG0
n consists of exactly n members, or else it would con-

tain only singletons. It is induced by a decomposition Aα, where α < γ.
Hence G0 ⊂

⋃n
i=1Ei, where Ei ∈ Aα and G0 ∩ Ei 6= ∅ for i = 1, . . . , n.

Moreover, x0, y0 ∈ Ej for some j. Since D1 is l.s.c., the following set is an
open neighbourhood of the set G0:

W = St(U ∩ Ej ,D1) ∩
n⋂

i=1

St(Ei,D1).

Choose x ∈ W ∩ Ej , and assume that x ∈ G ∈ D1. By the definition of
W there is a point y ∈ G∩U ∩Ej , and Aα induces in G at least n members
of a decomposition DGm, m ≥ n. As Dm � Dn, the points x, y belong to a
member of Dn, i.e. x ∈ St(U,Dn).

In fact, it is possible to prove the existence of decompositions like those
in Theorem 1.3 in a much more general situation. To prove Lemma 1.4 we
needed a sequence of decompositions of B(m) into clopen sets (we used the
families of balls of radii 1/n). The reader perhaps knows that the existence of
such a well-ordered transfinite sequence is characteristic of zero-dimensional
linearly uniformizable (another name: ωµ-metrizable) spaces (3).

Further, it suffices to assume (instead of the zero-dimensionality and
metrizability of X) that there exists a map π : X → T into a zero-dimensio-
nal linearly uniformizable space T , and that the restriction π|G is one-to-one
for each G ∈ D1. In the foregoing proof the sets E,Ei ∈ Aα should be
replaced by the preimages π−1(E), π−1(Ei). The assertion (d) of Theorem
1.3 should be replaced by

(d′) If X is Hausdorff, and if the decomposition D1 is u.s.c., then so
are Dn.

The effect is that also Theorem 1.1 can be generalized:

(3) A space Z is called linearly uniformizable when its topology comes from a unifor-
mity with a linearly ordered base (with respect to inclusion if uniformity means neighbour-
hoods of the diagonal, or with respect to refinement if uniformity consists of covers). Such
a uniformity also has a well-ordered base of some regular ordinal type ωµ. If µ = 0, then
X is metrizable; if µ > 0, X is either discrete, or non-metrizable and zero-dimensional.
In case it is zero-dimensional, the uniformity has a well-ordered base of decompositions
into clopen subsets. Hušek and Reichel’s paper [11] contains ample bibliographical and
historical notes. See also: Frankiewicz and Kulpa [9], Kucia and Kulpa [13].
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1.7. Theorem. Let f be a surjective closed [open, clopen] map of order
≤ k defined on a Hausdorff [arbitrary , Hausdorff ] space X. Suppose that
there exists a zero-dimensional linearly uniformizable space T with a map
π : X → T such that the map x 7→ (f(x), π(x)) is one-to-one. Then the
conclusion of Theorem 1.1 is satisfied.

2. The finite-dimensional case. We shall obtain compositions Xn+1
fn−→

Xn
fn−1−−→ . . .

f1−→ X1 with the property that

(∗) The map f1 is simple, the maps f2, . . . , fn are surjective, and each
point-inverse (f1◦. . .◦fi+1)−1(x) has at most |(f1 ◦ . . . ◦ fi)−1(x)|+ 1
elements, for x ∈ X1 and i = 1, . . . , n− 1.

It is easily seen that the compositions obtained in Theorems 1.1 and 1.7
satisfy this condition.

The following propositions are obvious.

2.1. Proposition. (a) If f1, . . . , fn has the property (∗), then each fi is
simple and , moreover , each composition of k successive maps fi is of order
≤ k + 1.

(b) If a map is composable of n+k−2 closed [open, clopen] maps with the
property (∗), then it is also composable of two closed [open, clopen] maps:
the first one of order ≤ n, and the second of order ≤ k.

(c) If a map is composable of (n− 1)k closed [open, clopen] maps with
(∗), then it is composable of k closed [open, clopen] maps of order ≤ n.

Given a map f defined on a space Y , let

Ek(f) = {y ∈ Y : |f−1f(y)| ≥ k}.
We need an instrument that will enable the transfer of the method for

map decomposition to higher dimensions. Using the following theorem to-
gether with Morita’s theorem, we obtain our main result.

2.2. Theorem. Let f be a closed [open] map. Suppose that there exist a
zero-dimensional metric space X and a closed [open] map ϕ : X onto−→ E2(f)
such that the composition f ◦ϕ is of order ≤ k. Then f is a composition of
k − 1 simple closed [open] maps with the property (∗).

2.3. Main Corollary. Every closed map f of order ≤ k whose domain
or , more generally , whose set E2(f) is n-dimensional and metrizable is a
composition of (n+ 1)k− 1 simple closed maps that has the property (∗).

Theorem 2.2 follows from Theorem 1.1 and Lemmata 2.4 and 2.5.

2.4. Lemma. Let ϕ : X onto−→ Y and f : Y → Z be closed [open, clopen]
maps. If f ◦ ϕ is a composition of n closed [open, clopen] maps with the
property (∗), then so is f .
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P r o o f. The proof is by induction on n. If n = 1, i.e. f ◦ ϕ is a simple
map, then f is simple as well.

Given n > 1, assume that g = f ◦ ϕ is a composition X = Xn
gn−→ Xn−1

gn−1−−→ . . .
g1−→ X0 = Z which satisfies (∗). This property implies that each

fibre g−1(z) contains at most one pair of distinct elements xz, yz such
that gn(xz) = gn(yz). Let D be the decomposition of Y into all the pairs
{ϕ(xz), ϕ(yz)}, when such a pair exists for z ∈ Z, and the remaining
singletons. Write fn for the quotient map Y → Y/D. If gn is closed or
open, then Xn−1 is the quotient space of the decomposition of Xn into the
fibres under gn. Since gn is finer than fn ◦ ϕ, there is exactly one map
ψ : Xn−1

onto−→ Y/D such that fn ◦ ϕ = ψ ◦ gn. Likewise, there is exactly one
h : Y/D onto−→ Z such that f = h ◦ fn. It is best to draw the diagram:

X = Xn Xn−1 . . . X0 = Z

Y Y/D

gn //

ϕ

²²

gn−1 //

ψ

²²

g1 //

fn
//

f

ggggggggggggggggggggggggggg33

hllllllllllllll55

Check that, if a point y ∈ Y belongs to G ∈ D, then

G = ϕg−1
n gnϕ

−1(y).

Hence, for every F ⊂ Y the set ϕg−1
n gnϕ

−1(F ) equals St(F,D). This is why
the decomposition D is u.s.c. [l.s.c.] whenever the given maps are closed
[open]. Then also fn, ψ are closed [open], and so is h.

By the induction hypothesis the map h is a composition of n− 1 closed
[open, clopen] maps with (∗). This completes the proof, for our construc-
tion ensures that fn identifies only the points ϕ(xz), ϕ(yz) in the preimage
f−1(z).

2.5. Lemma. Let f be a closed [open, clopen] map. If f |E2(f) is a com-
position of n simple closed [open, clopen] maps, then so is f . Moreover , if
the given composition has the property (∗), then so does the resulting one.

P r o o f. Let Y denote the domain of f , and D the decomposition of Y
into the fibres under f . We claim that, if an u.s.c. [l.s.c.] decomposition A of
E2(f) refines D on E2(f), then the decomposition of Y into all the members
of A and all the remaining single points in Y \ E2(f) is u.s.c. [l.s.c.].

Indeed, write B for this new decomposition of Y . Take a closed [open] set
F ⊂ Y . Since A is semicontinuous, there is a closed [open] G ⊂ Y such that
St(F,A) = G∩E2(f). The following formula implies the semicontinuity of B:

St(F,B) = F ∪ [G ∩ E2(f)] = F ∪ [G ∩ St(F,D)].

The lemma follows, for there is a one-to-one correspondence between
closed [open] maps on Y and u.s.c. [l.s.c.] decompositions of Y .
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There is also the finite-dimensional analogue of Theorem 1.7.

2.6. Theorem. Let f be a closed map of order ≤ k defined on a Haus-
dorff space. Suppose that there are an n-dimensional metric space T and a
map π : E2(f)→ T such that the map x 7→ (f(x), π(x)) is one-to-one. Then
f is a composition of (n+ 1)k−1 simple closed maps with the property (∗).

P r o o f. Theorem 3.7.9 of [8] implies that the map y 7→ (f(y), π(y)) em-
beds E2(f) into the product f(E2(f)) × T . So, write Z = f(E2(f)), and
assume that E2(f) is a subset of Z × T . According to the Morita theo-
rem, there is a zero-dimensional metric space S, and there is a closed map
ϕ : S onto−→ T of order ≤ n+ 1. Let

X = {(z, s) ∈ Z × S : (z, ϕ(s)) ∈ E2(f)}.
The function ψ : X onto−→ E2(f) given by ψ(z, s) = (z, ϕ(s)) is a closed map of
order ≤ n+ 1. It suffices to apply Theorem 1.7 to the map g = f |E2(f) ◦ ψ,
and then apply Lemmata 2.4 and 2.5.

3. A particular case in dimension one. Corollary 2.3 seems to over-
estimate the number of simple maps needed for representation. Examples 4.3
indicate to a degree what upper bound of this number may be expected. For
maps defined on a space Y with the following property (γ) we are able to
improve our estimation fairly easily:

(γ) For any boundary set B ⊂ Y there exist a subspace X of the Cantor
set and a simple closed map ϕ : X onto−→ Y such that each inverse
ϕ−1(y) of a point y ∈ B is a singleton.

This property is hereditary. Such spaces Y are separable, metrizable,
and at most one-dimensional. It is an exercise to show that the segment, the
cirle, and—more generally—finite graphs satisfy (γ) (4).

3.1. Theorem. Let f be a closed map of order ≤ k defined on a space Y
with the property (γ). Then there exists a subset X of the Cantor set with
a simple closed map ϕ : X onto−→ Y such that the composition f ◦ ϕ is of
order ≤ k + 1.

If , moreover , the interior of the set Ek(f) is discrete, then X and ϕ
can be chosen so that f ◦ ϕ is of order ≤ k.

P r o o f. Fix a countable base of Y . Let (Un)n∈N be a sequence of all
infinite sets in this base. Since f is of finite order, we can choose a sequence
of points an ∈ Un such that the values f(an) are all distinct. We apply (γ)

(4) Actually, the condition (γ) is known in another form. It is possible to prove that
a compactum satisfies (γ) if and only if it contains no non-degenerate nowhere dense
continuum. This is eqivalent to Hurewicz’s property (α) ([10], p. 74) in the case of one-
dimensional compacta.
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to the set B of all non-isolated points in Y \ {an}n∈N. There is a subset A
of the Cantor set, and there is a simple closed map ϕ : A onto−→ Y such that
each double value under ϕ is either isolated or in the set {an}n∈N. Having
any isolated double value, we remove a point from its preimage, and, in
this way, a closed set X is left in A. The restriction ϕ|X is closed, and the
composition f ◦ ϕ|X is of order ≤ k + 1.

If the interior of Ek(f) is discrete, we can choose the points an either
isolated or outside Ek(f). Then we obtain a composition f ◦ϕ of order ≤ k.

The following results from Theorems 2.2 and 3.1 (5).

3.2. Corollary. Every closed map f of order ≤ k defined on a space
that satisfies the condition (γ) is composable of k simple closed maps with
the property (∗). In case the interior of Ek(f) is discrete, k−1 simple closed
maps suffice.

3.3. Example. The map z
f7→ z3 of the unit complex circle S1 is not

composable of two simple closed maps. Indeed, suppose that f = h ◦ g,
where g is a simple map into a Hausdorff space. Let ε = − 1

2 +
√

3
2 i. For each

z ∈ S1 we have f−1 f(z) = {z, εz, ε2z}. Let F = {z ∈ S1 : g(z) = g(εz)}.
The sets F, εF, ε2F are closed, and pairwise disjoint as g is simple. Since
S1 is connected, these sets do not cover it. Hence there is z ∈ S1 such that
g(z), g(εz), g(ε2z) are different. Thus h is not simple.

The foregoing example shows that the assumption about Ek(f) in Corol-
lary 3.2 is essential for maps defined on the circle. Is any assumption like
this needed in the case of maps on the segment (in order to obtain k − 1
simple maps)? Does the segment differ from zero-dimensional spaces con-
cerning decomposition of maps into simple ones? The answer to the latter
question is “yes”. Theorem 1.7 differentiates these spaces. Namely, in [12]
we described a finite graph K ⊂ R2 × [0, 1] such that, if we restrict the
projection R2 × [0, 1]→ R2 to K, then we obtain a three-to-one map which

(5) It is worth adding that Theorem 3.1 implies a very special theorem on dimension-
raising maps: If f is a closed map of order ≤ k (k ≥ 2) defined on a complete separable
metric space Y with (γ), then dim f(Y ) ≤ k − 1 (cf. Hurewicz [10], Theorem II; also cf.:
Bognár [3], Dębski and Mioduszewski [5]). Indeed, there exists a closed subspace G ⊂ Y
such that f(Y ) = f(G) and the restriction f |G is irreducible, i.e. no proper closed subset
H ⊂ G is carried onto f(G) (cf. [8], Exercise 3.1.C). The set E2(f |G) is a boundary set:
Let U = U0 be a non-empty set open in G. By induction we define non-empty open sets
Un ⊂ G such that each Un has diameter less than 1/n, and

Un ⊂ Un ⊂ (f |G)−1[f(G) \ f(G \ Un−1)] ⊂ Un−1.

The only point in
⋂
n∈N Un is not in E2(f |G). Then, by Theorem 3.1 we find a closed

subspace X of the Cantor set and a map ϕ : X onto−−→ G such that f ◦ ϕ is of order ≤ k.
Thus our assertion follows, as X is zero-dimensional and f ◦ ϕ is onto f(Y ).
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is not composable of two simple closed maps. Therefore, [0, 1] cannot be the
space T in Theorem 1.7. However, there remains

3.4. Question. Does the segment admit a closed map of order ≤ 3 [of
order ≤ k] that is not a composition of two [of k − 1] simple closed maps?

4. A counter-example on the Cantor cube Dℵ1 . The purpose of
this section is to prove that the map qF : Dℵ1 onto−→ Dℵ1/AF defined in
Example 4.2 is not a finite composition of simple closed maps.

Let G : X → X be a periodic homeomorphism, i.e. Gk = IdX for a
certain k. We shall write AG for the decomposition of X into the orbits
{Gn(x) : n = 1, . . . , k} of points x ∈ X, and qG for the natural quotient
map X → X/AG that carries a point to its orbit. AG and qG will be called
associated with G.

4.1. Proposition. If G is a periodic homeomorphism, then the associ-
ated decomposition AG is continuous, and the associated map qG is clopen.

4.2. Example. Having (Dℵ1)3 top
= Dℵ1 in mind, we shall define qF on

the former. Let F : (Dℵ1)3 → (Dℵ1)3 be the homeomorphism given by

F (x, y, z) = (z, x, y) for x, y, z ∈ Dℵ1 .

Clearly, F 3 = Id(Dℵ1 )3 . The associated quotient map qF is of order ≤ 3
and clopen. Its image has a clopen base of cardinality ℵ1, and hence can be
embedded into Dℵ1 (cf. [8], Theorem 6.2.16).

To prove that qF has the desired property we need Sieklucki’s examples:

4.3. Example. Consider the complex space Cn and the unit sphere

S2n−1 = {(z1, . . . , zn) ∈ Cn : |z1|2 + . . .+ |zn|2 = 1}.
Define the isometry Gn : S2n−1

onto−→ S2n−1 by

Gn(z1, . . . , zn) = e2πi/3 · (z1, . . . , zn).

We have G 3
n = IdS2n−1 . The quotient map qGn is of order ≤ 3 and clopen;

S2n−1/AGn is a compactum. Sieklucki proved that qGn is not a composition
of 2n simple closed maps ([16], Theorem 2).

Sieklucki’s infinite-dimensional counter-example is the sum
⊕∞

n=1 S2n−1

compactified by adding a point p “at infinity”. Write S for this space, and
define G : S onto−→ S by

G(z) =
{
Gn(z) for z ∈ S2n−1,
p for z = p.

It is readily seen that, although clopen and of order ≤ 3, the associated
quotient map qG is not a finite composition of simple closed maps.
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We shall combine Dowker’s example (see [8], Example 6.2.20) with Sie-
klucki’s foregoing example to obtain an auxiliary space T with a clopen
base and with a clopen map qH of order ≤ 3 which is not composable of
simple closed maps. Then we shall embed T into Dℵ1 so that qF be an
extension of qH .

4.4. Example. We follow the notation of Example 4.3. The space S is
representable as the union of an increasing transfinite sequence (Pγ)γ<ω1 of
zero-dimensional subspaces (Smirnov [17]; see [7], Problem 1.8.J). We can
assert that G(Pγ) = Pγ for each γ < ω1. Let W denote the space of all the
ordinals ≤ ω1 with the order topology. Consider the product W ×S and its
subspaces:

Tα =
⋃

γ≤α
({γ} × Pγ), T =

⋃
α<ω1

Tα, and T ∗ = T ∪ ({ω1} × S).

Since Tα ⊂W × Pα for α < ω1, each Tα has a clopen base. So does T . The
homeomorphism H∗ : T ∗ → T ∗ of period 3 is defined by

H∗(α, z) = (α,G(z)) for (α, z) ∈ T ∗ ⊂W × S.
Finally, we define H : T → T as the restriction of H∗ to T .

4.5. Zarelua Lemma (see [7], Lemma 3.3.6). Let g : X → Y be a closed
map of a completely regular space X to a normal space Y . If g is of order
≤ k, then so is the extension βg : βX → βY of g over the Čech–Stone
compactifications.

4.6. Lemma. Under the notation of Example 4.4, the associated quotient
map qH is not a finite composition of simple closed maps.

P r o o f. As in [8], Example 6.2.20, we argue that the spaces T and T ∗

are normal, and that βT ∗ ⊃ T is the Čech–Stone compactification of T.
Suppose that qH is a composition of simple closed maps T = Xn+1

gn−→
Xn

gn−1−−→ . . .
g1−→ X1 = T/AH . We can assume that they are surjective. The

spaces X1, . . . , Xn are normal as closed images of the normal space T .
According to the Zarelua lemma, the extensions βgi : βXi+1

onto−→ βXi are
simple for i = 1, . . . , n. Obviously βqH∗ = βqH = βg1 ◦ . . . ◦ βgn. However,
βT contains a copy of the space S, namely, {ω1} × S ⊂ T ∗. The restriction
of βqH∗ to this copy is composable of closed restrictions of the maps βgi.
A contradiction, as this is just the map qG of Example 4.3, which is not
composable of simple closed maps.

4.7. Theorem. The clopen map qF : Dℵ1 onto−→ Dℵ1/AF of order ≤ 3
defined in Example 4.2 is not a composition of any finite number of simple
closed maps.
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P r o o f. Referring to T and H, as defined in Example 4.4, we claim that
there exists an embedding η : T ↪→ (Dℵ1)3 such that F ◦ η = η ◦H. Indeed,
T has a clopen base of cardinality ℵ1. Hence there exists a homeomorphic
embedding δ : T ↪→ Dℵ1 (see [8], Theorem 6.2.16). Define η : T → (Dℵ1)3

by

η = (δ , δ ◦H2, δ ◦H).

The desired equality is easily checked:

F ◦ (δ , δ ◦H2, δ ◦H) = (δ ◦H, δ, δ ◦H2) = (δ, δ ◦H2, δ ◦H) ◦H.
According to the above claim, we can assume that T is a subspace of

(Dℵ1)3, and that F |T = H. Thus qH = qF |T . If qF were composable of
simple closed maps, so would be qH . This would contradict Lemma 4.6.
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[3] M. Bogn ár, On Peano mappings, Acta Math. Hungar. 74 (1997), 221–227.
[4] K. Borsuk and R. Molsk i, On a class of continuous mappings, Fund. Math. 45

(1957), 84–98.
[5] W. Dębsk i and J. Mioduszewsk i, Conditions which ensure that a simple map

does not raise dimension, Colloq. Math. 63 (1992), 173–185.
[6] J. Dydak, On elementary maps, ibid. 31 (1974), 67–69.
[7] R. Enge lk ing, Theory of Dimensions, Finite and Infinite, Heldermann, Lemgo,

1995.
[8] —, General Topology, PWN, Warszawa, 1977.
[9] R. Frankiewicz and W. Kulpa, On order topology of spaces having uniform

linearly ordered bases, Comm. Math. Univ. Carolin. 20 (1979), 37–41.
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