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Abstract. Let Γ = Γ1∗GΓ2 be the pushout of two groups Γi, i = 1, 2, over a common
subgroup G, and H be the double mapping cylinder of the corresponding diagram of

classifying spaces BΓ1 ← BG → BΓ2. Denote by ξ the diagram I p← H 1→ X = H ,
where p is the natural map onto the unit interval. We show that the Ñil groups which
occur in Waldhausen’s description of K∗(ZΓ ) coincide with the continuously controlled
groups K̃cc∗ (ξ), defined by Anderson and Munkholm. This also allows us to identify the
continuously controlled groups K̃cc∗ (ξ+) which are known to form a homology theory in
the variable ξ, with the “homology part” in Waldhausen’s description of K∗−1(ZΓ ). A
similar result is also obtained for HNN extensions.

1. Recollections. Let the group Γ be a pushout as in the abstract.
By first passing to the corresponding pushout of integral group rings, next
applying Theorem 1 of [8], and finally taking homotopy groups, we arrive
at the following version of Waldhausen’s result concerning K∗(ZΓ ).

Theorem 1.1 (Waldhausen [8]). For a group Γ as above, there is a chain
complex of abelian groups

. . .→ Kj(ZG)→ Kj(ZΓ1)⊕Kj(ZΓ2)→ Kj(ZΓ )→ Kj−1(ZG)→ . . . ,

which is exact except that at each Kj(ZΓ ) the homology is Ñilj−1(ZG;B1,B2)
where Bi = Z[Γi −G] as a ZG-bimodule (i = 1, 2).

The continuously controlled K-theory of Anderson and Munkholm is de-
fined in Section 7 of [4] as a (spectrum-valued) functor K̃cc∗ : T OP/CM∗ →
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SPEC. Here T OP/CM∗ is the category of “diagrams of holink type”, i.e.,
diagrams of the form

η = (B
p←− H q−→ X),

where H and X are Hausdorff spaces, B is a compact metric space, and p, q
are continuous maps.
For mnemonic reasons, let us note that the somewhat elaborate name

T OP/CM∗ is supposed to refer to a T OPological space H over a Compact
Metric space B, all of it “based” (hence the *) over the space X.
Also, to explain why we call this continuously controlled K-theory, we

note that the spectrum arises ultimately from a category of geometric mod-
ules on the open mapping cylinder cyl(q) = X � (0, 1)×H. This cylinder is
considered as a space over the cone of B via the map induced by p, and the
morphisms of geometric modules are required to be continuously controlled
at B = B × {1}. Thus X is simply the part of the total space cyl(q) which
sits over the cone point as indicated in Figure 1.
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Fig. 1

The continuously controlled groups are the homotopy groups of the spec-
trum K̃cc. They will here be denoted K̃cc∗ . To avoid possible confusion, we
note that the superscript cc was not used when these groups were introduced
in Section 7 of [4].
If η is the above diagram of holink type, one lets

η+ = (B+
p�c←− H �X q∨1−→ X),

where the subscript + indicates a disjointly added base point. The inclusion
j : η → η+ in T OP/CM∗ induces a map on cc K-theory which is studied
in Section 8 (plus Corollary 9.4) of [4] (1) .

(1) We remark that there is a misprint in line −2 of p. 30 of [4]: K̃∗Rπ1X should not
carry the tilde.
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Proposition 1.2 (Anderson and Munkholm [4]). For any η as above,
there is a long exact sequence

. . .→ Kj(Zπ1(X))→ K̃ccj (η)→ K̃ccj (η+)→ Kj−1(Zπ1(X))→ . . .
Here, if X is not connected the group ring indicated must be interpreted

as a groupoid “ring” as usual (cf., e.g., §21 of [5]). Although we refer the
reader to [4] for further details, we do here want to indicate the intuition
behind this result: The groups Kj(Zπ1(X)) are derived from the category
of finitely generated free Zπ1(X)-modules. This can also be construed as
the category of those geometric modules in cyl(q) which happen to live in
the subspace X and happen to be controlled over the cone point, i.e. to be
not controlled at all. This interpretation immediately shows that the com-
position Kj(Zπ1(X)) → K̃ccj (η) → K̃ccj (η+) must vanish. In fact, when the
extra “base point” is added to η the subspace X of cyl(q) gets augmented
to a product X× (−1, 0] and one can do an Eilenberg swindle (i.e., an alter-
nating infinite sum trick) towards −1 while keeping continuous control at
−1. Here, for convenience, we think of (1,+) as −1 as indicated in Figure 2.
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Fig. 2

We also need to recall Theorem 9.1 of [4].

Theorem 1.3 (Anderson and Munkholm [4]). If , in the object η, the
space B = |K| is a finite simplicial complex and the map p : H → |K| has an
iterated mapping cylinder structure, then the natural map K̃bc∗ (η)→ K̃cc∗ (η)
is an isomorphism.

Here, the boundedly controlled groups on the left are defined as in [2]
(cf. also Section 9 of [4]). Our interest in making the cc → bc substitution
comes from the fact that in the situation of the above theorem, it is known
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from Theorem 4.1 of [2] that the bc K-theory of η+ is the target of an
Atiyah–Hirzebruch spectral sequence with E2p,q = Hp(cat(K),Kq−1), the
homology of K, considered as a category, with coefficients in the functor
σ �→ Kq−1(p−1(σ̂)) with σ̂ the barycenter of the simplex σ.

2. The amalgamated free product case. We can apply the above
spectral sequence to ξ+ where ξ = (I

p← H 1→ X = H) as in the ab-
stract, and I has the obvious triangulation with one 1-simplex, τ , and two
0-simplices, σi, i = 0, 1. We get p−1(τ̂ ) = BG, p−1(σ̂i) = BΓi+1 so the spec-
tral sequence degenerates to the first long exact sequence in the following
commutative diagram:

...

Kq(ZG) Kq(ZΓ1)⊕Kq(ZΓ2) K̃ccq+1(ξ
+) Kq−1(ZG)

Kq(ZG) Kq(ZΓ1)⊕Kq(ZΓ2) Kq(ZΓ ) Kq−1(ZG)

0 0 K̃ccq (ξ) 0

K̃ccq (ξ
+)

...
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Here, the second row is the chain complex of Theorem 1.1, and the
vertical column is the exact sequence from Proposition 1.2 (note thatX = H
has fundamental group Γ ). A straightforward diagram chase now shows
that the vertical map K̃ccq+1(ξ

+)→ Kq(ZΓ ) is monic. Therefore, the second
row and the third row have isomorphic homology, i.e. we have proved the
following

Theorem 2.1. Let Γ = Γ1 ∗G Γ2 be a pushout of two groups Γi (i = 1, 2)
over a common subgroup G. Also, consider the corresponding diagram of
holink type ξ = (I ← H → X = H) where H is the double mapping cylinder
of BΓ1 ← BG→ BΓ2 parametrized over the unit interval I as usual. Then
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there is a short exact sequence

K̃cc∗+1(ξ
+)→ K∗(ZΓ )→ K̃cc∗ (ξ),

where K̃cc∗+1(ξ+) is the homology part of K∗(ZΓ ), i.e. the part that fits into
the expected Mayer–Vietoris sequence, while

K̃cc∗ (ξ) ∼= Ñil∗−1(ZG;Z[Γ1 −G],Z[Γ2 −G]).

3. The HNN extension case. If Γ = A ∗C {t} is an HNN extension
defined from the groups A and C and two embeddings α, β : C → A, then
one constructs an object

ζ = (|K| p←− H 1−→ X = H)

as follows. K is the boundary of the standard 2-simplex, andH is an iterated
mapping cylinder over (the first derived of) K with

p−1(σ̂i) = p−1(τ̂j) = BC, i = 1, 2, j = 0, 1, 2; p−1(σ̂0) = BA.

The maps defining H are as indicated in Figure 3.
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Fig. 3

As is well known, the space H has π1(H) = Γ . The spectral sequence
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for ζ+ has the following E1-term:

E11,q+1 = Kq(ZC)⊕Kq(ZC)⊕Kq(ZC)

E10,q+1 = Kq(ZA)⊕Kq(ZC)⊕Kq(ZC)

d11,q+1
��

(
0 −α∗ −β∗
−1 0 1
1 1 0

)
��

A “base change” by means of the matrices
 1 0 0
−1 1 0
1 0 1


 , respectively


 1 β∗ α∗0 0 1
0 1 0


 ,

in E11,q+1, respectively in E
1
0,q, transforms the differential into the form

d11,q+1 =


α∗ − β∗ 0 00 1 0

0 0 1


 .

We can then delete the last two summands Kq(ZC) and get the exactness
of the first row in the following commutative diagram:

...

. . . Kq(ZC) Kq(ZA) K̃ccq+1(ζ
+) Kq−1(ZC) . . .

. . . Kq(ZC) Kq(ZA) Kq(ZΓ ) Kq−1(ZC) . . .

K̃ccq (ζ)

...

��
��

1

��

α∗−β∗ ��

1

��

��

��

��

1

��

��

�� α∗−β∗ �� ��

��

�� ��

��

The second row is analogous to the exact sequence in Theorem 1.1 and is
derived from Waldhausen’s Theorem 2 of [8]. Thus, it is a chain complex of
abelian groups which is exact except that for each q its homology at Kq(ZΓ )
is Waldhausen’s Nil group

Ñilq−1(ZC;Z[A− α(C)],Z[A − β(C)], αZAβ , βZAα).

In complete analogy with the proof of Theorem 2.1 one then gets
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Theorem 3.1. Let Γ = A∗C {t} as above and let ζ = (|K|
p←− H 1−→ H

= X) be the corresponding iterated mapping cylinder of classifying spaces,
parametrized over the circle |K|. Then there is a short exact sequence

K̃cc∗+1(ζ
+)→ K∗(ZΓ )→ K̃cc∗ (ζ)

where K̃cc∗+1(ζ+) is the homology part of K∗(ZΓ ), i.e., the part that fits into
the expected exact sequence with K∗(ZC) and K∗(ZA), while

K̃cc∗ (ζ) ∼= Ñil∗−1(ZC;Z[A− α(C)],Z[A− β(C)], αZ[A]β , βZ[A]α).

4. Concluding remarks. Theorems 2.1 and 3.1 fit very well with the
well known fact that the functor ξ �→ K̃cc∗ (ξ+) is a homology theory. Also,
they underscore the importance of the “base point” in ξ+; in fact in the two
theorems the groups K̃cc∗ (η) and K̃

cc
∗ (η

+) are completely “unrelated”.
In [1], for ∗ ≤ 1, it is shown that the groups K̃cc∗+1(η+) coincide with the

“ε → 0 controlled groups” K∗(E, p)c in the sense of Quinn [6] and Ranicki
and Yamasaki [7]. Here the control indicated by c takes place in a polyhedron
|K| via a map p : E → |K| with an iterated mapping cylinder structure,
and η = (|K| ← E → E = X).
In fact, for such η, it seems likely that there is a more general, and

more global, version of the results presented here: The homotopy fibre of
the induced map K̃(E)→ K̃cc(η) should be the Quinn homology spectrum
H(|K|;K(p)). Moreover, a proof should be possible by considerations as
above together with the main results of [3]. However, several details have
to be checked and/or worked out from scratch, so we leave such a general
result for a later, and longer, note.
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