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The universal functorial Lefschetz invariant
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Wolfgang L ü c k (Münster)

Abstract. We introduce the universal functorial Lefschetz invariant for endomor-
phisms of finite CW -complexes in terms of Grothendieck groups of endomorphisms of
finitely generated free modules. It encompasses invariants like Lefschetz number, its gen-
eralization to the Lefschetz invariant, Nielsen number and L2-torsion of mapping tori. We
examine its behaviour under fibrations.

Introduction. Given an endomorphism f : X → X of a finite CW -
complex X (with π0(f) = id), we introduce an abelian group U(f) and
an invariant u(f) in 2.2 based on an algebraic invariant for chain complexes
which we will define in Definition 1.2. The algebraic version of U(f) for a ring
R with an endomorphism φ : R → R is the Grothendieck group of φ-linear
endomorphisms of finitely generated free R-modules. The pair (U, u) is a
functorial Lefschetz invariant on the category End(C) of endomorphisms
f : X → X of finite CW -complexes (with π0(f) = id) in the sense of
Definition 2.3, i.e. U is a functor from End(C) into the category of abelian
groups and for any object f : X → X there is an invariant u(f) ∈ U(f) such
that (U, u) satisfies a push out formula, for a morphism h : (X, f)→ (Y, g) in
End(C), U(h) : U(f)→ U(g) depends only on the homotopy class of h, u(id :
∅ → ∅) = 0 and U(h) maps u(f) to u(g) and is bijective if h is a homotopy
equivalence. We call a functorial Lefschetz invariant (A, a) universal if for
any other functorial Lefschetz invariant (B, b) there is precisely one natural
transformation ξ : A → B which satisfies ξ(f)(a(f)) = b(f) for all objects
f : X → X in End(C) (see Definition 2.4). One of the main results of the
paper is proven in Section 4:

Theorem 2.5. The pair (U, u) is the universal functorial Lefschetz in-
variant for endomorphisms of finite CW -complexes.

1991 Mathematics Subject Classification: 57Q99, 19A99.
Key words and phrases: universal functorial Lefschetz invariants, Grothendieck group

of endomorphisms of modules, transfer maps.
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The universal functorial Lefschetz invariant is unique and carries maxi-
mal information compared with any other functorial Lefschetz invariant. In
particular any result about the universal functorial Lefschetz invariant car-
ries over to any other functorial Lefschetz invariant. In Section 3 we will give
examples of functorial Lefschetz invariants such as the (classical) Lefschetz
number, its generalization to the Lefschetz invariant and the Nielsen num-
ber which have been extensively studied in the literature, and of a new one
which is essentially given by the L2-torsion of the mapping torus. The last
one can be used to compute the volume of a hyperbolic closed 3-manifold
given by a mapping torus of a pseudo-Anosov self-homeomorphism f of a
closed hyperbolic 2-dimensional manifold and hence the volume can be de-
rived from u(f). We do not know how to get the volume from the other
functorial Lefschetz invariants mentioned above.

In Section 5 we investigate the behaviour of u(f) under fibrations by
assigning to a fibration a transfer map 5.6 which computes the invariants
on the total space level from the one on the basis level (Theorem 5.8). We
investigate this transfer map algebraically in Section 6. We obtain a down-
up-formula (see Lemma 6.5), give explicit calculations for Sn as fiber (see
Example 6.9) and prove

Theorem 6.7. Let f : X → X be an S1-endomorphism of a finite S1-
CW -complex X. Denote by i : (XS1

, fS
1
)→ (X, f) the morphism in End(C)

induced by the inclusion of the fixed point set. Then

U(i)(u(XS1
, fS

1
)) = u(X, f) ∈ U(X, f).

In particular u(X, f) vanishes if the S1-action has no fixed points.

In Section 7 we construct a diagram

(7.1)

U(R,φ) U(R̂[t, t−1]φ̂, id)

∏
m≥1 Λ(R,φm)

∏
m≥1 Λ(R̂[t, t−1]φ̂, id)

τ //

η

²²
η

²²
τ=
∏
m≥1 τm //

The horizontal maps are given by the mapping torus construction whereas
the vertical maps are given by the Lefschetz invariants of the various iterates
of an endomorphism. In the case where R is commutative and φ = id this
corresponds to the passage to the Lefschetz zeta-function. We discuss the
question which of the maps are injective.

The paper is organized as follows:

0. Introduction
1. The universal Lefschetz invariant for chain complexes
2. The universal Lefschetz invariant for CW -complexes
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3. Examples
4. Proof of the universal property
5. The construction of the transfer map
6. Properties of the transfer map
7. The mapping torus approach
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1. The universal Lefschetz invariant for chain complexes. In this
section we introduce the universal Lefschetz invariant for finite free chain
complexes. This is the algebraic version of the universal Lefschetz invariant
for spaces which we will introduce in Definition 2.4. Modules are always left
modules unless explicitly stated othervise.

Recall that an R-chain complex is finitely generated resp. free if each of
its chain modules have this property. It is called finite-dimensional if Cn is
zero for n < 0 and n > N for some N . We call it finite if it is both finitely
generated and finite-dimensional. Given an R-module F , let el(F, n) be the
associated n-dimensional elementary chain complex which is concentrated
in dimensions n and n− 1 and has nth differential id : F → F .

Definition 1.1. Let R be an associative ring with unit and φ : R→ R
be a ring homomorphism respecting the unit. An additive invariant for the
category of φ-endomorphisms of finite free R-chain complexes is a pair (A, a)
which consists of an abelian group A and a function which assigns to each
R-chain map f : C → φ∗C for C a finite free R-chain complex an element
a(f) ∈ A where φ∗C∗ is the R-chain complex obtained from C∗ by restriction
with φ. such that the following holds:

1. Additivity . For a commutative diagram of finite free R-chain complexes
with exact rows

0 C D E 0

0 φ∗C φ∗D φ∗E 0

// i //

f

²²

p //

g

²²

//

g

²²
// φ∗i // φ∗p // //

we have a(f)− a(g) + a(h) = 0.
2. Homotopy invariance. Let f, g : C → φ∗C be R-chain maps of finite

free R-chain complexes. If f and g are R-chain homotopic, then a(f) = a(g).
3. Elementary chain complexes. For any finitely generated free R-module

F and n ≥ 1 we have

a(0 : el(F, n)→ φ∗ el(F, n)) = 0.
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We call an additive invariant (U, u) universal if for any additive invariant
(A, a) there is precisely one homomorphism ξ : U → A of abelian groups
satisfying ξ(u(f)) = a(f) for all f : C → φ∗C.

In particular an R-map f : F → φ∗Q is a map of abelian groups such
that f(rx) = φ(r)f(x) for all r ∈ R and x ∈ F .

Definition 1.2. Let R be a ring and φ : R→ R be a ring homomor-
phism. Let U(R,φ) be the abelian group defined by generators and relations
as follows. Generators [A] are given by (n, n)-matrices A with entries in R
for n ≥ 1. If A is in block form with square matrices B and D,

A =
(
B C
0 D

)
,

then [A] = [B]+[D]. If A is an (n, n)-matrix, U is an invertible (n, n)-matrix
and φ(U) denotes the matrix obtained from U by applying φ to each entry,
then [φ(U)AU−1] = [A].

Given an R-map f : F → φ∗F for a finitely generated free R-module F ,
define [f ] ∈ U(R,φ) to be [A], where A is the matrix describing φ∗u−1◦f ◦u :
Rn → φ∗Rn for any R-isomorphism u : Rn → F . Given an R-chain map
f : C → φ∗C for C a finite free R-chain complex, we define

u(f) :=
∑

n≥0

(−1)n[fn : Cn → φ∗Cn] ∈ U(R,φ).

We have defined U(R,φ) in terms of matrices since the square matri-
ces form a set, whereas the R-maps F → φ∗F for finitely generated free
R-modules do not form a set. Notice that for each commutative diagram of
R-maps of finitely generated free R-modules with exact rows

0 F1 F2 F3 0

0 φ∗F1 φ∗F2 φ∗F3 0

//

f1

²²

i //

f2

²²

p //

f3

²²

//

// φ∗i // φ∗p // //

we get the relation

[f1]− [f2] + [f3] = 0.

Given rings with endomorphisms (R,φ) and (S, ψ) and a ring homo-
morphism h : R → S with ψ ◦ h = h ◦ φ, induction with h induces a
homomorphism

(1.3) h∗ : U(R,φ)→ U(S, ψ), [g : F → φ∗F ] 7→ [h∗g : h∗F → ψ∗h∗F ],

where h∗g sends s⊗ f ∈ S ⊗h F to ψ(s)⊗ g(f) ∈ ψ∗(S ⊗h F ).

Theorem 1.4. (U(R,φ), u) is the universal additive invariant for
φ-endomorphisms of finite free R-chain complexes.
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P r o o f. We first show that (U(R,φ), u) is an additive invariant. Ad-
ditivity follows directly from the definitions of u and U(R,φ). Obviously
u(0 : el(F, n) → el(F, n)) = 0. It remains to check homotopy invariance.
Let h : C → φ∗C be an R-chain homotopy from f to g. Denote by ΣC the
suspension of C and by cone(C) the mapping cone of C. Then one obtains
an R-chain map k : cone(C)→ cone(C) by putting

kn =
(
fn−1 0
hn−1 gn

)
: Cn−1 ⊕ Cn → Cn−1 ⊕ Cn

such that there is a commutative diagram of R-chain complexes with exact
rows

0 C cone(C) ΣC 0

0 φ∗C cone(C) φ∗ΣC 0

// i //

f

²²

p //

k

²²
k

²²
Σg

²²

//

// φ∗i // φ∗p // //

We conclude from additivity that

u(f)− u(g) = u(f) + u(Σg) = u(k).

Notice that cone(C) is a contractible R-chain complex. Hence it suffices to
show

u(f : C → φ∗C) = 0,

provided C is contractible. We do this by induction on the dimension of C.
If d ≤ 2, then the claim follows from the definitions of u and U(R,φ).
The induction step from d ≥ 2 to d + 1 is done as follows. Let D be the
R-subchain complex of C given by Dd+1 = Cd+1, Dd = ker(cd) and Dp = 0

for p 6= d, d+ 1. Let E be the cokernel of the inclusion D
i→ C. Since C

is a finite free contractible R-chain complex, we can assume without loss
of generality that D and E are finite free contractible R-chain complexes,
otherwise add to C the elementary chain complex el(Cd+1, d). The R-chain
map f induces R-chain maps g : D → φ∗D and h : E → φ∗E. Now from
additivity one gets

u(g)− u(f) + u(h) = 0.

By the initial step, u(g) = u(h) = 0. We conclude that u(f) = 0. This
finishes the proof that (U(R,φ), u) is an additive invariant.

It remains to check the universal property. Let (A, a) be an additive in-
variant for φ-endomorphisms of finite free chain complexes. There is precisely
one homomorphism ξ : U(R,φ) → A which sends a generator represented
by an R-map f : F → φ∗F to a(f), where we interpret f as an R-chain map
of finite 0-dimensional R-chain complexes. It remains to show that for an
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R-chain map f : C → φ∗C with C a finite free R-chain complex,

a(f) =
∑

n≥0

(−1)nξ(u(fn)).

We do this by induction on the dimension d of C. The step d = 0
follows from the definition of ξ. Let D be the R-chain complex which is
concentrated in dimension d and satisfies Dd = Cd. Denote by C|d−1

the (d − 1)-dimensional R-chain complex obtained by truncating C. Let
g : C|d−1 → φ∗C|d−1 and h : D → φ∗D be the R-chain maps induced
by f . From additivity and the obvious exact sequence of R-chain complexes
0→ C|d−1 → C → D → 0 we conclude that

a(f) = a(g) + a(h).

By the induction hypothesis applied to C|d−1 and Σ−1D it suffices to show

a(h) = −a(Σ−1h).

There is an obvious exact sequence 0→ Σ−1D → el(Cd, d)→ D → 0 and
an R-chain map h : el(Cd, d)→ φ∗ el(Cd, d) compatible with it. We conclude
that

a(Σ−1h) + a(h) = a(h) = a(0 : el(Cd, d)→ φ∗ el(Cd, d)) = 0.

There is a canonical homomorphism

s : Z→ U(R,φ), m− n 7→ [0 : Rm → φ∗Rm]− [0 : Rn → φ∗Rn].

Suppose for simplicity thatR has the property thatRn ∼= Rm implies n = m.
This condition is satisfied in our main example, namely in the case where R is
the integral group ring of a group. Then each finitely generated R-module F
has a well defined dimension dimR(F ) ∈ Z and we obtain a homomorphism

(1.5) dim : U(R,φ)→ Z, [F, f ] 7→ dimR(F ).

satisfying dim ◦ s = id. Recall that the Euler characteristic of a finite free
R-chain complex C is defined by

χ(C) :=
∑

n≥0

(−1)n dimR(C) ∈ Z.

Now we can show that a crucial property of Lefschetz type or trace type
invariants, commutativity, follows from additivity and homotopy invariance.

Lemma 1.6. Let v : C → D and f : D → φ∗C be R-chain maps of finite
free R-chain complexes. Then

u(f ◦ v) + s(χ(D)) = u(φ∗v ◦ f) + s(χ(C)).
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P r o o f. Consider the commutative diagram

D ⊕ C φ∗D ⊕ φ∗C

D ⊕ C φ∗D ⊕ φ∗C

(
0
f

0
f◦v
)

//
(

1
0
v
1

)
²²

(
1
0
φ∗v

1

)
²²

(
φ∗v◦f
f

0
0

) //

Since the vertical arrows are isomorphisms, from additivity we get

u

(
0 0
f f ◦ v

)
= u

(
φ∗v ◦ f 0
f 0

)
.

Again from additivity we derive

u(f ◦ v) + u(0 : D → φ∗D) = u

(
0 0
f f ◦ v

)
,

u(φ∗v ◦ f) + u(0 : C → φ∗C) = u

(
φ∗v ◦ f 0
f 0

)
.

Example 1.7. Suppose that R is commutative and φ = id. Then U(R, id)
is computed in [1, p. 377] and [16, Corollary 3, p. 442]. Namely, it is given
by

U(R, id)→ Z×
{

1 + a1t+ . . .+ ant
n

1 + b1t+ . . .+ bmtm

∣∣∣∣ ai, bi ∈ R
}
,

[F, f ] 7→ (dimR(F ),det(1− tf)),

where det(1− tf) is the characteristic polynomial in the variable t of f .

Let c : C → C be complex conjugation. As an illustration we want to
investigate U(C, c). For z ∈ C define C-linear maps

Rz : C→ c∗C, u 7→ zc(u),

Sz : C⊕ C→ c∗(C⊕ C), (a, b) 7→ (zc(b), c(a)).

Recall that we have introduced the map dim in 1.5. Define a map

(1.8) η : U(C, c)→
∏

n≥1

C, [f ] 7→ (trC(f2n))n≥1.

Theorem 1.9. (i) U(C, c) is the free abelian group with basis

B := {[Rr] | r ∈ R, r ≥ 0} q {[Ss] | s ∈ R, s < 0} q {[Sz] | z ∈ C,=(z) > 0}.
(ii) The map dim× η : U(C, c)→ Z×∏n≥1 C is injective.

P r o o f. We first show that the set

(1.10) {[Rz] | z ∈ C} q {[Sz] | z ∈ C}
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generates U(C, c). We show by induction on the dimension of the complex
vector space V that the class [f ] ∈ U(C, c) of a C-linear map f : V → c∗V
is a linear combination of elements of this set. Notice that f2 : V → V
is a C-linear endomorphism and hence has a non-trivial eigenvector v ∈ V
with eigenvalue µ. Consider the subspace U of V spanned by v and f(v).
Obviously f induces C-linear maps f0 : U → c∗U and f1 : V/U → c∗V/U
such that in U(C, c) we get

[f ] = [f0] + [f1].

If U is different from V , the induction step follows from the induction hy-
pothesis. Hence it remains to treat the case U = V . Suppose that v and
f(v) are linearly dependent. Then there is z ∈ C with f(v) = zv and hence
[f ] = [Rz]. Hence it remains to treat the case where {v, f(v)} is a basis
for V . If we conjugate f with the C-isomorphism C2 → V which maps (1, 0)
to v and (0, 1) to f(v), then we obtain Sµ and hence [f ] = [Sµ].

Next we want to show that the set B defined in Theorem 1.9(i) generates
U(C, c). For that purpose it suffices to verify in U(C, c) the relations

[Sr2 ] = 2[Rr] for r ∈ R>0,(1.11)

[R|z|] = [Rz] for z ∈ C,(1.12)

[Sz] = [Sc(z)] for z ∈ C.(1.13)

We get the following equalities of maps from C⊕ C to C⊕ C:(
r 1
0 i

)
·
(

0 c
Rr2 0

)
=
(
Rr2 Rr
Rir2 0

)
=
(
Rr 0
Rir Rr

)
·
(
r 1
0 i

)
.

Now 1.11 follows from

[Sr2 ] =
[(

Rr 0
Rir Rr

)]
= [Rr] + [Rr].

For z ∈ C with z 6= 0 choose ω ∈ C satisfying ω−1zc(ω) = |z|. If we
conjugate Rz with ω · id, we obtain R|z| and hence 1.12 follows.

We obtain 1.13 from(
0 1
c(z) 0

)
·
(

0 c
Rz 0

)
=
(
Rz 0
0 Rc(z)

)

=
(

0 c
Rc(z) 0

)
·
(

0 1
c(z) 0

)

Since the set defined in 1.10 generates U(C, c), we conclude from 1.11–1.13
that the set B generates U(C, c).

Finally we show that (dim× η)(B) is a Z-linear independent subset of Z×∏
n≥1C. Observe that then Theorem 1.9 follows since B generates U(C, c).

Observe that [R0] lies in the kernel of η and is mapped to 1 under dim.
Hence it suffices to show that for sequences 0 < r1 < . . . < rd and 0 >
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s1 > . . . > se of real numbers, and a sequence z1, . . . , zf of pairwise distinct
complex numbers with positive imaginary parts, and for any sequences of
integers λ1, . . . , λd, µ1, . . . , µe and ν1, . . . , νf which satisfy

(1.14)
d∑

i=1

λiη([Rri ]) +
e∑

j=1

µjη([Ssj ]) +
f∑

k=1

µkη([Szk ]) = 0

we have

λi = 0 for i = 1, . . . , d,(1.15)

µj = 0 for j = 1, . . . , e,(1.16)

νk = 0 for k = 1, . . . , f.(1.17)

One easily computes

η([Rri ] = (r2n
i )n≥1, η([Ssj ]) = (2snj )n≥1, η([Szk ]) = (znk + c(zk)n)n≥1.

Hence from 1.14 we get

(1.18)
d∑

i=1

λir
2n
i +

e∑

j=1

µj2snj +
f∑

k=1

νk(znk + c(zk)n) = 0 for n ≥ 1.

If we apply the next Lemma 1.19 to the sequences

wn := r2
1, . . . , r

2
d, s1, . . . , se, z1, c(z1), . . . , zf , c(zf ),

vn := λ1, . . . , λd, 2µ1, . . . , 2µe, ν1, ν1, . . . , νf , νf ,

then we get 1.15–1.17. This finishes the proof of Theorem 1.9 except for the
proof of Lemma 1.19 we will give next.

Lemma 1.19. Let w1, . . . , wl be a sequence of pairwise distinct non-zero
complex numbers and v1, . . . , vl be a sequence of complex numbers satisfying

l∑

i=1

viw
n
i = 0 for n = 1, . . . , l.

Then vi = 0 for i = 1, . . . , l.

P r o o f. We have to show that the l elements (wn1 , . . . , w
n
l ) ∈ Cl for

n = 1, . . . , l are C-linearly independent. This follows from the following
computation involving Vandermonde’s determinant:

∣∣∣∣∣∣∣∣

w1 w2 . . . wl
w2

1 w2
2 . . . w2

l
...

...
. . .

...
wl1 wl2 . . . wll

∣∣∣∣∣∣∣∣
= w1w2 . . . wl

∣∣∣∣∣∣∣∣

1 1 . . . 1
w1 w2 . . . wl
...

...
. . .

...
wl−1

1 wl−1
2 . . . wl−1

l

∣∣∣∣∣∣∣∣

= w1w2 . . . wl
∏

i>j

(wi − wj) 6= 0.
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2. The universal Lefschetz invariant for CW -complexes. In this
section we apply the chain complex invariants of Section 1 to endomorphisms
f : X → X of finite CW -complexes satisfying π0(f) = id.

Suppose for the moment that X is connected. We make the following
choices: of a point x ∈ X and a path w in X from y = fx to x. Next we
want to define an abelian group U(f, x, w) and an invariant

(2.1) u(f, x, w) ∈ U(f, x, w).

For this purpose we make additional choices: of a model of the universal cov-
ering p : X̃ → X and a point x̃ ∈ X̃ satisfying p(x̃) = x. Let ỹ ∈ X̃ be the
point satisfying p(ỹ) = y such that w lifts to a path in X̃ from ỹ to x̃. There
is precisely one lift f̃ : X̃ → X̃ satisfying f̃(x̃) = ỹ. There is a specific left
action of π1(X,x) on X̃ uniquely determined by the choice of x̃. Namely, for
z̃ ∈ X̃ and u ∈ π1(X,x) let uz̃ ∈ X̃ be the point such that p(uz̃) = p(z̃) and
for any paths ã from x̃ to z̃ and b̃ from x̃ to uz̃ the loop p(̃b) ∗ p(ã−) rep-
resents u ∈ π1(X,x). Let cw : π1(X, y)→ π1(X,x) be the homomorphism
sending u to w− ∗ u ∗ w. Let φ = φ(f, x, w) : π1(X,x) → π1(X,x) be the
composition cw ◦ π1(f, x). Then f̃ : X̃ → X̃ is φ-equivariant. The ring homo-
morphism Zπ1(X,x)→ Zπ1(X,x) induced by the group homomorphism φ is
also denoted by φ. We get a Zπ1(X,x)-chain map C(f̃ ) : C(X̃)→ φ∗C(X̃).
Define (see Definition 1.2)

U(f, w, x) := U(Zπ1(X,x), φ(f, w, x))

and

u(f, x, w) := u(C(f̃ )) ∈ U(f, w, x).

We have to verify that u(f, w, x) is independent of the choice of X̃ and
x̃ ∈ p−1(x). Let X̃ ′ and x̃′ be different choices. The identity map id : (X,x)
→ (X,x) lifts uniquely to a π1(X,x)-equivariant homeomorphism ĩd : (X̃, x̃)
→ (X̃ ′, x̃′) such that f̃ ′ ◦ ĩd = φ∗ ĩd ◦ f̃ . Theorem 1.4 and Lemma 1.6 imply

u(C(f̃ )) = u(C(f̃ ′)) ∈ U(f, x, w).

Hence u(f, x, w) depends only on (x,w).
Next we examine the dependence on (x,w). Let (xk, wk) for k = 0, 1 be

two such choices. We want to construct a homomorphism

µ = µ(x0, w0, x1, w1) : U(f, x0, w0)→ U(f, x1, w1).

To do this we choose a path v from x0 to x1. Recall that for a path a we get
by conjugation a homomorphism ca : π1(X, a(0))→ π1(X, a(1)). One easily
checks

φ1 ◦ cv = cw−0 ∗f(v)∗w1
◦ φ0,
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where φk : π1(X,xk)→ π1(X,xk) is the endomorphism φ with respect to
the choice (xk, wk) for k = 0, 1. Given a finitely generated free Zπ1(X,x0)-
module F , define an isomorphism of Zπ1(X,x1)-modules

%(F ) : (cv)∗φ∗0F → φ∗1(cv)∗F

by

Zπ1(X,x1)⊗cv φ∗0F → φ∗1(Zπ1(X,x1)⊗cv F ), g ⊗ f 7→ φ1(g)⊗ u−1f,

where u ∈ π1(X,x0) is given by w0 ∗ f(v) ∗ w1 ∗ v−. In order to check that
this is well defined we must show that gcv(h)⊗f and g⊗φ0(h)f are mapped
to the same elements, i.e. we must show that in Zπ1(X,x1)⊗cv F ,

φ1(gcv(h))⊗ u−1f = φ1(g)⊗ u−1φ0(h)f.

We compute

φ1(gcv(h))⊗ u−1f = φ1(g)φ1(cv(h))⊗ u−1f

= φ1(g)⊗ c−1
v ◦ φ1 ◦ cv(h)u−1f

= φ1(g)⊗ c−1
v ◦ cw−0 ∗f(v)∗w1

◦ φ0(h)u−1f

= φ1(g)⊗ cw−0 ∗f(v)∗w1∗v− ◦ φ0(h)u−1f

= φ1(g)⊗ cu ◦ φ0(h)u−1f

= φ1(g)⊗ u−1φ0(h)uu−1f

= φ1(g)⊗ u−1φ0(h)f.

We define the desired homomorphism

µ = µ(x0, w0, x1, w1) : U(f, x0, w0)→ U(f, x1, w1)

by

µ([f : F → φ∗0F ]) = [(cv)∗F
(cv)∗f−−−−→ (cv)∗φ∗0F

%(F )−−−→φ∗1(cv)∗F ].

One easily checks that this map is independent of the choice of v. Moreover,
it sends u(f, x, w) to u(f, x1, w1) by Theorem 1.4 since there is the following
commutative diagram:

X̃ X̃

X̃ X̃

id
²²

f̃0 //

lu

²²
f̃1 //

One easily checks

µ(x0, w0, x2, w2) = µ(x1, w1, x2, w2) ◦ µ(x0, w0, x1, w1),

µ(x0, w0, x0, w0) = id .
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Define U(f) as the abelian group which is the set of equivalence classes of the
equivalence relation on

∐
(x,w) U(f, x, w) generated by u ∼ c(x, x′, w, w′)(u)

for u ∈ U(f, x, w). The collection of the u(f, x, w) determines an element

(2.2) u(f) ∈ U(f).

The obvious map U(f, w, x)→ U(f) is an isomorphism and sends u(f, x, w)
to u(f) for all (x,w).

Recall that so far we have assumed that X is connected. If X has more
than one path component, we will assume that f induces the identity on
π0(X) and we define U(f) to be the direct sum over the path components
C of X of the groups U(f |C), and u(f) ∈ U(f) to be the collection of the
invariants u(f |C).

Let C be the category having as objects finite CW -complexes and as
morphisms maps between them. The category End(C) has as objects (X, f)
endomorphisms f : X → X in C such that f induces the identity on π0(X).
A morphism h : (X, f)→ (Y, g) in End(C) is a commutative square in C

X X

Y Y

f //

h

²²
h

²²g //

Given two such morphisms hi : (X, f)→ (Y, g) for i = 0, 1, a homotopy from
h0 to h1 is given by a commutative square in C

X × [0, 1] X × [0, 1]

Y Y

f×id //

h

²²
h

²²g //

such that the restriction of h to X × {i} agrees with hi for i = 0, 1. If such
a homotopy exists, we call h0 and h1 homotopic. A push out in End(C) is a
commutative square in End(C)

(X0, f0) (X1, f1)

(X2, f2) (X, f)

i1 //

i2

²²
j1

²²
j2 //

such that the commutative square in C
X0 X1

X2 X

i1 //

i2

²²
j1

²²j2 //
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is a push out, f is the push out of f0, f1 and f2, i2 is an inclusion of
CW -complexes, i1 is cellular and X has the CW -structure induced by the
ones on Xi for i = 0, 1, 2.

Definition 2.3. A functorial Lefschetz invariant on the category of
finite CW -complexes is a pair (Θ, θ) consisting of a functor Θ : End(C) →
ABEL into the category of abelian groups and a function θ which assigns
to any object (X, f) in End(C) an element θ(X, f) ∈ Θ(X, f) such that the
following conditions are satisfied:

1. Additivity . For a push out in End(C)

(X0, f0) (X1, f1)

(X2, f2) (X, f)

i1 //

i2

²²
j1

²²
j2 //

we get in Θ(X, f):

θ(X, f) = Θ(j1)(θ(X1, f1)) +Θ(j2)(θ(X2, f2))−Θ(j0)(θ(X0, f0)),

where j0 is j1 ◦ i1 = j2 ◦ i2.
2. Homotopy invariance. If hi : (X, f)→ (Y, g) are homotopic morphisms

in End(C) for i = 0, 1, then Θ(h0) = Θ(h1).
3. Invariance under homotopy equivalence. If h : (X, f)→ (Y, g) is a mor-

phism in End(C) such that h : X → Y is a homotopy equivalence, then
Θ(h) : Θ(X, f)→ Θ(Y, g) is bijective and sends θ(X, f) to θ(Y, g).

4. Value at the empty set .

θ(id : ∅ → ∅) = 0 ∈ Θ(∅, id).

Definition 2.4. We call a functorial Lefschetz invariant (U, u) universal
if for any functorial Lefschetz invariant (Θ, θ) there is precisely one natural
transformation τ : U → Θ such that τ(f) : U(f)→ Θ(f) sends u(f) to θ(f)
for any object f : X → X in End(C).

The following theorem is one of the main results of this paper. It explains
why the invariant u encompasses a lot of known Lefschetz type invariants
and other invariants that we will analyse in Section 3. We will give its proof
in Section 4. Analogous results for finiteness obstructions and Whitehead
torsion have been proven in [25], [28, Section 6]. Notice that U becomes a
functor U : End(C)→ ABEL by 1.3.

Theorem 2.5. The pair (U, u) defined in 2.2 is the universal functorial
Lefschetz invariant for endomorphisms of finite CW -complexes in the sense
of Definition 2.3.



180 W. Lück

For related universal properties of Lefschetz-type invariants for spaces
with group actions we refer for instance to [22], [39].

Remark 2.6. In the definition of U(X, f) we could work with finitely
generated projective modules instead of finitely generated free modules. This
corresponds in geometry to the passage from finite CW -complexes to finitely
dominated CW -complexes. Then the new group would be the direct sum of
the version discussed here with

⊕
C∈π0(X)

K̃0(Zπ1(C))

and the new invariant would be the sum of the old one and the collection of
Wall’s finiteness obstructions o(C) ∈ K̃0(Zπ1(C)) of the components C.

Remark 2.7. Let fk : X → X for k = 0, 1 be homotopic endomorphisms
of a finite CW -complex X with π0(f) = id. Let h : f0 ' f1 be such a homo-
topy. Let (Θ, θ) be a functorial Lefschetz invariant. We obtain an isomor-
phism

(2.8) Θh : Θ(X, f0)
Θ(k0)−−−−→Θ(X × [0, 1], h× pr[0,1])

Θ(k1)−1

−−−−−−→Θ(X, f1),

where kn : X → X × [0, 1] maps x to (x, n) for n = 0, 1. By invariance under
homotopy equivalence, Θ(kn) is bijective for n = 0, 1 and

Θh(θ(X, f0)) = θ(X, f1).

Notice, however, that Θh does depend on h, or more precisely, on the homo-
topy class of the path h(x,−) as the following concrete calculation for the
universal invariant shows.

Suppose for simplicity in the sequel that X is connected. Let x be a base
point and wk be a path from fk(x) to x for k = 0, 1. Let v be the path
h(x,−) from f0(x) to f1(x). Write π = π1(X,x). Let φk for k = 0, 1 be the
endomorphism of π and Zπ respectively given by cwk ◦π1(fk, x). Notice that
φ1 = cw−0 ∗v∗w1

◦ φ0. Hence we obtain a map

(2.9) Θ(x, v) : Θ(Zπ, φ0)→ Θ(Zπ, φ1),

which sends the class of g : F → φ∗0F to the class of lw−0 ∗v∗w1
◦g : F → φ∗1F ,

where lw−0 ∗v∗w1
: F → c∗vF is the Zπ-map sending x to (w−0 ∗ v ∗ w1)x. One

easily checks using homotopy invariance that

(2.10) Θ(x, v)(u(f0, x0, w0)) = u(f1, x1, w1)

and that Θh defined in 2.8 and Θ(x, v) defined in 2.9 agree under the obvious
identifications.

Now suppose further that f0 and f1 agree, and for simplicity f0(x) = x.
Write f = f0 = f1. Define Jiang’s subgroup

(2.11) J(f, x) ⊂ π
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as the subgroup of elements for which there is a homotopy h from f to f
such that v is represented by h(x,−). Choose w0 = w1 to be the trivial
path. Then φ0 = φ1 is just φ := π1(f, x). For v ∈ J(f, x) the map Θ(x, v)
defined in 2.9 becomes the automorphism

U(Zπ, φ)→ U(Zπ, φ), [g : F → φ∗F ] 7→ [lv ◦ g : F → φ∗F ].

Hence J(f, x) acts on U(Zπ) and

(2.12) u(f) ∈ U(Zπ, φ)J(f,x).

Jiang’s subgroup is studied for instance in [2], [17] and [18] and all the
results there about Nielsen numbers can be derived from 2.12 and Theorem
2.5 since they imply, in the notation of Example 3.5,

λ(f) ∈ Λ(Zπ, φ)J(f,x),

where u ∈ J(f, x) acts on [x] ∈ Λ(Zπ, φ) by u[x] = [ux].

3. Examples. In this section we explain that the universal invariant
defined in 2.2 encompasses some of the known Lefschetz type invariants and
others.

Example 3.1. The (classical) Lefschetz number of an endomorphism
f : X → X of a finite CW -complex is defined as the integer

λclass(f) :=
∑

n≥0

(−1)n tr(Hn(f ;Z)) ∈ Z,

where tr(Hn(f ;Z)) ∈ Z is the trace of the endomorphism Hn(f ;Z) of the
finitely generated abelian group Hn(X;Z). Recall that the trace of an endo-
morphism of a finitely generated abelian group A is the trace of the integer
square matrix given by the induced endomorphism of the finitely generated
free abelian group A/Tors(A) with respect to some basis of A/Tors(A). If
one takes Θ to be the constant functor with value Z and θ(f) = λclass(f),
one obtains a functorial Lefschetz invariant for finite CW -complexes.

The unique natural transformation ξ(f) : U(f)→ Z which sends u(f) to
λclass(f) (see Definition 2.4 and Theorem 2.5) is given by the homomorphism

(3.2) U(Zπ1(X,x), φ(f, w, x))→ Z

which maps the class of the endomorphism g : F → φ∗F to the trace of the
endomorphism of finitely generated free abelian groups

g : Z⊗Zπ1(X,x) F → Z⊗Zπ1(X,x) F, n⊗ x 7→ n⊗ f(x).

Example 3.3. Let f : X → X be an endomorphism of a finite CW -
complex X. Let det(I − tHn(f ;Q)) be the characteristic polynomial of the
endomorphism Hn(f ;Q) of the rational vector space Hn(X;Q). Define the
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rational Lefschetz function

r(f) :=
∏

n≥0

det(I − tHn(f ;Q))(−1)n ,

which is a rational function in t with rational coefficients. If we take Θ to be
the constant functor with value the abelian group rat(t) of rational functions
in t and θ(f) to be r(f) we obtain a functorial Lefschetz invariant.

Define the Lefschetz zeta-function to be the formal power series in t with
rational coefficients

ζ(f) :=
∞∑

k≥1

tk
Λclass(fk)

k
.

If we take Θ to be the constant functor with value the abelian group of
formal power series in t with rational coefficients and θ(f) to be ζ(f), we
obtain a functorial Lefschetz invariant. These two invariants are related by
the following formulas relating formal power series (see [38, Section 3])

r(f) = exp(−ζ(f)), ζ(f) = − ln(r(f)).

The natural transformation ξ(f) : U(f) → rat(t) which sends u(f) to r(f)
(see Definition 2.4 and Theorem 2.5) is given by the homomorphism

(3.4) U(Zπ1(X,x), φ(f, w, x))→ rat(t)

which maps the class of the endomorphism g : F → φ∗F to the characteristic
polynomial det(I−tg) of the endomorphism of finitely generated free abelian
groups

g : Z⊗Zπ1(X,x) F → Z⊗Zπ1(X,x) F, n⊗ x 7→ n⊗ f(x).

The classical Lefschetz function, variations of it and their relation to Reide-
meister torsion have been investigated for instance in [11]–[14].

Example 3.5. Next we recall the definition of the (generalized) Lef-
schetz invariant (see [41], [42]). Let f : X → X be an endomorphism of a
finite CW -complex. Assume for a moment that X is connected. Fix a base
point x ∈ X and a path w from y = f(x) to x. Now make the following
additional choices of a model of the universal covering p : X̃ → X and of
a base point x̃ ∈ X̃ with p(x̃) = x. Let ỹ ∈ X̃ be the point uniquely char-
acterized by the property that w lifts to a path in X̃ from ỹ to x̃. There
is precisely one lifting f̃ : X̃ → X̃ with f̃(x̃) = ỹ. Abbreviate π = π1(X,x).
We obtain a homomorphism of groups φ : π → π by composing the map
π1(f, x) : π1(X,x)→π1(X, y) induced by f and the map π1(X, y)→π1(X,x)
given by conjugation with w. In the sequel we let operate π on X̃ from the
left where the operation is defined with respect to the base point x̃ ∈ X̃ (see
Section 2). Then the map f̃ is φ-equivariant. It induces a Zπ-chain map
C(f̃ ) : C(X̃)→ φ∗C(X̃) on the cellular Zπ-chain complex of X̃.
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Let g : F → φ∗F be a Zπ-map. Choose a Zπ-basis {b1, . . . , bk} for F .
Let A = (Ai,j) be the square (r, r)-matrix over Zπ of g with respect to the
chosen basis, i.e. g(bi) =

∑
j Ai,jbj . Let Zπφ be the abelian group which is

the quotient of the abelian group Zπ by the abelian subgroup generated by
all elements of the form φ(v)w − wv for all v, w ∈ π. We call two elements
w0, w1 ∈ π φ-conjugate if there is u ∈ π with φ(u)w0u

−1 = w1. This is an
equivalence relation on π and Zπφ can be identified with the free abelian
group generated by the φ-conjugacy classes [w] of elements in w in π. For
an element x ∈ Zπ let [x] ∈ Zπφ be its image under the obvious projection
Zπ → Zπφ. Define

(3.6) tr(Zπ,φ)(g) :=
∑

i

[Ai,i] ∈ Zπφ

and

Λ(f, x, w) := Zπφ,(3.7)

λ(f, x, w) :=
∑

n≥0

(−1)n tr(Zπ,φ)(Cn(f̃ )) ∈ Λ(f, x, w).(3.8)

One easily checks that the invariant and the group it takes values in are
independent of the choice of p, of x̃ ∈ p−1(x) and the bases but it de-
pends on the choice of x and the homotopy class relative end points of
the path w. Let x′ and w′ be a second choice. Let v be any path from x
to x′. We obtain by conjugation with w a map π1(X,x)→ π1(X,x′) which
induces a map µ(x,w, x′, w′) : Λ(f, x, w)→ Λ(f, x′, w′). This map is indeed
independent of the choice of v, sends λ(f, x, w) to λ(f, x′, w′) and satis-
fies µ(x′, w′, x′′, w′′) ◦ µ(x,w, x′, w′)=µ(x,w, x′′, w′′) and µ(x,w, x, w) = id.
Now define Λ(f) as the abelian group which is the set of equivalence classes
of the equivalence relation on

∐
(x,w) Λ(f, x, w) which is generated by u ∼

µ(x,w, x′, x, w′)(u) for u ∈ Λ(f, x, w). The collection of the λ(f, x, w) deter-
mines an element

(3.9) λ(f) ∈ Λ(f).

The obvious map Λ(f, w, x)→ Λ(f) is an isomorphism and sends λ(f, x, w)
to λ(f) for all (x,w).

If X has more than one path component, one defines Λ(f) to be the
direct sum over the path components C of X of the groups Λ(f |C). Recall
that we require that f induces the identity on π0(X). Define λ(f) ∈ Λ(f)
analogously. Then (Λ, λ) is a functorial Lefschetz invariant for finite CW -
complexes. Notice that in contrast to the previous Examples 3.1 and 3.3,
Λ is not a constant functor.

Consider as an example the endomorphism fd : S1 → S1 sending z to zd

for d ∈ Z. Let Z/(|d − 1|) be the cyclic group of order |d − 1| if d 6= 1 and
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of infinite order if d = 1. Let t be the image of the generator of Z, written
multiplicatively, under the canonical projection onto Z/(|d−1|). Then there
is an obvious isomorphism

Λ(S1, fd)
∼=−→Z[Z/(|d− 1|)]

which sends λ(fd) to −∑d−1
k=1 t

k if d ≥ 2, to
∑|d|
k=0 t

−k if d ≤ 0 and to 0 if
d = 1.

We call λ(f) ∈ Λ(f) the (generalized) Lefschetz invariant. The Nielsen
number of f is the number of φ-conjugacy classes of elements in Zπ1(X,x)φ
which appear with non-trivial coefficients in λ(f). The Nielsen number and
the generalized Lefschetz invariant of f vanish if f is homotopic to an en-
domorphism without fixed points. Any endomorphism homotopic to f has
at least N(f) fixed points. Moreover, f is homotopic to an endomorphism
with precisely N(f) fixed points and f is homotopic to a map without fixed
points if and only if λ(f) and N(f) vanish, provided that X is a compact
manifold possibly with boundary of dimension different from 2.

Next we recall the Lefschetz fixed point formula. Suppose that f : X → X
is an endomorphism of a connected compact manifold possibly with bound-
ary such that f has only finitely many fixed points z which do not lie on ∂X
and satisfy det(id−Tzf) 6= 0 where Tzf : TzX → TzX is the differential of
f at z. Then

(3.10) λ(f, x, w) =
∑

z∈Fix(f)

det(id−Tzf)
|det(id−Tzf)| [uz ∗ f(uz)−1 ∗ w],

where uz is any path from x to z. For further information we refer for
instance to [2], [7], [11], [12], [18]–[21].

The unique natural transformation ξ(f) : U(f)→ Λ(f) which sends u(f)
to λ(f) (see Definition 2.4 and Theorem 2.5) is given by the homomorphism

(3.11) U(Zπ1(X,x), φ(f, w, x))→ Zπ1(X,x)φ(f,w,x)), [g] 7→ tr(Zπ,φ)(g).

The next example does not seem to be covered by classical Lefschetz-type
invariants.

Example 3.12. Let f : X → X be an endomorphism of a finite connected
CW -complex. The mapping torus Tf is obtained from the cylinder X ×
I by identifying the bottom and top using f . If f and g are homotopic
then their mapping tori are simple homotopy equivalent (see [6]). Hence
a simple homotopy invariant of Tf is an invariant of the homotopy class
of f . For instance one can interpret r(f) introduced in Example 3.3 as
the Reidemeister torsion of the canonical infinite cyclic covering of Tf [38,
Section 3]. One can also apply a more sophisticated invariant to Tf , namely
the combinatorial L2-torsion. It is known that the L2-Betti numbers of Tf all
vanish [30, Theorem 2.1]. We assume in the sequel that Tf is of determinant
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class in the sense of [4, p. 754]; we discuss this assumption later. Then the
combinatorial L2-torsion is defined (see for instance [5], [29], [31]):

%(2)(Tf ) ∈ R.
If X is a compact 2-dimensional manifold and f a diffeomorphism, then the
L2-torsion of Tf can be computed in terms of the volumes of the hyperbolic
pieces in its decomposition by a minimal family of pairwise non-isotopic in-
compressible not-boundary-parallel embedded 2-tori into Seifert pieces and
hyperbolic pieces. This is proven in [35] using [3], [23] and [37]. In particular
if f : F → F is a pseudo-Anosov self-homeomorphism of a closed hyperbolic
2-dimensional manifold, then the mapping torus Tf is a closed hyperbolic
3-manifold and its combinatorial L2-torsion is −1/(3π) times its volume.

There is a natural homomorphism

(3.13) %(f) : U(f)→ R

which sends an endomorphism g : F → φ∗F of a finitely generated free
Zπ1(X)-module F to the generalized Fuglede–Kadison determinant of the
endomorphism of finitely generated Hilbert N (π1(Tf ))-modules

g : l2(π1(Tf ))⊗Zπ1(X)F → l2(π1(Tf ))⊗Zπ1(X)F, u⊗v 7→ −ut⊗g(v)+u⊗v,
in the sense of [29, Section 4]. Here t ∈ π1(Tf ) is the element given by the
composition of the path [0, 1] → Tf , s 7→ (s, x), with some path in X from
f(x) to x for some base point x ∈ X. By the computation of the cellular
Zπ1(Tf )-chain complex of T̃f in [30, p. 207], % has the property

%(f)(u(f)) = %(2)(Tf ).

We see that u(f) determines %(2)(Tf ). However, the pair (R, %(2)(T?)),
which consists of the constant functor with value R and the function sending
f to %(2)(Tf ), is not quite a functorial Lefschetz invariant because additiv-
ity holds only for those push outs for which for k = 0, 1, 2 and any base
point xk ∈ Xk the map π1(jk, xk) : π1(Xk, xk) → π1(X, jk(xk)) is injective
[29, Theorem 1.6]. All other axioms are satisfied in full generality.

Next we discuss the assumption of determinant class which is needed to
define L2-torsion or generalized Fuglede–Kadison determinant. Notice that
a finite CW -complex X is of determinant class if all its Novikov–Shubin
invariants are positive and that it is conjectured that the Novikov–Shubin
invariants of any finite CW -complex are positive [24, Conjecture 7.2], but
this is only known in special cases like Tf for an endomorphism of a compact
surface. If π1(X) is residually finite or amenable, then π1(Tf ) is residually
finite or amenable respectively, and Tf is of determinant class and 3.13 is
well defined (see [3, Theorem A in Appendix A] and [8, Theorem 0.2]).
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Remark 3.14. As always in algebraic K-theory it is often useful for
computations for group rings to use representations to detect elements. This
strategy also applies in our context.

Let f : X → X be an endomorphism of a connected finite CW -complex
X. Let A be a commutative ring and V be a right Aπ-module such that V
as an A-module is finitely generated free. Let t : V → φ∗V be an Aπ-map.
Then we obtain a homomorphism

(3.15) RV,t : U(f)→ A

by sending the class of the Zπ-map g : F → φ∗F to the trace of the endo-
morphism of finitely generated free A-modules given by the composition

V ⊗Zπ F → V ⊗Zπ F, v ⊗ f 7→ t(v)⊗ g(f).

Computations using representations are given in [21]. We explain their re-
lation to the mapping torus approach in Remark 7.14.

Other constructions of Lefschetz type invariants taking values in Hoch-
schild homology and A-theory are given in [15] and [36].

There are higher analogues of the groups U(R,φ): just apply the standard
constructions of Quillen or Waldhausen to the category of φ-endomorphisms
of finitely generated free R-modules. Analogously one can define an A-
theoretic version of the geometric side of endomorphisms of finite CW -
complexes and construct a linearization map from the A-theory version to
the K-theory version analogously to the linearization map from A(X) to
K(Zπ1(X)) for a connected finite CW -complex X.

4. Proof of the universal property. This section is devoted to the
proof of Theorem 2.5. For this purpose we will need the following notions
and constructions.

Let X be a space. A retractive space over X is a triple Y = (Y, i, r)
which consists of a space Y , a cofibration i : X → Y and a map r : Y → X
satisfying r ◦ i = id. We often identify X with i(X). Given a retractive space
Y over X, define retractive spaces Y ×X [0, 1] and CXY by the push outs

X × [0, 1] X

Y × [0, 1] Y ×X [0, 1]

pr //

i×id
²² ²²

//

Y × {1} X

Y ×X [0, 1] CXY

r //

j

²² ²²
//

where pr resp. j is the canonical projection resp. inclusion, and the inclusion
of X and the retraction onto X are the obvious ones. Define the retractive
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space ΣXY by the push out

Y CXY

CXY ΣXY

î //

î
²² ²²

//

where î : Y → CXY is the inclusion induced by the inclusion Y × {0} →
Y ×[0, 1]. Notice that the composition î ◦ i : X → CXY is a homotopy equiv-
alence relative X with the retraction of CXY onto X as homotopy inverse
relative X. If X consists of one point, then a retractive space over X is just
a pointed space and CXY resp. ΣXY is the reduced cone resp. suspension
of Y .

Given two retractive spaces Y and Z over X and an endomorphism
f : X → X, define [(CXY, Y ), (CXZ,Z)]f to be the set of homotopy classes
relative X of maps of pairs (ĝ, g) : (CXY, Y )→ (CXZ,Z) which induce on
X the given endomorphism f . Homotopy class relative X means that the
relevant homotopies are stationary on X. Next we want to describe a sus-
pension map

(4.1) ΣX : [(CXY, Y ), (CXZ,Z)]f
→ [(CXΣXY,ΣXY ), (CXΣXZ,ΣXZ)]f .

Let (ĝ, g) be a representative of a class in the domain. We only explain the
definition of a representative (ĝΣ , gΣ) of the image of the class under this
map. Define gΣ by ĝ ∪g ĝ. Notice that CX is compatible with push outs so
that we can think of CXΣXY as the push out of CX applied to the diagram
defining ΣX , i.e.

CXY CXCXY

CXCXY CXΣXY

CX î //

CX î

²² ²²
//

In order to define the extension ĝΣ : CXΣXY → CXΣXY we will define an
endomorphism g : CXCXY → CXCXY extending ĝ and will put ĝΣ to be
g ∪ĝ g. For the definition of g it is convenient to rewrite CXCXY as follows.
Namely, there is a commutative diagram

Y × [0, 1]× [0, 1] Y × [0, 1]× [0, 1]

CXY × [0, 1] ∪Y×[0,1] Y CXCXY

ψ //

²² ²²ψ //
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where

ψ(y, s, t) =
(
y,

ts

max{t, 1− t} ,
(1− t)s

max{t, 1− t}
)
,

the vertical arrows are the obvious projections and the space in the lower

left corner is the push out of CXY × [0, 1]
j←−Y × [0, 1]

pr−→Y for j and
pr being the canonical inclusion resp. projection. One easily checks that ψ
is a homeomorphism. Conjugating the endomorphism ĝ × id∪g×idg with ψ
yields g. This finishes the definition 4.1 of the map ΣX .

Let f : X → X be an endomorphism of a finite CW -complex. Suppose
for the moment that X is connected. Let p : X̃ → X be a model of the
universal covering, x ∈ X and x̃ ∈ X̃ base points with p(x̃) = x, w a path
from f(x) to x and f̃ : X̃ → X̃ the lift of f for which w lifts to a path
from f̃(x̃) to x̃. Given a retractive space Y , let Ỹ and C̃XY be the pull
back of X̃ with the retractions onto X. We call a retractive space Y over
X a d-extension if Y is obtained from X by attaching finitely many cells
in dimension d. If Y is a d-extension of X and d ≥ 2, then π1(r) is an
isomorphism and Ỹ is the universal covering of Y . Given a map g : Y → Z
of d-extensions over X for d ≥ 2 which induces f on X, define g̃ : Ỹ → Z̃ to
be the lift of g uniquely determined by the property that it induces f̃ on X̃.
Let φ : Zπ1(X,x)→ Zπ1(X,x) be the homomorphism induced as before by
the composition cw ◦ π1(f, x).

We have already seen that U is the universal additive invariant for chain
complexes. The reason why it turns out to be the universal invariant for
spaces is the next lemma which contains the decisive step in the passage
from geometry to algebra.

Lemma 4.2. Let Y and Z be d-extensions of X for d ≥ 2. Then the map

η : [(CXY, Y ), (CXZ,Z)]f → homZπ1(X,x)(Cd(Ỹ , X̃), φ∗Cd(Z̃, X̃)),

[(ĝ, g)] 7→ Cd(g̃, f̃ ),

is bijective.

P r o o f. Choose a push out

∐
i∈I S

d−1 X

∐
i∈I D

d Y

∐
i∈I qi //

k

²²
j

²²∐
i∈I Qi //

Define a map pi : Sd → Y by requiring that pi is Qi on the upper hemisphere
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Sd+, and r ◦Qi on the lower hemisphere Sd−. Then CXY is the push out

∐
i∈I S

d Y

∐
i∈I D

d+1 CXY

∐
i∈I pi //

k

²²
ĵ

²²∐
i∈I Pi //

Hence a map (ĝ, g) : (CXY, Y )→ (CXZ,Z) with g|X = f is uniquely de-
termined by its compositions (ĝ, g) ◦ (Pi, pi), and any collection of maps
(k̂i, ki) : (Dd+1, Sd)→ (CXZ,Z) with ki|Sd−=f ◦ r ◦Qi determines uniquely

such a map (ĝ, g) with (ĝ, g) ◦ (Pi, pi) = (k̂i, ki). Hence the map

µ : [(CXY, Y ), (CXZ,Z)]f →
∏

i∈I
[(Dd+1, Sd), (CXZ,Z)]f◦r◦Qi:Sd−→X

sending [(ĝ, g)] to ([(ĝ, g) ◦ (Pi, pi)])i∈I is a bijection.
Next we show that the following forgetful map is bijective for i ∈ I:

νi : [(Dd+1, Sd), (CXZ,Z)]f◦r◦Qi:Sd−→X → πd+1(CXZ,Z, f(xi)),

where s = (0, 0, . . . ,−1) ∈ Sd is a fixed base point and xi = r ◦ Qi(s). It
forgets that the map has to look like f ◦ r ◦ Qi on the lower hemisphere
and remembers only that the point s ∈ Sd has to go to f(xi). It is bijec-
tive as the inclusion {s} → Sd− is a homotopy equivalence and the inclu-
sions {s} → Sd− → Sd → Dd+1 are cofibrations. Choose paths wi from xi to
x in Y . Composing each νi with the isomorphism πd+1(CXZ,Z, f(xi)) →
πd+1(CXZ,Z, f(x)) given by the path f(wi) from f(xi) to f(x) and taking
the product of the resulting isomorphisms yields an isomorphism

ν :
∏

i∈I
[(Dd+1, Sd), (CXY, Y )]f◦r◦Qi:Sd−→X →

∏

i∈I
πd+1(CXZ,Z, f(x)).

Hence the composition

ν ◦ µ : [(CXY, Y ), (CXZ,Z)]f →
∏

i∈I
πd+1(CXZ,Z, f(x))

is bijective.
Each pair (Qi, qi) : (Dd+1, Sd)→ (CXY, Y ) defines an element in the ho-

motopy group πd+1(CXY, Y, xi). Denote its image under the map induced by
the path wi by bi ∈ πd+1(CXY, Y, x). Then {bi | i ∈ I} is a Zπ1(X,x)-basis
for πd+1(CXY, Y, x). One easily checks that the bijective composition ν ◦ µ
above is given by

[(CXY, Y ), (CXZ,Z)]f →
∏

i∈I
πd+1(CXZ,Z, f(x)),

[(ĝ, g)] 7→ (πd+1(ĝ, g, x)(bi))i∈I .
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Consider the isomorphism given by the following composition of isomor-
phisms or their inverses:

σY : πd+1(CXY, Y, x) ∂−→πd(Y,X, x)
πd(p,x̃)←−−−−πd(Ỹ , X̃, x̃)

h−→Hd(Ỹ , X̃) = Cd(Ỹ , X̃).

Here ∂ is the boundary operator in the long exact homotopy sequence of the
triple (CXY, Y,X), which is an isomorphism since the inclusion X → CXY
is a homotopy equivalence and h is the Hurewicz isomorphism. Analogously
define the isomorphism

σZ : πd+1(CXZ,X, f(x))→ Cd(Z̃, X̃).

For a map (ĝ, g) : (CXY, Y )→ (CXZ,Z) with g|X = f the following diagram
commutes:

πd+1(CXY, Y, x) πd+1(CXZ,Z, f(x))

Cd(Ỹ , X̃) Cd(Z̃, X̃)

cw◦πd+1(ĝ,g,x) //

σY

²²
σZ

²²
C(g̃,f̃ ) //

Now Lemma 4.2 follows.

Given a functorial Lefschetz invariant (Θ, θ), we want to construct for
an endomorphism f : X → X of a connected finite CW -complex and a
d-extension Y a map

(4.3)
τY : [(CXY, Y ), (CXY, Y )]f → Θ(X, f),

[(ĝ, g)] 7→ Θ(î ◦ i)−1 ◦Θ(î )(θ(Y, g)).

Recall that i : X → Y and î : Y → CXY are inclusions and î ◦ i is a homo-
topy equivalence so that Θ(î ◦ i) is bijective by invariance under homotopy
equivalence. We have to show that Θ(î ◦ i)−1 ◦Θ(î )(θ(Y, g)) depends only
on the homotopy class of (ĝ, g) relative X. Let (Ĝ,G) be such a homotopy
relative X between (ĝ0, g1) and (ĝ1, g1). For k = 0, 1 let lk be the inclu-
sion X → X × [0, 1] sending y to (y, k) (and similarly for Y and CXY ). The
following diagram in End(C) commutes:

Θ(X, f) Θ(X × [0, 1], f × id) Θ(X, f)

Θ(Y, g0) Θ(Y × [0, 1], G× pr[0,1]) Θ(Y, g1)

Θ(CXY, ĝ0) Θ(CXY × [0, 1], Ĝ× pr[0,1]) Θ(CXY, ĝ1)

Θ(l0) //

Θ(i)

²²
Θ(i×id)

²²

Θ(l1)oo

Θ(i)

²²
Θ(l0) //

Θ(î )

²²
Θ(î×id)

²²

Θ(l1)oo

Θ(î )

²²
Θ(l0) // Θ(l1)oo
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Notice that Θ(l0) = Θ(l1) : Θ(X, f)→ Θ(X × [0, 1], f × id) because of the
homotopy invariance of Θ. We have Θ(lk)(θ(gk)) = θ(G× pr[0,1]) for k = 0, 1
by invariance under homotopy equivalence. Now a simple diagram chase
shows that Θ(î ◦ i)−1 ◦Θ(î )(θ(Y, gk)) is independent of k = 0, 1. Hence the
map τY of 4.3 is well defined.

Next we want to define a map

(4.4) τd : Ũ(X, f)→ Θ(X, f)

for an integer d ≥ 2. We will construct a map

τd : Ũ(Zπ1(X,x), φ)→ Θ(X, f)

for a fixed choice of base point x ∈ X and path w from f(x) to x and leave
it to the reader to verify that the maps for the various choices fit together
to give the desired map. Let F be a finitely generated free Zπ-module and
a : F → φ∗F a Zπ1(X,x)-endomorphism. Choose a d-extension Y together
with a Zπ1(X,x)-isomorphism b : F → Cd(Ỹ , X̃). Such a Y exists, namely,
take the wedge of X with a finite number of copies of Sd with the obvious
retraction onto X. Then b ◦ a ◦ b−1 is an element in homZπ1(X,x)(Cd(Ỹ , X̃),
φ∗Cd(Ỹ , X̃)). Let [(ĝ, g)] be its preimage under the isomorphism

η : [(CXY, Y ), (CXY, Y )]f → homZπ1(X,x)(Cd(Ỹ , X̃), φ∗Cd(Ỹ , X̃))

of Lemma 4.2. Define

τd([a]) = (−1)d(τY ([ĝ, g])− θ(f)).

We must show that this is independent of the choice of Y and b. Sup-
pose Z and c is a second choice yielding an element [(ĥ, h)] in [(CXZ,Z),
(CXZ,Z)]f . Let (k̂, k) be the preimage of c ◦ b−1 under the isomorphism

η : [(CXY, Y ), (CXZ,Z)]id → homZπ1(X,x)(Cd(Ỹ , X̃), Cd(Z̃, X̃))

of Lemma 4.2 and (k̂−1, k−1) be the preimage of b ◦ c−1 under the isomor-
phism

η : [(CXZ,Z), (CXY, Y )]id → homZπ1(X,x)(Cd(Z̃, X̃), Cd(Ỹ , X̃))

of Lemma 4.2. We conclude from invariance under homotopy equivalence
applied to the morphism k : (Y, k−1 ◦ h ◦ k)→ (Z, k ◦ k−1 ◦ h) that

τY ((k̂−1, k−1) ◦ (ĥ, h) ◦ (k̂, k)) = τZ((k̂, k)) ◦ (k̂−1, k−1) ◦ (ĥ, h)).

By Lemma 4.2, (k̂−1, k−1) ◦ (ĥ, h) ◦ (k̂, k)) and (ĝ, g) define the same class
in [(CXY, Y ), (CXY, Y )]f , hence

τY ((k̂−1, k−1) ◦ (ĥ, h) ◦ (k̂, k)) = τY (ĝ, g).

Similarly we get

τZ((k̂, k)) ◦ (k̂−1, k−1) ◦ (ĥ, h)) = τZ(ĥ, h).
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This shows that the definition of τd(a) is independent of the choice of the d-
extension Y and the isomorphism b. Hence we have defined τd on generators.
It remains to check that τd is compatible with the relations appearing in the
definition of U(Zπ1(X,x), φ).

We have to show that τd(a) = τd(a0) + τd(a1) for a block endomorphism

a =
(
a0 a2

0 a1

)
: F0 ⊕ F1 → φ∗F0 ⊕ φ∗F1.

Choose d-extensions Yk and Zπ1(X,x)-isomorphisms bk : Fk → Cd(Ỹk, X̃)
for k = 0, 1. Put Y = Y0 ∪X Y1. Notice that CXY = CXY0 ∪X CXY1, i =
i0 ∪X i1 and î = î0 ∪X î1 where ik : X → Yk, i : X → Y , îk : Yk → CXYk
and î : Y → CXY are the canonical inclusions. Then the direct sum of b0
and b1 yields a Zπ1(X,x)-isomorphism b : F0 ⊕ F1 → Cd(Ỹ , X̃). Let (ĝ, g) :
(CXY, Y ) → (CXY, Y ) a map (ĝ0, g0) : (CXY0, Y0)→ (CXY0, Y0) such that
under the identifications b0 and b above the induced chain endomorphisms
agree with a0 and a. Denote by j : (CXY1, Y1) → (CXY0 ∪X CXY1, CXY0

∪X Y1) the canonical inclusion and by p : (CXY0 ∪X CXY1, CXY0 ∪X Y1)→
(CXY1, Y1) the canonical projection. By the identification CXY0 ∪X Y1 =
CXY0 ∪Y0 (Y0 ∪X Y1) we can view (ĝ, ĝ0 ∪g0 g) as an endomorphism of
(CXY0 ∪X CXY1, CXY0 ∪X Y1). Then the endomorphism p ◦ (ĝ, ĝ0 ∪g0 g) ◦ j
induces under the identification b1 the map a1. We conclude from the defi-
nition of τd that

τd(a0) = Θ(î0 ◦ i0)−1 ◦Θ(î0)(θ(g0))− θ(f),

τd(a) = Θ(î ◦ i)−1 ◦Θ(î )(θ(g))− θ(f),

τd(a1) = Θ(î1 ◦ i1)−1 ◦Θ(î1)(θ(p ◦ (ĝ0 ∪g0 g) ◦ j))− θ(f).

Applying additivity to the push out diagram

(Y0, g0) (Y0 ∪X Y1, g)

(CXY0, ĝ0) (CXY0 ∪Y0 (Y0 ∪X Y1), ĝ0 ∪g0 g)

idY0 ∪X i1 //

î0
²²

î0∪X idY1
²²idCXY0 ∪X i1 //

and the identification CXY0 ∪X Y1 = CXY0 ∪Y0 (Y0 ∪X Y1) yields

θ(ĝ0 ∪g0 g) = Θ(î0 ∪X idY1)(θ(g)) +Θ(idCXY0 ∪X i1)(θ(ĝ0))

−Θ(idCXY0 ∪X i1 ◦ î0)(θ(g0)).

Applying Θ(î ◦ i)−1 ◦Θ(idCXY0 ∪X î1) to this formula and invariance under
homotopy equivalence applied to î0 : (X, f)→ (CXY0, ĝ0) yields

Θ(î ◦ i)−1 ◦Θ(idCXY0 ∪X î1)(θ(ĝ0 ∪g0 g))

= Θ(î ◦ i)−1 ◦Θ(î )(θ(g)) + θ(f)−Θ(î0 ◦ i0)−1 ◦Θ(i0)(θ(g0)).
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Hence it remains to show

Θ(î ◦ i)−1 ◦Θ(idCXY0 ∪X î1)(θ(ĝ0 ∪g0 g))

= Θ(î1 ◦ i1)−1 ◦Θ(î1)(θ(p ◦ (ĝ0 ∪g0 g) ◦ j)).
Applying to j : (Y1, p ◦ ĝ0 ∪g0 g ◦ j)→ (CXY0 ∪X Y1, j ◦ p ◦ ĝ0 ∪g0 g) invari-
ance under homotopy equivalence yields

Θ(j)(θ(p ◦ ĝ0 ∪g0 g ◦ j)) = θ(j ◦ p ◦ ĝ0 ∪g0 g).

Hence it suffices to show

Θ(î ◦ i)−1 ◦Θ(idCXY0 ∪X î1)(θ(ĝ0 ∪g0 g))

= Θ(î ◦ i)−1 ◦Θ(idCXY0 ∪X î1)(θ(j ◦ p ◦ ĝ0 ∪g0 g)).

This follows as in the proof that τY is well defined using the fact that p ◦ j
is the identity and j ◦ p is homotopic relative X to the identity and hence
(j ◦ p ◦ ĝ, j ◦ p ◦ ĝ0 ∪g0 g) and (ĝ, ĝ0 ∪g0 g) are homotopic relative X. This
finishes the proof that τd in 4.4 is well defined.

Next we show that τd is independent of d ≥ 2. If Y is a d-extension of X,
then ΣXY is a (d + 1)-extension and there is a bijective correspondence
between the d-cells in Y −X and the (d+ 1)-cells in ΣXY −X. In partic-
ular, the suspension of C(Ỹ , X̃) is C(Σ̃XY , X̃). One easily checks that the
following diagram commutes:

[(CXY, Y ), (CXY, Y )]f [(CXΣXY,ΣXY ), (CXΣXY,ΣXY )]f

homZπ1(X,x)(Cd(Ỹ , X̃), φ∗Cd(Z̃, X̃)) (Cd+1(Σ̃XY , X̃), φ∗Cd+1(Σ̃XY , X̃))

ΣX //

η

²²
η

²²
Σ //

Hence it suffices to show

(4.5) θ(ΣXg)−Θ(j ◦ i)(θ(f)) = −Θ(j)(θ(g)) +Θ(j ◦ i)(θ(f))

for a map (ĝ, g) : (CXY, Y )→ (CXY, Y ) with g|X = f where j : Y → ΣXY

is the canonical inclusion. Since ΣXg is defined as ĝ ∪g ĝ and î ◦ i is a
homotopy equivalence, this follows from additivity and homotopy invariance
under homotopy equivalences. This finishes the proof of τd+1 = τd for d ≥ 2.
In the sequel we write

(4.6) τ := τd for d ≥ 2.

We have defined a map

τ(X, f) : U(X, f)→ Θ(X, f)

for an endomorphism f : X → X of a finite connected CW -complex X. If
X is not connected, we always assume π0(f) = id and we define τ(X, f) by
requiring that the following diagram commutes whose horizontal arrows are
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induced by the various inclusions of the components of X and whose upper
horizontal arrow is an isomorphism:

⊕
C∈π0(X) U(C, f |C) U(X, f)

⊕
C∈π0(X)Θ(C, f |C) Θ(X, f)

∼= //

⊕
C∈π0(X)

τ(C,f |C)

²²
τ(X,f)
²²

//

Next we show that τ defines a natural transformation, i.e. we must show
for any morphism h : (X0, f0)→ (X1, f1) in End(C) that τ(X1, f1) ◦U(h) =
Θ(h) ◦ τ(X0, f0). It suffices to prove this in the special case where X0

and X1 are connected. Let Y0 be a d-extension of X for some d ≥ 2 and
(ĝ0, g0) : (CX0Y0, Y0)→ (CX0Y0, Y0) be an endomorphism with g|X =f0. Let

Y1 be the retractive space over X given by the push out of Y0
i0←−X0

h−→X1

and let (ĝ1, g1) : (CX1Y1, Y1)→ (CX1Y1, Y1) be given by the push out prop-
erty and g0, f0 and f1. Then the induction of the Zπ1(X0, x0)-chain map
C(g̃0, f̃0) : C(Ỹ0, X̃0) → φ∗0C(Ỹ0, X̃0) with the map induced by π1(h, x) :
π1(x0, x0) → π1(X1, h(x0)) is the Zπ1(X1, h(x0))-chain map C(g̃1, f̃1) :
C(Ỹ1, X̃1) → φ∗1C(Ỹ1, X̃1) where we have fixed a base point x0 ∈ X0 and
a path w from f0(x0) to x0 and use for X1 the base point h(x0) and the
path h(w). Hence it suffices to show

Θ(h) ◦Θ(î0 ◦ i0)−1 ◦Θ(i0)(θ(g0))−Θ(h)(θ(f0))

= Θ(î1 ◦ i1)−1 ◦Θ(i1)(θ(g1))− θ(f1).

This follows from additivity applied to g1 = g0 ∪f0 f1. This finishes the def-
inition of the natural transformation

(4.7) τ : U → Θ

between functors from End(C) to ABEL.
Next we have to show that τ(X, f) maps u(X, f) to θ(X, f) and that

the natural transformation τ is uniquely determined by this property. Let
Yn be the push out

Xn−1 X

Xn Yn

jn−1 //

kn−1

²²
in

²²
ln //

where all arrows are canonical inclusions. There is a canonical retraction
rn : Yn → X induced by the inclusions of Xn−1, Xn and X in X. If
fk : Xk → Xk is the restriction of f to Xk, then the push out above yields
an endomorphism gn : Yn → Yn defined by gn = fn ∪fn−1 f . We obtain in
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Θ(Yn) from additivity

θ(gn) = Θ(in)(θ(f)) +Θ(ln)(θ(fn))−Θ(ln ◦ kn−1)(θ(fn−1)).

Applying Θ(rn) yields

Θ(rn)(θ(gn)) = θ(f) +Θ(jn)(θ(fn))−Θ(jn−1)(θ(fn−1)).

We conclude that in Θ(X, f),

(4.8) θ(f) =
dim(Y )∑
n=0

(Θ(rn)(θ(gn))− θ(f)).

In particular for (U, u) in U(X, f) we get

(4.9) u(f) =
dim(Y )∑
n=0

(U(rn)(u(gn))− u(f)).

If n ≥ 2, then Yn is an n-extension of X for n ≥ 2 and by Theorem 1.4,

U(rn)(u(gn))− u(f) = u(Cn(g̃n, f̃ )).

Since rn ◦ gn = f ◦ rn, there is a canonical extension ĝn of gn. Since
î◦i◦rn and î are homotopic morphisms from (Y, gn) to (CX , ĝn) in End(C) we
conclude from homotopy invariance that Θ(rn) = Θ(î ◦ i)−1 ◦Θ(i). Hence
the definition of τ(X, f) implies, for n ≥ 2,

(4.10) τ(X, f)(U(rn)(u(gn))− u(f)) = Θ(rn)(θ(gn))− θ(f).

Next we show that 4.10 holds also for n = 0, 1. The following two equa-
tions are direct consequences of 4.5 (which is true for all n ≥ 0):

Θ(rn)(θ(gn))− θ(f) = −Θ(ΣXrn)(θ(ΣXgn)) + θ(f),

τ(U(rn)(u(gn))− u(f)) = − τ(U(ΣXrn)(u(ΣXgn)) + u(f)).

Notice that ΣXY is an (n + 1)-extension if Y is an n-extension and ΣXrn
plays the role of rn+1 for ΣXY . Hence 4.10 holds for n if it is true for n+ 1.
Therefore 4.10 is true for all n ≥ 0. Now 4.8–4.10 imply

(4.11) τ(X, f)(u(X, f)) = θ(X, f).

Notice that τ is uniquely determined by property 4.11 since any element in
U(X, f) can be realized for a d-extension Y for d ≥ 2 and endomorphism
(ĝ, g) : (CXY, Y )→ (CXY, Y ) by

U(î ◦ i)−1 ◦ U(î )(u(g))− u(f).

This finishes the proof of Theorem 2.5.

Remark 4.12. One may think that one could also use the following eas-
ier construction instead of the map τY . Namely, given an endomorphism
f : X → X and a retractive space Y over X one may consider endomor-
phisms g : Y → Y satisfying r ◦ g = f ◦ r. If [Y, Y ]rf is the set of homotopy
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classes of such maps where the homotopy h also satisfies r ◦ ht = f ◦ r for
all t ∈ [0, 1], one can define a map

Θ′Y,f : [Y, Y ]rf → Θ(X, f)

by sending [g] to Θ(r)(θ(g)). There is an obvious map

e : [Y, Y ]rf → [(CXY, Y ), CXY ]f

satisfying τY ◦ e = τ ′Y since any map g : Y → Y with r ◦ g = f ◦ r has a
canonical extension ĝ : CXY → CXY , and Θ(î ◦ i)−1 ◦Θ(i) = Θ(r). The
problem is, however, that e is not bijective and hence the passage from
geometry to algebra in Lemma 4.2 does not work for [Y, Y ]rf . That e is
not bijective can be easily seen from the example Y = X ∨ S2. Then a map
g : Y → Y satisfying r ◦ g = f ◦ r is the same as a pointed map S2 → S2 and
[Y, Y ]rf is isomorphic to Z whereas [(CXY, Y ), CXY ]f is in general larger,
namely homZπ(Zπ, φ∗Zπ).

5. The construction of the transfer map. Suppose we are given
the following geometric data:

Data 5.1. Let F → E
p→ B be a fibration of spaces of the homotopy type

of connected finite CW -complexes and let

E E

B B

f //

p

²²
p

²²f //

be a commutative square.

In this section we want to assign to these data a (natural) homomorphism

(5.2) trff,f : U(f)→ U(f).

such that trff,f (u(f)) = u(f), and examine its properties in Section 6. Since
our invariant u(f) determines other invariants as explained in Section 3 these
results for u give also information for the other invariants. Transfer questions
for fixed point theory have also been investigated for instance in [9], [10],
and [18, Chapter IV].

Remark 5.3. We mention that (U(f), u(f)) also makes sense for en-
domorphisms f : X → X of spaces X of the homotopy type of a finite
CW -complex. The algebraic definition of u(f : C → C) via chain complexes
extends to chain complexes of the homotopy type of a finite chain complex
using commutativity and homotopy invariance, namely, choose any chain
homotopy equivalence g : C → D for a finite chain complex D and define
u(f) to be u(g ◦ f ◦ g−1) for any chain homotopy inverse g−1 of g.
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From the algebraic point of view we will need the following algebraic
data to define the transfer.

Data 5.4. (i) A short exact sequence of groups

{1}→∆
i−→Γ

p−→π→{1}.
(ii) A commutative diagram of group homomorphisms

{1} ∆ Γ π {1}

{1} ∆ Γ π {1}

// i //

φf
²²

p //

φ

²²

//

φ

²²
// i // p // //

(iii) A finite free Z∆-chain complex C together with a Γ -twist L in
the sense of [27, Definition 5.1, p. 155]. (A Γ -twist L on C is a collection
{[L(γ)] | γ ∈ Γ} of Z∆-homotopy classes of Z∆-chain maps L(γ) : C → c∗γC
such that for δ ∈ ∆ the class [L(δ)] is represented by the map l(δ) given by
left multiplication with δ and the Z∆-chain maps L(γ1)◦L(γ2) and L(γ1 ·γ2)
from C to (cγ1·γ2)∗C are Z∆-chain homotopic where cγ : ∆→ ∆ sends δ to
γδγ−1.)

(iv) A Z∆-chain homotopy class [t] of Z∆-chain maps t : C → φ∗fC such
that for any γ ∈ Γ the following diagram commutes up to Z∆-chain homo-
topy:

C φ∗fC

(cγ)∗C (cφ(γ))
∗φ∗C = φ∗f (cγ)∗C

t //

L(γ)

²²
φ∗fL(φ(γ))
²²

(cγ)∗t //

One can think of a Γ -twist as an extension of the ∆-operation to a
Γ -operation up to homotopy.

Example 5.5. Next we explain how the geometric data 5.1 yield algebraic
data 5.4. Choose a point e ∈ E and a path w from f(e) to e. Put

∆ = ker(π1(p, e) : π1(E, e)→ π1(B, p(e))),

Γ = π1(E, e), π = π1(B, p(e)).

Then we obtain a commutative square with exact rows

{1} ∆ Γ π {1}

{1} ∆ Γ π {1}

// i //

φf
²²

p //

φ

²²

//

φ

²²
// i // p // //
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where i is given by the inclusion, p is π1(p, e) and φ is given by

φ : Γ = π1(E, e)
π1(f,e)−−−−→π1(E, f(e)) cw−→ Γπ1(E, e).

Any path u from e0 to e1 in E defines a pointed homotopy class of pointed
maps depending only on the homotopy class of u relative endpoints, the
so-called pointed fibre transport (see [26, Section 6])

σ(u) : (Fe1 , e1)→ (Fe0 , e0).

We have σ(u ∗ v) = σ(u) ◦ σ(v) and σ applied to the trivial path is repre-
sented by the identity. In particular for each e ∈ E we get a homomorphism

σe : π1(E, e)→ [(Fe, e), (Fe, e)]+

from the fundamental group into the monoid of pointed homotopy classes
of pointed self-maps of (Fe, e). If s(u) : (Fe, e)→ (Fe, e) is a representative
of σ(u) and q : (Fe, e)→ (Fe, e) is the covering of Fe associated with the
epimorphism π1(Fe, e)→ ∆ induced by the inclusion of Fe into E, then there
is a unique lift s(u) : (Fe, e)→ (Fe, e). This map is cu : ∆e → ∆e-equivariant
where as before cu is conjugation with u. Its cu-homotopy class depends only
on u and not on the choice of s(u) ∈ σ(u). Thus we obtain a Γ = π1(E, e)-
twist on the Z∆-chain complex C(Fe) by setting

L(u) = [C(s(u))].

Recall that we have chosen a path w from f(e) to e. Let s(w−) : (Fe, f(e))→
(Fe, e) be a representative of σ(w−) where w− is the inverse of w. Then
s(w) ◦ f |Fe : (Fe, e)→ (Fe, e) lifts uniquely to a map

s(w) ◦ f |Fe : (Fe, e)→ (Fe, e).

This map is φ-equivariant and its equivariant homotopy class depends only
on the homotopy class relative end points of w. Define a Z∆-chain map

t = C(s(w−) ◦ f |Fe) : C(Fe)→ φ∗C(Fe).

Now we have the data 5.4.

For the data 5.4 we want to define a map

(5.6) trf : U(π, φ)→ U(Γ, φ).

We will leave it to the reader to check that, given the data 5.1, the collection
of the maps 5.6, which are obtained from the data 5.4 for the various choices
of e ∈ E and a path w from f(e) to e as explained in Example 5.5, fit together
to give the desired transfer map 5.2.

Consider a Zπ-homomorphism α : Zπ → φ∗Zπ. We can write α(1) =∑
w∈π λw · w. Choose for any w ∈ π a lift w ∈ Γ and for each γ ∈ Γ a
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representative L(γ) of [L(γ)]. Define a ZΓ -chain map

(5.7)
X(α) : ZΓ ⊗Z∆ C → φ∗ZΓ ⊗Z∆ C,

γ ⊗ v 7→
∑
w∈π

λw · φ(γ)w ⊗ L(w−1) ◦ t(v).

In order to check that this is a well defined ZΓ -chain map, we have to check
that γ ⊗ v and γδ ⊗ δ−1v have the same image

φ(γδ)w ⊗ L(w−1)t(δ−1v) = φ(γ)ww−1φ(δ)w ⊗ w−1φ(δ−1)wL(w−1)t(v)

= φ(γ)w ⊗ L(w−1)t(v).

One easily checks that the ZΓ -chain homotopy class of X(α) is independent
of the choices of w and L(γ). Given a Zπ-homomorphism

α = (αi,j)i,j :
n⊕
i=1
Zπ →

m⊕
j=1
Zπ

we obtain a ZΓ -chain map unique up to ZΓ -homotopy by setting

X(α) = (X(αi,j))i,j :
n⊕
i=1
ZΓ ⊗Z∆ C →

m⊕
j=1
ZΓ ⊗Z∆ C

We want to define the transfer map trf of 5.6 by requiring

trf([α :
n⊕
i=1
Zπ →

n⊕
i=1

φ∗Zπ])

= u(X(α) :
n⊕
i=1
ZΓ ⊗Z∆ C →

n⊕
i=1

φ∗ZΓ ⊗Z∆ C),

where u is the invariant of Definition 1.2. Since the ZΓ -chain homotopy
class of X(α) depends only on α, the expression u(X(α)) is well defined.
In order to check that the map trf is well defined one must verify that the
relations in U(Zπ, φ) are respected. Suppose we have a commutative square
of Zπ-maps with isomorphisms as vertical maps:

⊕n
i=1 Zπ

⊕n
i=1 φ

∗Zπ

⊕n
i=1 Zπ

⊕n
i=1 φ

∗Zπ

α //

β

²²
φ∗β
²²

α′ //

Then one can construct a ZΓ -chain map

X(β) :
n⊕
i=1
ZΓ ⊗Z∆ C →

n⊕
i=1
ZΓ ⊗Z∆ C

analogously as for α using id instead of t. Then the following square com-
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mutes up to ZΓ -chain homotopy:
⊕n

i=1 ZΓ ⊗Z∆ C
⊕n

i=1 φ
∗ZΓ ⊗Z∆ C

⊕n
i=1 ZΓ ⊗Z∆ C

⊕n
i=1 φ

∗ZΓ ⊗Z∆ C

X(α) //

X(β)

²²
φ∗X(β)
²²

X(α′) //

Since X(β−1) is a ZΓ -chain homotopy inverse of X(β), from homotopy
invariance and Lemma 1.6 we get

u(X(α)) = u(X(α′)).

Now consider a block endomorphism

α =
(
α1 α0

0 α2

)
: (

n⊕
i=1
Zπ)⊕ (

m⊕
j=1
Zπ)→ (

n⊕
i=1
Zπ)⊕ (

m⊕
j=1
Zπ).

Then X(α) also has block form and we get

u(X(α)) = u(X(α1)) + u(X(α2)).

This finishes the construction of the transfer maps 5.2 and 5.6 and the proof
that they are well defined. The main result of this section is the next the-
orem. One should compare its proof with the corresponding identifications
of algebraic and geometric transfers in algebraic K- and L-theory given by
finiteness obstructions, Whitehead torsion [26] and surgery obstructions [32].

Theorem 5.8. Given the geometric data 5.1, we have

trff,f (u(f)) = u(f).

P r o o f. For each n ≥ 0 we define (Yn, gn) to be the push out in End(C)
(Bn−1, fn−1) (B, f)

(Bn, fn) (Yn, gn)

jn //

kn−1

²²
in

²²
ln //

The identity on B induces a retraction rn : Yn → B. By pulling back
p : (E, f) → (B, f) with rn and restricting to Bn−1, Bn and B again we
obtain a push out

(E|Bn−1 , fn−1) (E, f)

(E|Bn , fn) (En, gn)

jn−1 //

kn−1

²²
in

²²
ln //

and a retraction rn : (En, gn)→ (E, f) covering rn : (Yn, gn)→ (B, f). From
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additivity we obtain

u(B, f) =
dim(B)∑
n=0

(U(rn)(u(Yn, gn))− u(B, f)),

u(E, f) =
dim(B)∑
n=0

(U(rn)(u(En, gn))− u(E, f)).

Hence it suffices to show that for 0 ≤ n,

(5.9) trff,f (U(rn)(u(Yn, gn))− u(B, f)) = U(rn)(u(En, gn))− u(E, f).

Next we show analogously to the corresponding part of the proof of
Theorem 2.5 that 5.9 holds for all n ≥ 0 if we can prove it for n ≥ 2. Since
rn : (Yn, gn)→ (B, f) is a morphism in End(C), we can canonically extend
rn to a retraction r̂n : CBYn → B and gn to ĝn : CBYn → CBYn such that
r̂n : (CBYn, ĝn)→ (B, f) is also a morphism in End(C). Define (YnΣ , gnΣ)
to be the push out in End(C)

(Yn, gn) (CBYn, ĝn)

(CBYn, ĝn) (YnΣ , gnΣ)

i //

i

²² ²²
//

and define the retraction rnΣ : (YnΣ , gnΣ)→ (B, f) by the push out prop-
erty using r̂n and rn. By pulling back p : (E, f)→ (B, f) we obtain a push
out in End(C)

(En, gn) (Ên, ĝn)

(Ên, ĝn) (EnΣ , gnΣ)

//

²² ²²
//

covering the previous push out and a retraction rnΣ : (EnΣ , gnΣ)→ (E, f)
covering rnΣ . Now from additivity and invariance under homotopy equiva-
lence and the fact that the inclusions B → Ŷ and E → Ên are homotopy
equivalences we get

U(rnΣ)(u(EnΣ , gnΣ)) = −U(rn)(u(E, gn)) ∈ U(E, f),

U(rnΣ)(u(YnΣ , gnΣ)) = −U(rn)(u(Yn, gn)) ∈ U(B, f).

Hence

trff,f (U(rn)(u(Y, gn))) = u(E, gn)

is equivalent to

trff,f (u(ŶnΣ , gnΣ)) = u(EnΣ , gnΣ).
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Notice that YnΣ is an (n + 1)-extension of B. Thus we have reduced the
proof of Theorem 5.8 to the proof of the following statement:

Let n ≥ 2 and r : (Y, g)→ (B, f) be a retraction in End(C) such that Y
is an n-extension of X. Define a retraction r : (r∗E, g)→ (E, f) covering r
by pulling back p : (E, f)→ (B, f). Then in U(E, f) we get

(5.10) trff,f (U(r)(u(Y, g))− u(B, f)) = U(r)(u(r∗E, g))− u(E, f).

Fix e ∈ E and a path w from f(e) to e. Choose characteristic maps for
the cells in Y −X:

∐
i∈I S

n−1 B

∐
i∈I D

n
Y

∐
i∈I qi //

²² ²²∐
i∈I Qi //

and paths wi from qi(1) to p(e) ∈ B. Using these paths each cell defines an
element bi in πn(Y, b, p(e)) such that {bi | i ∈ I} is a Zπ1(B, p(e))-basis. With
respect to this basis we can write C(g̃, f̃ ) : C(Ỹ , X̃)→ φ∗C(Ỹ , X̃), using the
identification of C(Ỹ , X̃) with πn(Y,B, p(e)) by the Hurewicz isomorphism,
as a Zπ1(B, p(e))-map

C(g̃, f̃ ) :
⊕
i∈I
Zπ1(B, p(e))→ φ∗

⊕
i∈I
Zπ1(B, p(e)).

Notice that u(C(g̃, f̃ )) ∈ U(Zπ1(B, p(e)), φ) represents U(r)(u(Y, g)) −
u(B, f) in U(B, f)). Using the paths wi above there are unique (up to strong
fibre homotopy equivalence) fibre trivilizations

Ti : π1(E, e)×∆(e) F̃e × (Dn, Sn−1)→ (Q̃∗iE, q̃
∗
iE).

They induce an explicit isomorphism

% :
⊕
i∈I
Zπ1(E, e)⊗∆(e) C(Fe)→ C(r̃∗E, Ẽ).

Let

X(C(g̃, f̃ )) :
⊕
i∈I
Zπ1(E, e)⊗∆(e) C(Fe)→

⊕
i∈I

φ∗Zπ1(E, e)⊗∆(e) C(Fe)

be the Zπ1(E, e)-chain map unique up to Zπ1(E, e)-chain homotopy defined
in Section 7 for the choice of data 5.4 given by p : E(f)→ (B, f). Then
by definition of the transfer we find that u(X(C(g̃, f̃ ))) ∈ U(Zπ1(E, e), φ)
represents trff,f (U(r)(u(Y, g))− u(B, f)). Notice that

u(C(g̃, f̃ )) : C(r̃∗E, Ẽ)→ C(r̃∗E, Ẽ) ∈ U(Zπ1(E, e), φ)

represents U(r)(u(r∗E, g))− u(E, f) ∈ U(E, f)). Hence we have to show

u(X(C(g̃, f̃ ))) = u(C(g̃, f̃ )) ∈ U(Zπ1(E, e), φ).
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This follows from the commutativity up to Zπ1(E, e)-chain homotopy of the
following diagram of Zπ1(E, e)-chain complexes:

⊕
i∈I Zπ1(E, e)⊗∆(e) C(Fe)

⊕
i∈I Zπ1(E, e)⊗∆(e) C(Fe)

C(r̃∗E, Ẽ) C(r̃∗E, Ẽ)

X(C(g̃,f̃ )) //

%

²²
%

²²
C(g̃,f̃) //

The proof is omitted since it is a straightforward modification of the proof
of Theorem 2.2 in [26, Section 7]. This finishes the proof of Theorem 5.8.

Remark 5.11. We mention that one can analogously define a transfer
map

(5.12) trff,f : Λ(f)→ Λ(f)

satisfying

trff,f (λ(f)) = λ(f)

for the functorial Lefschetz invariant (Λ, λ) of Example 3.5. It sends the class
[u] ∈ Λ(Zπ, Φ) to tr(ZΓ,Φ)(X(ru)), where tr(ZΓ,Φ) has been defined in 3.6,
ru : Zπ → Φ∗Zπ maps v to Φ(v)u and X(ru) has been defined in 5.7.

6. Properties of the transfer map. In this section we prove vanishing
results and a down-up-formula for the geometric transfer map. Moreover,
we consider the special case Sn as fibre and treat (not necessarily free) S1-
actions. There are analogous computations of the transfer maps in algebraic
K- and L-theory concerning finiteness obstructions, Whitehead torsion [27]
and surgery obstructions [33].

Theorem 6.1. Suppose we are given data 5.1. Then the transfer map
trff,f : U(B, f)→ U(E, f) and the element u(E, f) ∈ U(E, f) vanish if one
of the following conditions are satisfied :

(i) p is untwisted , i.e. the pointed fibre transport σe : π1(E, e) →
[(Fp(e), e), (Fp(e), e)]+ (see [26, Section 6]) is trivial. The fundamental group
π1(F ) of F is non-trivial or the Euler characteristic of F satisfies χ(F ) = 0.
Moreover , the composition of f |Fb : Fb → Ff(b) and ω(w) : Ff(b) → Fb is
homotopic to the identity on Fb for some (and hence all) b ∈ B and every
path w from b to f(b), where ω(w) is given by the (free) fibre transport along
paths in the base space.

(ii) The map π1(F, e)→π1(E, e) induced by inclusion is trivial and π1(B)
operates trivially on Hp(F ) for all p ≥ 0. The fundamental group π1(F )
of F is non-trivial or the Euler characteristic of F satisfies χ(F ) = 0.
Moreover , the map induced by the composition of f |Fb : Fb → Ff(b) and
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ω(w) : Ff(b) → Fb on H∗(Fb) is trivial for some (and hence all) b ∈ B and
every path w from b to f(b).

This theorem is a direct consequence of [27, Section 4], Lemma 6.2 and
Lemma 6.5 which we will prove below.

Lemma 6.2. Assume for data 5.4 that ∆ is central in Γ , the Z∆-chain
map l(δ) : C → C given by multiplication with δ is Z∆-chain homotopic to id
and the Γ -twist L on C is trivial , i.e., for all γ ∈ Γ we have [L(γ)] = [id].
Assume furthermore φf = id and t = id. Then trf is zero if ∆ is non-
trivial. If ∆ is trivial and we identify Γ and π, the transfer tr is given by
multiplication with the Euler characteristic χ(C) =

∑
i≥0(−1)i dimZ∆(Ci).

P r o o f. For α :
⊕n

i=1 Zπ →
⊕n

j=1 φ
∗Zπ we get

trf(u(α)) =
∑

i≥0

(−1)iu(X(α)i : ZΓ ⊗Z∆ Ci → ZΓ ⊗Z∆ Ci).

One easily checks that for an appropriate ZΓ -map

β :
n⊕
k=1

ZΓ →
n⊕
k=1

φ∗ZΓ

and all i ≥ 0 we have

X(α)i =
dimZ∆(Ci)⊕

j=1
β.

This implies

trf(u(α)) = χ(C)u(β).

If ∆ is trivial, β can be chosen to be α if we identify Γ and π. Sup-
pose that ∆ is non-trivial. Then the classical Lefschetz number, here with
values in the commutative ring Z∆, of the Z∆-chain map l(δ) : C → C is
χ(C)δ ∈ Z∆ for all δ ∈ ∆. Since l(d) and l(1) are Z∆-chain homotopic by
assumption, we have, for all δ ∈ ∆,

χ(C)d = χ(C) · 1 ∈ Z∆.
This implies χ(C) = 0.

Let p∗ : U(ZΓ, φ)→ U(Zπ, φ) be the map induced by induction with
p : ZΓ → Zπ. This map is well defined since we require φ ◦ p = p ◦ φ. Let
Swf (π, φ) respectively Sw(π, φ) be the Grothendieck group of Zπ-maps
f : M → Φ∗M for Zπ-modules M which are finitely generated free respec-
tively finitely generated over Z. In other words, its definition is analogous
to the definition of U(Zπ, φ) in Definition 1.2 with the exception that all
Zπ-modules are required to be finitely generated free respectively finitely
generated over Z instead of requiring that they are finitely generated free
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over Zπ. The tensor product over Z with the diagonal π-action induces a
pairing
(6.3) ⊗Z : Swf (π, φ)⊗ U(Zπ, φ)→ U(Zπ, φ).

Notice that the analogous pairing for Sw(π, φ) is not well defined because
tensoring over Z with a finitely generated abelian group M is an exact
functor if and only ifM is free. Given data 5.4 there is an element in Sw(π, φ)

(6.4) h(C,L) :=
∑

i≥0

(−1)i[Hi(Z⊗Z∆ t) : Hi(Z⊗Z∆C)→ φ∗Hi(Z⊗Z∆C)],

where the action of w ∈ π on Hi(Z⊗∆ C) is induced by

Z⊗∆ C → Z⊗∆ C, n⊗ v 7→ n⊗ L(w)(v),

for any lift w ∈ Γ of w. The next lemma is a down-up formula for the trans-
fer, i.e. it computes the composition of the transfer with the map induced
by p.

Lemma 6.5. (i) The canonical map I : Swf (π, φ)→ Sw(π, φ) is an iso-
morphism.

(ii) The composition p∗ ◦ trf : U(Zπ, φ)→ U(Zπ, φ) is given by the pair-
ing 6.3 and the element I−1(h(C,L)) ∈ Swf (π, φ) for the element h(C,L) ∈
Sw(π, φ) defined in 6.4.

(iii) Assume that the π-action on H∗(Z⊗Z∆C) is trivial and Hi(t) is the
identity for all i ≥ 0. Then the composition p∗ ◦ trf : U(Zπ, φ)→ U(Zπ, φ)
is multiplication by the Euler characteristic

χ(C) =
∑

i≥0

(−1)i dimZ(Z⊗Z∆ C).

If additionally ∆ is trivial and χ(C) = 0, then trf vanishes.

P r o o f. Modify the proof of [27, Corollary 6.4] and [40, Lemma 2.2].

Corollary 6.6. Let G be a non-trivial connected compact Lie group and
let X be a free G-CW -complex with compact quotient G\X. Let f : X → X
be a G-map. Then

u(f) = 0 ∈ U(f).

P r o o f. This follows from Theorem 6.1(i) since G → X → G\X is an
untwisted fibration over a finite CW -complex and χ(G) = 0.

We have the following result for S1-actions.

Theorem 6.7. Let f : X → X be an S1-endomorphism of a finite
S1-CW -complex X. Denote by i : (XS1

, fS
1
)→ (X, f) the morphism in

End(C) induced by inclusion of the fixed point set. Then

U(i)(u(XS1
, fS

1
)) = u(X, f) ∈ U(X, f).

In particular u(X, f) vanishes if the S1-action has no fixed points.
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P r o o f. Since for any subgroup H ⊂ S1 different from S1 the quotient
S1/H is isomorphic to S1 again, one reduces the claim using additivity and
induction over the orbit bundles and the skeletons to the following assertion:
If Y is the S1-push out

∐
i∈I S

1 × Sn−1 X

∐
i∈I S

1 ×Dn Y

∐
i∈I qi //

²²
i

²²∐
i∈I Qi //

for n ≥ 0 and (g, f) : (Y,X)→ (Y,X) is a pair of S1-maps, then

U(i)(u(X, f)) = u(Y, g).

Notice that this would follow from Corollary 6.6 if S1 acts freely on X and
we want to reduce the assertion to this case by the following construction.
Choose a unitary S1-representation V such that S1 acts freely on the unit
sphere SV and dim(Y ) < dim(SV ). Then SV × X with the diagonal S1-
action is free and the projection pr : SV ×X → X is (n + 1)-connected.
Let k : S1 × Sn−1 → SV be the composition of the projection onto S1 and
inclusion of an orbit. Define Z by the S1-push out:

∐
i∈I S

1 × Sn−1 SV ×X

∐
i∈I S

1 ×Dn Z

∐
i∈I k×qi //

²²
j

²²∐
i∈I Pi //

Let pr : Z → Y be the map induced by the commutative diagram

∐
i∈I S

1 ×Dn
∐
i∈I S

1 × Sn−1 SV ×X

∐
i∈I S

1 ×Dn
∐
i∈I S

1 × Sn−1 X

id
²²

oo

id
²²

∐
i∈I k×qi //

pr

²²
oo

∐
i∈I qi //

Then we obtain an S1-push out

SV ×X X

Z Y

pr //

j

²²
i

²²pr //

Let [Z,Z]S
1

id×f :SV×X→SV×X be the S1-equivariant homotopy classes of
maps g : Z → Z relative id×f : SV ×X → SV ×X. This means that such
a map g extends id×f and an S1-homotopy connecting two such maps is
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stationary on SV ×X. The push out property yields a map

(6.8) l : [Z,Z]S
1

id×f :SV×X→SV×X → [Y, Y ]S
1

f :X→X .

Next we want to show that this map is bijective. We obtain a bijection

[Z,Z]S
1

id×f :SV×X→SV×X →
∏

i∈I
[Dn, Z](id×f)◦(k×qi)|{1}×Sn−1 :Sn−1→SV×X

by sending (g, f) to (g ◦ Pi |{1}×Dn)i∈I . The composition

pr ◦ j ◦ (id×f) ◦ (k × qi)|{1}×Sn−1 : Sn−1 → Y

is nullhomotopic, a nullhomotopy comes from Qi|{1}×Dn . Since pr : SV ×
X → X and hence pr is (n + 1)-connected we can extend j ◦ (id×f) ◦
(k × qi)|{1}×Sn−1 : Sn−1 → Z to a map hi : Sn− → Z for i ∈ I where
Sn− denotes the lower hemisphere. There is an obvious bijection given by
extending with hi if we think of Dn as the upper hemisphere Sn+:

[Dn, Z](id×f)◦(k×qi)|{1}×Sn−1 :Sn−1→SV×X → [Sn, Z]hi:Sn−→Z .

The forgetful map, which remembers only that the base point s ∈ Sn−1⊂Sn−
is mapped to xi := j ◦ (id×f) ◦ (k × qi)(1, s), is a map

[Sn, Z]hi:Sn−→Z → πn(Z, xi).

Since Sn− is contractible in Sn, a cofibration argument shows that this map
is bijective. Hence we have constructed a bijection

[Z,Z]S
1

id×f :SV×X→SV×X →
∏

i∈I
πn(Z, xi)

depending on the choice of the extensions hi. These extensions hi induce
by composition with pr extensions of i ◦ f ◦ qi|{1}×Sn−1 : Sn−1 → Y . With
respect to these choices we obtain analogously a bijection [Y, Y ]S

1

f :X→X →
πn(Y, pr(xi)) such that the following diagram commutes:

[Z,Z]S
1

id×f :SV×X→SV×X
∏
i∈I πn(Z, xi)

[Y, Y ]S
1

f :X→X
∏
i∈I πn(Y, pr(xi))

∼= //

l

²²
pr

²²∼= //

As SV is (n+ 1)-connected, pr and hence pr are (n+ 1)-connected. Hence
the map l in 6.8 is bijective.

We conclude that for a given S1-extension g : Y → Y of f : X → X we
can find an S1-extension g′ : Z → Z and a homotopy h : Y × [0, 1] → Y
relative f from l(g′) to g where l(g′) : Y → Y is given by the pushout
property by g′ ∪idSV ×f f . From additivity we derive

U(pr)(u(g′)− U(j)(u(idSV ×f))) = u(l(g′))− U(i)(u(f)) ∈ U(Y, l(g′)).
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Since S1 acts freely on Z and SV ×X, Theorem 6.1 implies u(g′) = 0 and
u(idSV ×f) = 0. This shows

u(l(g′))− U(i)(u(f)) = 0 ∈ U(Y, l(g′)).

By invariance under homotopy and homotopy equivalence we conclude from
the commutativity of the diagram

U(X, f) U(X × [0, 1], id×f) U(X, f)

U(Y, l(g′)) U(Y × [0, 1], h× pr[0,1]) U(Y, g)

i0 //

U(i)

²²
U(i×id)

²²

i1oo

U(i)

²²
i0 // i1oo

that

U(i0)(u(l(g′))− U(i)(u(f))) = u(h× pr[0,1])− U(i× id)(u(id×f))

= U(i1)(u(g)− U(i)(u(f))).

This implies

u(g)− U(i)(u(f)) = U(i1)−1U(i0)(u(l(g′))− U(i)(u(f))) = 0 ∈ U(Y, g).

This finishes the proof of Theorem 6.7.

Example 6.9. We consider the special case of data 5.1 where F is the
sphere Sn for n ≥ 1. Fix a base point b ∈ B and a path w from f(b) to b.
Put π = π1(B, b). Let d be the degree of the endomorphism of Snb given by
the composition of f |Fb : Fb → Ff(b) and ω(w) : Ff(b) → Fb where ω(w) is
given by the (free) fibre transport. Let ε : π → {±1} be the homomorphism
which sends a path u to the degree of the map ω(u) : Snb → Snb . Then from
Lemma 6.5 we find that p∗ ◦ trf : U(Zπ, φ)→ U(Zπ, φ) is given by

(6.10) p∗ ◦ trf([f : M → φ∗M ])

= [f : M → φ∗M ] + (−1)n[df : Mε → φ∗(Mε)],

where f : M → φ∗M is a Zπ-endomorphism for a finitely generated free
Zπ-module M and Mε is the Zπ-module which has the same underlying
abelian group as M and has the new π-action given by u · x = ε(u)u · x for
x ∈M and u ∈ π.

If ε is trivial, d = 1 and n is odd, we conclude from 6.10 for n ≥ 3 and
from Theorem 6.1(i) for n = 1 that trf is trivial. If ε is trivial, d = 1 and
n is even, we get p∗ ◦ trf = 2 · id from 6.10 and p∗ is an isomorphism since
π1(p) is bijective.

We have introduced in Section 3 other functorial Lefschetz invariants
and we will explain what the result for the universal invariant (U, u) implies
for them. This is obvious if ε is trivial and d = 1 from the computation
above. Let us consider in the sequel the case of arbitrary ε and d.
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We begin with the generalized Lefschetz invariant of Example 3.5 for
n ≥ 2. In the sequel we will identify π1(E) and π by π1(p) and in particular
Λ(Zπ1(E), Φ) with Λ(Zπ, Φ). Define a map

trf ′ : Λ(Zπ, Φ)→ Λ(Zπ, Φ),[∑
v∈π

λv · v
]
7→
[∑
v∈π

λv · v
]
− (−1)nd

[∑
v∈π

λvε(v) · v
]
.

Then under the identifications above we get

λ(f) = trf ′(λ(f)).

Notice that even in the case where n is odd and d = 1 it can happen that the
(classical Lefschetz number) λclass(f) (see Example 3.1) vanishes, whereas
λclass(f) is not zero. The reason is that for non-trivial ε there is no map
trf ′′ : Z → Z satisfying e ◦ trf ′ = trf ′′ ◦ e, where e : Λ(Zπ, Φ) → Z maps
[
∑
v∈π λv · v] to

∑
v∈π λv.

Next we consider the invariant L2-torsion %(2)(Tf ) ∈ R of Example 3.12.
If d = 1 and n ≥ 1 then for all possible ε we get the same result, namely,

%(2)(Tf ) = (1 + (−1)n)%(2)(Tf ).

If ε is trivial, this follows from the computation we have already done above.
If ε is non-trivial, there is a two-sheeted covering q : E′ → E such that ε for
the Sn-fibration p ◦ q : E′ → B is trivial. Now the general case follows from
the fact that %(2) is multiplicative under finite coverings [29, Theorem 1.10].

7. The mapping torus approach. In this section we use the con-
struction of the mapping torus to reduce computations to the case where
the ring endomorphism φ is the identity.

Let R be an associative ring with unit and let φ : R→ R be a ring
homomorphism respecting the unit. Denote by R̂ the ring given by the
colimit of the direct system of rings indexed by the integers

. . .
φ−→R

φ−→R
φ−→R

φ−→ . . .

A model is Z×R/∼ where ∼ is the equivalence relation for which r ∈ n×R
and s ∈ m×R satisfy r ∼ s if and only if φk−n(r) = φk−m(s) for an integer
k ≥ m,n. Let i : R → R̂ be the canonical homomorphism which sends r to
the class of 0× r. Notice that its kernel is

⋃
n≥1 ker(φn). Let φ̂ : R̂→ R̂ be

the canonical automorphism which sends the class of n × r to (n − 1) × r.
We have φ̂ ◦ i = i ◦ φ. The ring R̂[t, t−1]φ̂ consists of formal finite Laurent

series
∑l
n=k t

nan for integers k and l and an ∈ R̂. Addition is given by
(∑

n

tnan

)
+
(∑

n

tnbn

)
:=
∑
n

tn(an + bn)
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and multiplication by
(∑

n

tnan

)
·
(∑

n

tnbn

)
:=
∑
n

tn
(∑

k

φ̂k(an−k)bk
)
.

Notice that multiplication is essentially given by at = tφ̂(a) for a ∈ R̂. Next
we want to construct a commutative square

(7.1)

U(R,φ) U(R̂[t, t−1]φ̂, id)

∏
m≥1 Λ(R,φm)

∏
m≥1 Λ(R̂[t, t−1]φ̂, id)

τ //

η

²²
η

²²
τ=
∏
m≥1 τm //

The group Λ(R,φ) is the obvious generalization of the special case of 3.7
where R is Zπ and φ is induced by a group endomorphism of π:

Definition 7.2. Let H ⊂ R be the abelian subgroup of R generated by
all elements of the form φ(r)s− sr. Define the abelian group

Λ(R,φ) := R/H.

Consider an R-map f : F → φ∗F for a finitely generated free (left) R-
module F . Choose a basis {b1, . . . , bk} for F . The (k, k)-matrixA with entries
in R describing f is determined by the property f(bi) =

∑k
j=1Ai,jbj . Define

(7.3) tr(R,φ)(f) :=
k∑

i=1

[Ai,i] ∈ Λ(R,φ).

One easily checks that this definition is independent of the choice of the
basis. The mth component ηm of the map η is given on representatives by

(7.4) ηm[f ] := [tr(R,φm)(f
m)].

Next we define the two horizontal maps. Let f : F → φ∗F be an endo-
morphism of a finitely generated free (left) R-module F . Then we obtain an
R̂[t, t−1]φ̂-endomorphism of a finitely generated free R̂[t, t−1]φ̂-module

rt ⊗ f : R̂[t, t−1]φ̂ ⊗R F → R̂[t, t−1]φ̂ ⊗R F, u⊗ x 7→ ut⊗ f(x).

This is well defined because

ut⊗ f(rx) = ut⊗ φ(r)f(x) = utφ̂(i(r))⊗ f(x) = ui(r)t⊗ f(x).

Now define the upper horizontal map by
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(7.5) τ([f : F → φ∗F ]) := [rt⊗ f : R̂[t, t−1]φ̂⊗R F → R̂[t, t−1]φ̂⊗R F ].

One easily checks that this is compatible with the relations appearing in
Definition 1.2. The mth component τm appearing in the lower horizontal
map is given on representatives by

(7.6) τm([r]) := [tmi(r)].

One easily checks that diagram 7.1 commutes.

Remark 7.7. The construction of the ring R̂[t, t−1]φ̂ comes from the
mapping torus construction as explained now. Let f : X → X be an en-
domorphism of a connected finite CW -complex X. The mapping torus Tf
is obtained from the cylinder X × [0, 1] by identifying the bottom and the
top by f , i.e. by the identification (y, 1) ∼ (f(y), 0) for y ∈ X. If we put
R = π1(X) and let φ : R → R be the ring homomorphism induced by f ,
then R̂[t, t−1]φ̂ is just Zπ1(Tf ).

Remark 7.8. An interesting problem is to detect the kernels of the maps
appearing in diagrams 7.1. The point for the map dim× η for dim as defined
in 1.5 is that u(f) ∈ U(f) defined in 2.2 is the invariant we want to know and
that its image under η, which is the collection of the generalized Lefschetz
invariants λ(fn) ∈ Λ(fn) for n ≥ 1 of Example 3.9, is easier to compute
and the vanishing of λ(fn) has a clear interpretation in terms of fixed points
of fn as explained in Example 3.5. If dim× η were injective then one could
use the generalized Lefschetz invariants λ(fn) and the Euler characteristic
to compute u(f). Notice that dim× η is injective if R is commutative and
π = id by Example 1.7 or if (R,φ) = (C, c) by Theorem 1.9 but we have no
idea what happens in general.

For the map τ resp. U(i) injectivity would mean that one does not loose
information by the mapping torus approach. The advantage of the mapping
torus approach is that for the target of the maps τ the endomorphism of
the ring is the identity. Of course one has to pay the price that the ring
R̂[t, t−1]φ̂ is more complicated than R. At least we can show injectivity of
the lower map τ in Lemma 7.9 below.

Lemma 7.9. The lower horizontal map τ (see 7.6) in diagram 7.1

τ :
∏

m≥1

Λ(R,φm)→
∏

m≥1

Λ(R̂[t, t−1]φ̂, id)

is injective if Λ(R,φm) contains no m-torsion for m ≥ 1.

P r o o f. We have to show that for m ≥ 1 the map

(7.10) τm : Λ(R,φm)→ Λ(R̂[t, t−1]φ̂, id), [r] 7→ [tmi(r)],
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is injective. Define

(7.11) τ ′m : Λ(R,φm)→ Λ(R̂[t, t−1]φ̂m , id), [r] 7→ [ti(r)].

We obtain a ring homomorphism

j : R̂[t, t−1]φ̂m → R̂[t, t−1]φ̂,
∑
n

tnan 7→
∑
n

tnman.

It induces a map

(7.12) j∗ : Λ(R̂[t, t−1]φ̂m , id)→ Λ(R̂[t, t−1]φ̂, id).

One easily checks that τm is the composition j∗ ◦ τ ′m. It suffices to show for
m ≥ 1 that τ ′m is injective and the kernel of j∗ is m-torsion.

We begin with injectivity of τ ′m. Obviously it suffices to prove it for
m = 1, otherwise replace φ by φm. Suppose that [ti(r)] ∈ Λ(R̂[t, t−1]φ̂, id) is

trivial. Hence we can rewrite ti(r) in R̂[t, t−1]φ̂ as a finite sum of elements

of the form uv− vu for u, v ∈ R̂[t, t−1]φ̂. Inspecting the coefficients of t1 one

sees that i(r) is a finite sum of elements of the form φ̂a(r̂)ŝ − φ̂1−a(ŝ)r̂ for
r̂, ŝ ∈ R̂ and a ∈ Z. Since for r̂, ŝ ∈ R̂ we have

(φ̂a(r̂)ŝ− φ̂1−a(ŝ)r̂)− (φ̂a−1(r̂)φ̂−1(ŝ)− φ̂1−(a−1)(φ̂−1(ŝ))r̂)

= φ̂a(r̂)ŝ− φ̂a−1(r̂)φ̂−1(ŝ)

= (φ̂a(r̂)ŝ− ŝφ̂a−1(r̂)) + (ŝφ̂a−1(r̂)− φ̂a−1(r̂)φ̂−1(ŝ)),

we can show by induction on a that the element i(r) is a finite union of
elements of the shape φ̂(r̂)ŝ− ŝ r̂ for r̂, ŝ ∈ R̂. For any element r̂ ∈ R̂ there
is r ∈ R and a non-negative integer k with φ̂k(r̂) = i(r). Hence there is a
non-negative integer l such that i(φl(r)) is a finite union of elements of the
shape i(φ(r)s − sr) for r, s ∈ R. Notice that the kernel of i : R → R̂ is⋃
n≥1 ker(φn), and φn(r)− r for n ≥ 0 represents zero in Λ(R,φ) because

φn(r)− r = φn(r)1− 1φn−1(r) + . . .+ φ(r)1− 1r.

Hence the map τ ′m of 7.11 is injective.
To show that the kernel of the map j∗ defined in 7.12 is m-torsion, we

define a map

j∗ : Λ(R̂[t, t−1]φ̂, id)→ Λ(R̂[t, t−1]φ̂m , id),

[u] 7→ trR̂[t,t−1]
φ̂m

,id(j∗ru : j∗R̂[t, t−1]φ̂ → R̂[t, t−1]φ̂),

where for u ∈ R̂[t, t−1]φ̂ the R̂[t, t−1]φ̂-map ru is given by right multipli-
cation with u, j∗ denotes restriction with the ring homomorphism j and
trR̂[t,t−1]

φ̂m
,id has been introduced in 7.3. Since ruv−vu = rv ◦ ru − ru ◦ rv

and j∗R̂[t, t−1]φ̂ is the free R̂[t, t−1]
φ̂m

-module with basis t0, t1, . . . , tm−1,
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the map j∗ is well defined. One easily checks that for u ∈ R̂[t, t−1]φ̂m ,

j∗rj(u) is conjugate to the direct sum of m copies of the R̂[t, t−1]
φ̂m

-map

ru : R̂[t, t−1]
φ̂m
→ R̂[t, t−1]

φ̂m
given by right multiplication with u. Since

trR̂[t,t−1]
φ̂m

,id(ru) = u, we conclude that j∗ ◦ j∗ = m · id. Hence the kernel

of j∗ is m-torsion. This finishes the proof of Lemma 7.9.

Remark 7.13. Notice that there is an obvious m-fold covering pm :
Tfm → Tf for an endomorphism f : X → X of a connected finite CW -
complex. Let im : X → Tfm and i : X → Tf be the canonical inclusions.
We obtain morphisms im : (X, fm) → (Tfm , fm) and pm : (Tfm , fm) →
(Tf , fm) in End(C). The composition pm ◦ im is just the morphism i :
(X, f) → (Tf , fm). In particular we obtain a factorization of Λ(i) into
Λ(pm) ◦ Λ(im). One easily checks that this corresponds to the factoriza-
tion of τm into j∗ ◦ τ ′m appearing in the proof of Lemma 7.9. Moreover, j∗ is
just the transfer map associated with the fibration pm : Tfm → Tf defined
in 5.2.

The assumption in Lemma 7.9 that Λ(R,φm) contains no m-torsion is
always satisfied in the case where R is an integral group ring Zπ and φ is
given by an endomorphism of π because then Λ(Zπ, φm) is the free abelian
group generated by the φm-conjugacy classes.

Remark 7.14. We have introduced several homomorphisms with source
U(f) which can be used to detect elements in U(f). Notice that the ho-
momorphisms 3.2 and 3.11 factorize over η. The map 3.15 factorizes over
η◦τ = τ ◦η. However, it seems very unlikely that the map % of 3.13 factorizes
over η or τ .
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