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Abstract. The projective Stiefel manifold Xn,k has a canonical line bundle ξn,k,
called the Hopf bundle. The order of cξn,k, the complexification of ξn,k, as an element of
(the abelian group) K(Xn,k), has been determined in [3], [5], [6]. The main result in the
present work is that this order equals the order of ξn,k itself, as an element of KO(Xn,k),
for n ≡ 0,±1 (mod 8), or for k in the “upper range for n” (approximately k ≥ n/2).
Certain applications are indicated.

1. Introduction. Let F denote either of the fields R,C, and KF(X)
denote respectively KO(X), K(X). For any F-vector bundle α over a space
X, of rank r, the order o(α) is the least positive integer m (if such exists)
such that mα is stably trivial. Equivalently m([α] − r) = 0 ∈ K̃F(X) ⊂
KF(X), and this is the condition we shall use. It is also convenient to recall
that for any R-vector bundle α overX, its complexification cα is the C-vector
bundle α ⊗R C, and that this induces a ring homomorphism c : KO(X) →
K(X).

1.1. Remark. With m (finite) as above, there is no guarantee that mα
is actually trivial. However, for X a finite CW-complex, it is usually the case
that m is much larger than dim(X), and mr > dim(X) suffices to imply the
triviality of mα by standard stability properties of vector bundles (cf. [9],
Ch. 8, Theorem 1.5). Our main interest is in line bundles (rank(α) = 1) over
a finite CW-complex X. Let us start with a famous example (cf. [1]), which
will also be important in the present work.
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1.2. Example. Let X = Pn−1, real projective (n−1)-space, and let ξn−1

be its Hopf line bundle. Then o(cξn−1) = 2[(n−1)/2] and o(ξn−1) = 2φ(n−1),
where the function φ(n − 1) is defined to be the number of integers k that
satisfy 1 ≤ k ≤ n− 1, k ≡ 0, 1, 2, 4 (mod 8).

Since any line bundle ξ over a finite CW-complex X is classified by a
map X → BO(1) = P∞, which, by cellular approximation, must factor up
to homotopy through some finite skeleton PM ⊂ P∞, the above example
already implies that the order of ξ, or of cξ, is a power of 2, say respectively
2b, 2a. The well known fact (cf. [1], or [12], Ch. 15) that for the realification
and complexification maps the composition KO(X) c→ K(X) r→ KO(X)
is multiplication by 2, implies that for any real vector bundle α with finite
order, the order of α either equals the order of cα or is twice the order of
cα. Thus b = a+ θ, with either θ = 0 or θ = 1.

1.3. Example. For X = Pn−1 one sees from Example 1.2 that θ = 0
whenever n ≡ 0,±1 (mod 8), and otherwise θ = 1.

1.4. Remarks. (a) Determining θ can sometimes be quite difficult, e.g.
part of the Adams Conjecture ([9], Ch. 15, Theorem 14.2(3)) was a question
of this type.

(b) Writing y = [ξ]− 1 ∈ KO(X) for any real line bundle ξ over X, we
have y2 = −2y since ξ ⊗ ξ ≈ ε, the trivial line bundle, and therefore yi =
(−2)i−1y, 1 ≤ i. It follows that the order 2m also gives the (multiplicative)
height of y as being m + 1, as an element in the ring KO(X). A similar
statement holds for complexifications of real line bundles over X, which can
be seen using the already mentioned fact that complexification c is a ring
homomorphism. It is, however, false for arbitrary complex line bundles.

We now consider the projective Stiefel manifold Xn,k, 1 ≤ k ≤ n − 1.
Recall that Xn,k = Vn,k/(Z/2), so there is a Hopf line bundle ξn,k over Xn,k,
and also a sequence of smooth fibrations

Xn,n−1
p→ Xn,n−2

p→ . . .
p→ Xn,1 = Pn−1

with p∗(ξn,k−1) ≈ ξn,k. Let us write 2b(n,k) for the order of ξn,k and 2a(n,k)

for the order of cξn,k. The precise values of a(n, k) are known from [3],
[5], [6], and we now give these after some preliminary definitions. In the
following, for any positive integer m, by ν2(m) we mean the highest power
of 2 dividing m. Also, let c = [(n− k)/2], and write n = 2m or n = 2m+ 1.

1.5. Definition. (i) For k even or n even,

a0(n, k) = min
{

2j − 1 + ν2

(
m

j

)
: c < j < m

}
,
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(ii) for k and n odd,

a0(n, k) = min
{

2c+ ν2

(
m

c

)
, 2j − 1 + ν2

(
m

j

)
: c < j < m

}
,

(iii) for any n, k, 1 ≤ k < n,

a(n, k) = min{[(n− 1)/2], a0(n, k)}.
As mentioned above, 2a(n,k) gives the order of cξn,k. Therefore the order

of ξn,k equals 2a(n,k)+θ, θ ∈ {0, 1}. The main purpose of this paper is to
give a proof that for “most” values of n, k, in a sense that will be made
precise by the next definition, θ = 0 (i.e. the real and complex orders of ξn,k
agree).

1.6. Remark. From Definition 1.5, the following property of a(n, k) is
evident:

[(n− 1)/2] = a(n, 1) ≥ a(n, 2) ≥ . . . ≥ a(n, n− 1).

It is also clear that for k small, a(n, k) = [(n− 1)/2], whereas for k close to
n, a(n, k) = a0(n, k). We therefore make the following definition.

1.7. Definition. Whenever a(n, k) = a0(n, k), we say that k is in the
upper range for n. Otherwise we say k is in the lower range for n (i.e. in
case [(n− 1)/2] < a0(n, k)).

Of course, Remark 1.6 and this definition imply that if k is in the upper
range for n, so are k + 1, k + 2, . . . It is difficult to give a precise formula
for the smallest k that will be in the upper range; however, it is not hard
to see that this number will be slightly larger than n/2. For example, for
n = 38, 39, 138, the upper range starts respectively at k = 21, 21, 71. It is
also true that n − 1 is always in the upper range (except for n = 4, the
only case for which the upper range is empty). We now state the main
result.

1.8. Theorem. If k is in the upper range for n, or if n ≡ 0,±1 (mod 8),
the order of ξn,k equals 2a(n,k).

Notice that the two cases in the hypotheses (which asympotically com-
prise a little over 2/3 of all possible pairs (n, k)) are not mutually exclusive,
and also that the result is definitely false in the lower range as Example
1.2 already shows for the case k = 1 (see also 1.11 below). The authors
have found two quite different proofs for this theorem, and a proof based
on the representation theory of the classical groups is presented in §2 of
this paper. A second proof, based on the properties of exterior power op-
erations and fairly involved combinatorial identities, will be submitted else-
where [15].
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Let us now indicate some applications of Theorem 1.8. The first is a
straightforward generalization to line bundles over finite CW-complexes.

1.9. Theorem. Let ξ be a line bundle over a finite CW-complex X such
that nξ admits at least k independent sections. Also suppose that k is in
the upper range for n, or that n ≡ 0,±1 (mod 8). Then the order of ξ is a
divisor of 2a(n,k).

P r o o f. By the universal property of projective Stiefel manifolds for mul-
tiples of line bundles (cf. [7], [14]), there exists a map f : X → Xn,k such
that f∗(ξn,k) ≈ ξ. It follows that the order of ξ divides the order of ξn,k,
which by Theorem 1.8 equals 2a(n,k).

Theorem 1.8 also has many direct applications to questions such as span,
immersions, and embeddings of Xn,k. These will be explored in detail in the
companion paper [15]; we present just a single example here.

1.10. Example. For n even, Xn,n−2 is known to be parallelizable (cf.
[3]). We are now able to prove that for n ≡ 3 (mod 4),

span(Xn,n−2) = dim(Xn,n−2)− 2.

To see this, first apply Theorem 1.8 to show 4ξn,n−2 is stably trivial (n− 2
is in the upper range except for n = 3, but in this case 4ξ3,1 = 4ξ2 is also
stably trivial, cf. Example 1.2). Next, consider the tangent bundle τn,n−2

and the twisted orthogonal complement bundle β′n,n−2. We briefly recall
the definition of the latter. For any orthonormal k-frame (a1, . . . , ak) =
(−a1, . . . ,−ak) ∈ Xn,k, the fibre of the rank n− k vector bundle β′n,k is the
(n− k)-dimensional real vector space given by

{(a1, . . . , ak, v) : v ∈ Rn, 〈ai, v〉 = 0, 1 ≤ i ≤ k},
where again (a1, . . . , ak, v) = (−a1, . . . ,−ak,−v). Using ∼ to denote stable
equivalence, it is shown in [10], [11] that for any Xn,k one has τn,k ∼ nkξn,k
and β′n,k ∼ nξn,k. Combining this with n ≡ 3 (mod 4) and the already
mentioned fact 4ξn,n−2 ∼ 0, it is easily seen that both τn,n−2 ∼ 3ξn,n−2 and
β′n,n−2 ∼ 3ξn,n−2. This gives τn,n−2 ∼ β′n,n−2, and since β′n,n−2 has rank 2
we obtain stable span(Xn,n−2) ≥ dim(Xn,n−2)− 2.

On the other hand one easily finds the Stiefel–Whitney class is

w(τ) = w(3ξ) = (1 + x)3 = 1 + x+ x2,

where x generates H1(Xn,n−2;Z/2) and it is known [7] that x2 6= 0, x3 = 0.
Since w2 6= 0 it follows that

stable span(Xn,n−2) = dim(Xn,n−2)− 2,

and the proof is completed by using the fact ([10], p. 99) that in this case
the stable span and span agree.
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We close this section with a plausible conjecture, which has been veri-
fied for n ≤ 8 and in other cases, but is far from being proved. Note that
Example 1.3 above gives the case k = 1 of this conjecture.

1.11. Lower Range Conjecture. For n 6≡ 0,±1 (mod 8) and for k
in the lower range for n, we have θ = 1 (i.e. the order of ξn,k is twice the
order of its complexification).

2. Proof of the main theorem

2.1. For a Lie group G, RF(G) denotes the F-representation ring of G.
As is customary, we shall denote the real representation ring of G by RR(G)
or by RO(G), and the complex representation ring by RC(G) or by R(G).
We denote by crep : RO(G) → R(G) and cbun : KO(X) → K(X) the
complexification maps, which are ring homomorphisms. Note that the map
crep is a monomorphism (cf. Prop. 3.27 of [2]), whereas cbun is not in general
a monomorphism.

Let G be a compact simply connected Lie group and let H denote a
closed (not necessarily connected) Lie subgroup of G. Denote by M the
smooth homogeneous manifold G/H.

Suppose that V is a finite-dimensional F-vector space which affords an
F-representation of the Lie group H. We denote by αF(V ) the F-vector
bundle over M with projection G ×H V → G/H = M and fibre V . The
bundle αF(V ) is said to have been obtained from V by the α-construction
(also called the mixing construction).

We now recall some basic facts about the α-construction; for further
details cf. [9], Ch. 12, 5.4, also [4], [3], and [8], §9.

2.2. It is well known that if the representation of H on V arises by
restriction to H of a representation of G on V , then αF(V ) is isomorphic to
a trivial vector bundle over G/H = M . The α-construction leads to a well
defined ring homomorphism αF : RF(H) → KF(M). The elements in the
image of αF are said to be homogeneous.

We need the following (cf. [9], Ch. 13, Remark 11.2)

2.3. Lemma. With the above notations one has a commuting diagram

RO(H) R(H)

KO(M) K(M)

crep //

αR
²²

αC
²²

cbun //

2.4. Let IF(G) (or simply IF) denote the ideal of RF(H) generated by
the image of the augmentation ideal of RF(G) under the restriction homo-
morphism % : RF(G)→ RF(H). Thus, IF is the ideal of RF(H) generated by
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elements of the form %(x) − rank(x), x ∈ RF(G), where rank : RF(G) → Z
is defined by rank([V ]) = dimF V . Then we have

2.5. Lemma. For F = R or C one has IF ⊂ kerαF.

This is immediate from 2.2.

2.6. Remark. It is known that if H is connected and has maximal rank
in G, then kerαC = IC. See [4], [13], and [8]. However, this will not apply in
the case we eventually consider, the projective Stiefel manifolds.

2.7. Definition. Let x be a torsion element in the additive group
KF(M), where M is as in 2.2. We say that an element u ∈ RF(H) detects
the order of x if αF(u) = x and nu ∈ IF, where n = o(x).

2.8. Lemma. Let y ∈ K(M) be a torsion element whose order , n, is
detected by v ∈ R(H). Suppose that nv ∈ crep(IR) and that crep(u) = v.
Then the order of x := αR(u) is detected by u and o(x) = n.

P r o o f. Let n = o(y), and write nv = crep(w), where w ∈ IR. Clearly
crep(nu−w) = 0. Since crep is a monomorphism, it follows that nu = w ∈ IR.
Hence nx = αR(nu) = αR(w) = 0 by Lemma 2.5, as w ∈ IR. Since
cbun(x) = y, and since y has order n, we conclude that o(x) = n.

Write Xn,k = Spin(n)/Hn,k, where Hn,k is a certain subgroup of Spin(n)
which contains Spin(n − k) as an index 2 subgroup. The precise nature of
the extension Spin(n− k) ↪→ Hn,k → Z/2 depends on the parities of n and
k (cf. [6]), but we shall not require this here.

2.9. Let V = Rn denote the standard real representation of SO(n),
extended to a representation of Spin(n) via the double covering projection
Spin(n)→ SO(n). Let vi = [ΛiR(V )] ∈ RO(Spin(n)) and let wi = crep(vi) ∈
R(Spin(n)), 1 ≤ i ≤ n/2. Also let ∆±m ∈ R(Spin(2m)) denote the class of the
complex half-spin representations of Spin(2m), and let ∆m = ∆+

m+∆−m. We
regard ∆m as an element of R(Spin(2m+1)) in the usual manner. Finally, let
z ∈ RO(Hn,k) denote the class of the one-dimensional representation whose
character is the composition Hn,k → Hn,k/Spin(n− k) ∼= C2 ⊂ GL(1,R) =
R∗, where C2 = {±1}. Let z̃ = crep(z) ∈ RHn,k. Note that the Hopf line
bundle ξ is isomorphic to αR(z). Let y = cbun(ξ)−1 = [ξ⊗RC]−1 ∈ K(Xn,k).

We now need to know that certain multiples of z̃ − 1 lie in the image
of the restriction homomorphism % : R(Spin(n)) → R(Hn,k), as well as
certain results about the order of y. These can be found in [3] for n ≡ 0
(mod 4), in [5], [6], for all n; we simply quote them as the next proposi-
tion.

2.10. Proposition. Let n = 2m or 2m + 1, 1 < k < n. Write c =
[(n− k)/2]. Let r = gcd

{
22i−1

(
m
i

) ∣∣ c < i < m
}

. Then
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(i) r(z̃ − 1) = %(P0) + z̃%(P1),
(ii) 2[(n−1)/2](z̃ − 1) = %(Q0) + z̃%(Q′0),

(iii) 22c
(
m
c

)
(z̃ − 1) = %(Q1) + z̃%(Q′1) if both n and k are odd ,

where Pi ∈ Z[w1, . . . , wm] ⊂ R(Spin(n)) have rank zero, and Qj , Q
′
j ∈

RSpin(n) have rank zero. Furthermore, the order of y is

(iv) gcd{r, 2[(n−1)/2]} = 2a(n,k) if n or k is even,
(v) gcd

{
r, 2m, 22c

(
m
c

)}
= 2a(n,k) if both n and k are odd.

2.11. Remark. By applying the α-construction it is immediate from
(i)–(iii) above that o(y) divides 2a(n,k). That the order is equal to 2a(n,k) is a
consequence of the nontrivial theorem that K(Xn,k) is actually isomorphic
to R(Hn,k) ⊗R(Spin(n)) Z ∼= R(Hn,k)/IC, where IC is as in 2.4. Here Z is
regarded as an R(Spin(n))-module via the augmentation map, and R(Hn,k)
via the restriction homomorphism %. Again, this theorem (at least for n, k
not both odd) is proved in [3], [6], where it is a consequence of the collapsing
of the Hodgkin spectral sequence, but the only results we are using here are
those already mentioned in 2.10(iv), (v). We also remark here that o(y) is
always even; indeed, a quick check shows that a(n, k) ≥ 1, k < n, always
holds.

2.12. We recall some basic facts about the (half-) spin representations.
For details the reader is referred to §12, Ch. 13 of [9]. The complex repre-
sentation ring of Spin(2m) (resp. R(Spin(2m + 1))) equals the polynomial
algebra Z[w1, . . . , wm−2,∆

+
m,∆

−
m] (resp. Z[w1, . . . , wm−1,∆m]). Recall that

a complex representation U of G is called real if U is obtained from a real
representation by extension of scalars to C, i.e. the class [U ] ∈ R(G) is in
the image of crep. An element of R(G) is said to be real if it is in the image
of crep. It is known that ∆+

m, ∆−m are real if m ≡ 0 (mod 4) (which means
2m = n ≡ 0 (mod 8)) and that ∆m is real if n = 2m + 1 ≡ ±1 (mod 8).
It is obvious that, in the notation of 2.9, wi = crep(vi), 1 ≤ i ≤ [n/2], are
all of real type for all values of n. It follows that for n ≡ 0,±1 (mod 8)
any representation of Spin(n) is real. In particular Qi, Q′i, i = 0, 1, are of
real type when n ≡ 0,±1. Since the elements P0, P1 are in the subalgebra
Z[w1, . . . , wm] ⊂ R(Spin(n)), they are of real type for any n. Notice also
that for k in the upper range for n, r = q · 2a(n,k) with q odd.

We are now ready to prove the main theorem of this section.

2.13. Theorem. Let 1 ≤ k < n. If n ≡ 0,±1 (mod 8), or if k is in the
upper range, then ξn,k has order 2a(n,k).

P r o o f. As mentioned in §1, this is the same as showing that x = [ξ]−1 ∈
KO(Xn,k) has order 2a(n,k). We divide the proof into the two (nondisjoint)
cases given in the hypotheses. So first consider n ≡ 0,±1 (mod 8), the ini-
tial goal is to show that here the order of y is detected by z̃ − 1 ∈ R(Hn,k).
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Certainly

αC(z̃ − 1) = αCcrep(z)− 1 = cbunαR(z)− 1 = cbun(ξ)− 1 = y.

The remaining condition for detecting the order of y is immediate from the
hypotheses on n and Proposition 2.10(i)–(iii); indeed, these imply

r(z̃ − 1), 2[(n−1)/2](z̃ − 1), 22c
(
m

c

)
(z̃ − 1) ∈ IC

(the latter condition only in case both n, k are odd) so 2a(n,k)(z̃ − 1) ∈ IC.
Secondly, when k is in the upper range for n, write r = q · 2a(n,k), q odd,

as in 2.12. As mentioned in 2.11, a(n, k) ≥ 1, so 2a(n,k) is even. There is
then a positive integer t with tq ≡ 1 (mod 2a(n,k)). We now show this im-
plies that qt(z̃ − 1) detects the order of y. Indeed, αC(qt(z̃ − 1)) = qty = y,
and using 2.10(i) we find 2a(n,k)qt(z̃ − 1) = tr(z̃ − 1) = t%(P0 + yP1) ∈ IC,
proving this statement.

Next, in either case, we find using 2.12 that each time a certain repre-
sentation used in the above two paragraphs is in IC, it is of real type. So
now Lemma 2.8 may be applied. In the first case it shows that z− 1 detects
the order of x, while in the second case it shows that qt(z − 1) detects the
order of x. Since qt is odd and the order of x must be a power of 2, this
implies in either case that o(x) = 2a(n,r).
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