
FUNDAMENTA
MATHEMATICAE

160 (1999)

Bohr compactifications of discrete structures

by

Joan E. H a r t (Schenectady, N.Y.) and
Kenneth K u n e n (Madison, Wisc.)

Abstract. The Bohr compactification and the Bohr topology are well known for
groups, but they can easily be generalized to arbitrary structures. We prove a number of
theorems about Bohr topologies in this general setting. Some of these results are new even
for groups; for example, the weight of the Bohr compactification of a countable structure
is either countable or continuum. In some cases, theorems about Bohr topologies are
special cases of more general results in Cp theory. We also present applications of these
generalities to the Bohr compactifications of lattices, semilattices, and loops.

1. INTRODUCTION

The Bohr topology and Bohr compactification for groups date back to
the 1940 manuscript of Weil [35], and are well known in harmonic analysis.
In fact these notions generalize to arbitrary algebraic structures, as pointed
out by Holm [14] in 1964. For example, if A is ring (with no topology on it
yet), its Bohr–Holm compactification is a compact ring bA, together with a
ring homomorphism Φ from A into a dense subring of bA. The pair (bA, Φ)
is characterized as the maximal compactification of A. Then A# denotes
the ring A together with its Bohr topology—that is, the topology induced
by the map Φ : A→ bA. So, A# is a topological ring.

These notions are made precise by Definition 2.3.6. Actually, unlike in
Holm [14], we define bA without reference to any algebraic axioms which
A may satisfy. As we point out though, bA satisfies all the positive logical
sentences satisfied by A (see Lemma 2.3.9). In particular, if A is a ring, then
bA will also be a ring, and if every element of A has a square root, the same
will be true in bA; it is not necessary to decide ahead of time whether to
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view A as a member of the category of rings or of the category of rings all
of whose elements have square roots.

Once the definitions are given, Section 2 develops some general theorems
about bA and A#, and Section 3 applies these to some specific classes of
structures—primarily groups, quasigroups, semilattices, and lattices—where
one sometimes has a fairly simple description of bA.

Some of the general results in this paper are new even in the case of
groups. For example (see Section 2.8), given a structure B, one can always
find a countable A ⊆ B such that bA is just the restriction of bB to A. One
cannot in general let A be an arbitrary countable substructure of B here;
one can in the cases of semilattices (by Theorem 3.4.26) and abelian groups
(as is well known), but one cannot in the cases of distributive lattices (see
Section 3.5) or non-abelian groups.

Also, by Corollary 2.10.20, the weight of the closure of every countable
subset of B in bB is either countable or 2ℵ0 . For groups, both these values are
possible (see Section 3.3). For abelian groups, however, only 2ℵ0 is possible,
by arguments described in [11] and [21]. Actually, Corollary 2.10.20 is a spe-
cial case of a more general result in Cp theory, as we explain in Section 2.10.

A general question, for infinite structures A,B, is whether A#,B# can be
homeomorphic topological spaces when A,B are not isomorphic structures.
For most varieties of structures, it is easy to give many such examples,
but in the case of abelian groups, this is a long-standing question of van
Douwen, and has generated a fairly large body of literature. Some references
are given in Section 3.3, together with our proof that A#,B# are always
homeomorphic whenever A is a subgroup of B of finite index.

Other of our theorems show how some results which are known in the case
of groups can be extended to more general classes of structures. For example,
in Section 2.9, we discuss conditions which imply that b(A×B) = bA× bB.
This equality holds for semigroups with an identity element 1 [16, 14, 15], but
not for semigroups in general. The use of the 1 has an obvious generalization
(Lemma 2.9.3) to other structures, but we also show b(A × B) = bA ×
bB for some structures which lack the 1, such as semilattices, lattices, and
quasigroups. Proving equality for this more general case involves our study
of substructures in Section 2.7 (in some cases, it is “harmless” to extend the
structure to add a 1), as well as conditions under which the basic functions
in the structure may be modified; see Section 2.8. For example, for groups,
b(G; ·) = b(G; ·, i); that is, it does not matter whether or not we consider
the variety to include the unary inverse function. A similar result holds
for some (but not all) varieties of loops (see Section 3.2). For distributive
lattices, one cannot in general identify b(A;∨,∧) with b(A;∨), even though
∧ is first-order definable from ∨; one can drop the ∧ in the case of total
orders (see Sections 3.4 and 3.5).
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For groups A, one may compute bA by using the homomorphisms
into various U(n) (the group of all n × n unitary matrices); we say that
{U(n) : 1 ≤ n < ω} is adequate for groups. For abelian groups, the circle
group U(1) alone gives us the adequate set {U(1)}. The situation for gen-
eral A is discussed in Sections 2.6 and 2.10. The collection of all second
countable compact structures is always adequate (Theorem 2.6.4), but this
collection is uncountable. If there is a countable adequate family for A,
then A# is an Eberlein–Grothendieck space (a notion from Cp theory;
see Definition 2.10.7). A countable A for which A# is not an Eberlein–
Grothendieck space (because A# is the Fréchet–Urysohn fan) is described
in Example 3.6.7.

A number of other definitions of bA and A# are known to be equivalent
in the case of groups. For example, G# is the finest totally bounded topo-
logical group topology on G; the correct generalization of this (described in
Section 2.4 and by Holm [14]) derives A# from the finest totally bounded
uniformity; it just happens that in the group case, the uniformity is ob-
tained directly from the topology. For groups, bG can also be defined via
almost periodic functions. In fact, the name of Harald Bohr is attached
to bG and G# in recognition of his work [4] on almost periodic functions.
This approach does not seem to generalize to arbitrary structures; see also
Remark 2.3.12.

Up to now, we have assumed that A is just an abstract (discrete) struc-
ture. However, all the basic definitions easily generalize to topological struc-
tures, where A already has a topology T on it, in which case A# will be
coarser than T . Although the emphasis of this paper is on compactifications
of discrete structures, we shall point out where the general theory also works
for arbitrary topological structures.

We have tried to provide counter-examples to possible extensions or gen-
eralizations of our results. Where we could, we have chosen these examples
from naturally occurring mathematical structures. In some cases, we did
not see how to do this, so Section 3.6 collects a number of artificial counter-
examples.

2. GENERALITIES

We prove some general results here which are common to all structures.

2.1. Topological structures. In discussing structures, we shall em-
ploy the standard terminology of first-order logic. Throughout, L denotes a
(possibly empty) set consisting of constant symbols and function symbols;
each function symbol has an arity ≥ 1. Using the symbols of L plus the
predicate “=”, one may build logical formulas in the usual way; we never
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consider predicates other than equality here (see Remark 2.3.13). A structure
A for L is a non-empty set A (the domain), together with actual elements
of and functions on A corresponding to the constant and function symbols
of L. For example, when discussing groups, we could take L = {·, i, 1} (the
symbols for product, inverse, and identity). If s ∈ L, we use sA for the corre-
sponding constant or function on A. Then we frequently drop the subscript
“A” when it is clear from context. So, for example, we display groups as
A = (A; ·, i, 1).

Definition 2.1.1. Suppose A is a structure for L and ϕ : A → X. If
f ∈ L is an n-ary function symbol, then ϕ(fA) denotes {(ϕ(a1), . . . , ϕ(an),
ϕ(b)) : (a1, . . . , an, b) ∈ fA}.

Here, we identify fA with its graph, a subset of An+1. Note that ϕ(fA) ⊆
Xn+1, but need not be the graph of an n-ary function.

Definition 2.1.2. Let A and B be two structures for L, and let ϕ :
A → B. Then ϕ is a homomorphism from A to B iff ϕ(fA) ⊆ fB for each
function symbol f of L, and ϕ(cA) = cB for each constant symbol c of L.

This is equivalent to the standard definition of homomorphism in uni-
versal algebra. The notation involving graphs introduced here will be use-
ful in discussing compactifications, where we frequently use the fact that
a function between compact Hausdorff spaces is continuous iff its graph is
closed.

Definition 2.1.3. A topological structure for L is a pair (A, T ), where
A is a structure for L, and T is a topology on A which makes all the func-
tions of A continuous. We often write A for (A, T ) if the topology is under-
stood.

A special case is a discrete structure, where T is the discrete topology.
At the other extreme, L could be ∅, in which case a structure is just a set
and a topological structure is just a topological space.

Definition 2.1.4. A compact structure for L is any topological structure
(A, T ) in which T is a compact Hausdorff topology.

Note that compact structures are Hausdorff by definition, but topological
structures in general have no separation axioms assumed about them.

Many of the common classes of structures are specified by sets of equa-
tions. The following table lists some equational classes which we use later in
this paper. Also listed are the appropriate L and the arities of the symbols;
symbols of arity 0 are constants.
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Theory L Arities

Groups (·, i, 1) (2, 1, 0)
Quasigroups (·, \, /) (2, 2, 2)
Loops (·, \, /, 1) (2, 2, 2, 0)
Rings (+, ·,−, 0) (2, 2, 1, 0)
Semilattices (∨) or (∧) (2)
Lattices (∨,∧) (2, 2)
Boolean algebras (∨,∧, ′, 0, 1) (2, 2, 1, 0, 0)
Homogeneities (f, g) (3, 3)
Pairings (p, L,R) (2, 1, 1)

Of course, many modifications are possible. For example, for bounded
lattices (with a largest and smallest element), take L = {∨,∧, 0, 1}. Note
that since our languages do not use predicates, we consider theories such
as lattices and boolean algebras to be presented only with functions, not
with a ≤ predicate as is frequently done. Allowing predicates in L would be
possible, but it makes the general theory ugly; see Remark 2.3.13.

We comment briefly on the theories listed which are not well known from
elementary algebra. The axioms for quasigroups are

x · (x\y) = y, (y/x) · x = y, x\(x · u) = u, (u · x)/x = u.

In terms of · alone, this is the same as postulating ∀xy∃!z(xz = y) and
∀xy∃!z(zx = y), but it is often convenient to express the axioms in a purely
equational way by replacing the z in these two axioms by the functions x\y
and y/x of x and y, as in the above equations. In combinatorics, quasigroups
are identified with Latin squares. Every associative quasigroup is a group. A
loop is a quasigroup with an identity element 1 (satisfying x · 1 = 1 ·x = x).
The texts [5], [7], [27] give further information on quasigroups and loops.

Some results for quasigroups and loops hold more generally for homo-
geneities; see Sections 3.1 and 3.2.

Definition 2.1.5. A homogeneity is a structure (A; f, g) satisfying

f(x, y, x) = g(x, y, x) = y,

g(x, y, f(y, x, z)) = z,

f(x, y, g(y, x, z)) = z.

That is, for each x, y, the maps f(x, y, ) and g(x, y, ) are both permu-
tations of A taking x to y, and f(x, y, ) and g(y, x, ) are inverses of each
other. Recall that a topological space is called homogeneous iff for all x, y,
there is a homeomorphism moving x to y. So, a topological homogeneity is
one way of expressing the informal notion that these homeomorphisms can
be selected in a continuous way. Note that this puts a large restriction on
the homogeneous space. For example, let A be an infinite compact Hausdorff
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space which supports a homogeneity. Then the weight of A equals its char-
acter (see Corollary 3.1.2), which is not true for many homogeneous A. In
fact, A must be dyadic (this is easy to see from Theorem 1 of Uspenskĭı [33]).

Definition 2.1.6. A pairing is a structure (A; p, L,R) which satisfies:
x = L(p(x, y)), y = R(p(x, y)), and p(L(x), R(x)) = x.

Thus, p provides a bijection from A×A onto A. These pairings will form
a useful collection of examples and counter-examples.

We shall make use of the following elementary notions from logic: A sen-
tence is a formula with no free variables. A positive formula is one which is
logically equivalent to one expressed using quantifiers and only the proposi-
tional connectives AND and OR. A theory is a set of sentences and a positive
theory is a set of positive sentences. A structure A is a model of a theory Σ
(i.e., A |= Σ) iff all the sentences of Σ are true in A. The theory Σ is con-
sistent iff it has some model. An equational theory is a theory all of whose
sentences are universally quantified equations. So, every equational theory
is a positive theory. The theory of groups expressed in the language {·, i, 1}
is equational, but if this theory is expressed in the language {·}, it becomes
positive but no longer equational; for example, one must say ∃y∀x(x·y = x).

Every positive theory Σ is consistent, since it has a 1-element model. It
is possible that Σ has only the 1-element model (e.g. Σ = {x = y}). It is
also possible that Σ has infinite models but, as is the case for pairings, the
1-element model is the only finite model. Pairings also have infinite compact
models, since there are infinite compact X homeomorphic to X2, yet there
are equational theories such as lattice ordered abelian groups, with infinite
models, but only the 1-element compact model. For any equational theory
with a compact model of size greater than one, infinite products will generate
infinite compact models. In some cases, every compact model is a product of
finite models. For example, by Strauss [32], every compact boolean algebra
is of the form {0, 1}κ.

2.2. Compactifications of sets. We make some remarks here on
compactifications, since our definitions differ somewhat from the standard
ones (see Kelley [19]) in general topology.

Definition 2.2.1. Let A be any non-empty set. A compactification of A
is a pair (X,ϕ), where X is a compact Hausdorff space, ϕ : A → X, and
ϕ(A) is dense in X. If (X,ϕ) and (Y, ψ) are two compactifications of A,
then (X,ϕ) ≤Γ (Y, ψ) means that Γ : Y → X is a continuous function and
Γ ◦ ψ = ϕ. (X,ϕ) ≤ (Y, ψ) means that (X,ϕ) ≤Γ (Y, ψ) for some Γ .

Since compactifications are Hausdorff, if (X,ϕ) ≤ (Y, ψ) then the Γ such
that (X,ϕ) ≤Γ (Y, ψ) is uniquely determined, and Γ (Y ) = X.
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Definition 2.2.2. Two compactifications of A, (X,ϕ) and (Y, ψ), are
equivalent iff (X,ϕ) ≤ (Y, ψ) ≤ (X,ϕ).

In this case, we have (X,ϕ) ≤Γ (Y, ψ) ≤∆ (X,ϕ), where Γ,∆ are inverses
of each other, so that X,Y are homeomorphic.

Definition 2.2.3. K(A) is the set of all equivalence classes of compact-
ifications of A.

This is a set, not a proper class, since each compactification of A has
size no more than 22|A| . Note that K(A) inherits the order ≤. Actually,
each equivalence class, [(X,ϕ)], is a proper class, but that does not cause
foundational problems (one can either take a set of representatives, or deal
with the associated uniformities (see Section 2.4) instead). In the following,
we frequently say (X,ϕ) when we really mean [(X,ϕ)]. Each (X,ϕ) induces
a topology, Tϕ, on A:

Definition 2.2.4. If (X,ϕ) is a compactification of A, then Tϕ={ϕ−1U :
U is open in X}.

Lemma 2.2.5. Tϕ is Hausdorff iff ϕ is 1-1.

Lemma 2.2.6. If (X,ϕ) ≤ (Y, ψ), then Tϕ ⊆ Tψ.

Three simple examples: The maximal element of K(A) is (βA,ϕ1), where
ϕ1 is the usual inclusion of A into the Čech compactification of the set
A with the discrete topology. The minimal element of K(A) is the one-
element compactification, ({x}, ϕ2), where ϕ2(a) = x for all a ∈ A, and
hence Tϕ2 is indiscrete. This should not be confused with the one-point
compactification, (A ∪ {∞}, ϕ3), which is neither minimal nor maximal in
K(A), although it is the minimal compactification whose induced topology
is discrete. The converse to Lemma 2.2.6 is false; for example Tϕ1 = Tϕ3 but
(βA,ϕ1) 6≤ (A ∪ {∞}, ϕ3) unless A is finite.

To get an “iff” in Lemma 2.2.6, one would have to use the induced uni-
formity, not the induced topology; see Section 2.4. A converse to Lemma
2.2.6 holds in some cases, when the spaces are endowed with sufficient al-
gebraic structure to be able to read the uniformity from the topology; see
Lemma 3.1.5.

Lemma 2.2.7. K(A) is a complete lattice.

P r o o f. We compute
∨{(Xi, ϕi) : i ∈ I} to be (X,ϕ), where ϕ is the

natural product map from A into
∏
iXi, and X is the closure of the range

of ϕ. Then
∧{(Xi, ϕi) : i ∈ I} is just

∨{(Y, ψ) : ∀i[(Y, ψ) ≤ (Xi, ϕi)]}.
The

∧
of compactifications seems a bit intractable, and is not widely

discussed in the literature.
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When the target space is clear from context, we frequently say ϕ when
we mean (X,ϕ), as we already did in Definition 2.2.4, where Tϕ should really
be T(X,ϕ). Likewise, we might say that βA =

∨{ϕ : ϕ ∈ [0, 1]A}. Each ϕ
here really designates the pair, (ϕ, cl(ran(ϕ))). On the other hand, when the
map is clear from context, we frequently say X when we mean (X,ϕ); for
example, we use βA for the pair consisting of βA and the embedding of A
into βA.

2.3. Compactifications of spaces and structures. Now that we have
K(A), we may restrict our attention to those compactifications (X,ϕ) which
are compatible with some topology on A, or with some structure A on A,
or both.

Definition 2.3.1. If (A, T ) is a topological structure and (X,ϕ) is a
compactification of the set A, then (X,ϕ) is compatible with (A, T ) iff ϕ is
continuous and there is a topological structure X built on the set X such
that ϕ is a homomorphism.

Lemma 2.3.2. With the notation of Definition 2.3.1, (X,ϕ) is compatible
with (A, T ) iff ϕ is continuous and cl(ϕ(fA)) (see Definition 2.1.1) is the
graph of a function on X for each function symbol f of L.

In this case, the topological structure X built on X must have cX = ϕ(cA)
(for constants c) and fX = cl(ϕ(fA)) (for functions f).

Lemma 2.3.3. If (X,ϕ) and (Y, ψ) are both compatible compactifications
of A, with associated topological structures X and Y, and (X,ϕ) ≤Γ (Y, ψ)
as in Definition 2.2.1, then Γ : Y→ X is a homomorphism.

The point of this lemma is that, when dealing with structures rather than
abstract sets, we do not have to re-define the ordering on compactifications.
It might seem more natural to require Γ to be a homomorphism, but we get
this for free anyway.

Lemma 2.3.4. If (X,ϕ) is compatible with (A, T ), then Tϕ is coarser than
T , and (A, Tϕ) is a topological structure.

The following lemma is clear from the construction of the
∨

in the proof
of Lemma 2.2.7.

Lemma 2.3.5. If (Xi, ϕi) are compactifications of (A, T ) (for i ∈ I), and
each (Xi, ϕi) is compatible with (A, T ) then so is

∨{(Xi, ϕi) : i ∈ I}.
In particular, there is a maximal compatible compactification, since there

is at least one compatible compactification (namely, the 1-element compact-
ification).
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Definition 2.3.6. The Bohr–Holm compactification, (b(A, T ), Φ(A,T )),
of a given topological structure (A, T ), is the maximal compatible compact-
ification. The T is omitted when it is clear from context. (A, T )# denotes
the structure A with the Bohr topology—that is, the topology TΦ induced
by the map Φ = Φ(A,T ).

Then, as in Theorem 8 of Holm [14], we get:

Lemma 2.3.7. A# is a topological structure, and is Hausdorff iff Φ(A,T )

is 1-1. The topology of A# is coarser than the original topology , T .

As in Theorem 8 of [14] (and as usual in general topology), “coarser”
need not imply “strictly coarser”.

It may happen that the only compatible compactification is the one-
element compactification (A is “minimally almost periodic”), in which case
bA will be a singleton and A# will be indiscrete. In the case where Φ is 1-1
(A is “maximally almost periodic”), we may simply identify A# as a subset
of bA, with the subspace topology.

An important special case in general topology is where L is empty, so we
just have a topological space (A, T ). If T is a completely regular Hausdorff
topology, then (b(A, T ), Φ(A,T )) is just the natural embedding of A into its
Čech compactification. In this (and only this) case, if we identify A as a
subset of bA, then the subspace topology agrees with T . There are regular
Hausdorff spaces (A, T ) all of whose maps into compact Hausdorff spaces
(equivalently, into [0, 1]) are constant; for these, b(A, T ) is a singleton and
A# is indiscrete.

On the other hand, we may consider examples where A is just an abstract
structure, given the discrete topology. If A is finite, then bA = A, Φ is
the identity map, and A# is discrete. It is possible for A# to be discrete
for infinite A as well; for example, if L contains only constants and unary
functions, then bA = βA, the Čech compactification of the discrete space
A. If A is an infinite group (or just a homogeneity), then A# cannot be
discrete (since it is dense in bA, which is dense in itself by homogeneity),
but it might well be indiscrete, since by von Neumann and Wigner [25], [26],
there are groups A of all infinite cardinalities such that bA is a singleton.
If A is an abelian group or a boolean algebra, then Φ is 1-1, so A# is
Hausdorff. However, if A = (Z; +,−, 0,∨,∧), then bA is a singleton, since
the only compact lattice ordered abelian group is a singleton. Even if A =
(A;∨,∧) is just a lattice, A# may be indiscrete, although A# is Hausdorff
for distributive lattices (see Section 3.5). If A contains functions of arity
greater than one, then bA will be βA only in trivial cases, but there are
many examples where A# is discrete. For example, if A = (A;∨,∧) is any
total order, then A# is discrete (see Section 3.4), but bA is a compact LOTS,
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and hence will not be βA unless A is finite. The fact that bA is indeed a
LOTS in this case is a special case of Lemma 2.3.9 below.

Lemma 2.3.8. If ψ(v1, . . . , vn) is a positive logical formula, and X is a
compact structure, then {(x1, . . . , xn) ∈ Xn : X |= ψ(x1, . . . , xn)} is closed
in Xn.

P r o o f. Induct on ψ. For the quantifier step, use the fact that the pro-
jection maps are both open and closed.

Lemma 2.3.9. If ψ(v1, . . . , vn) is a positive logical formula, (X,ϕ) is a
compactification of A, and A |=ψ(a1, . . . , an), then X |=ψ(ϕ(a1), . . . , ϕ(an)).

P r o o f. Induct on ψ. In the step for ∀, use Lemma 2.3.8 and the fact
that ran(ϕ) is dense.

For example, if A = (A;∨,∧) is a totally ordered lattice (total order
is expressed by ∀xy(x ∨ y = x OR x ∨ y = y)), then bA must be totally
ordered as well. Or, if A = (A; ·, i, 1) is a group, then, as expected, bA is a
group also. The ψ in Lemma 2.3.9 may include existential quantifiers. For
example, suppose that A = (A; ·) is a group (now, L = {·}). Then bA is still
a group, since the group axioms expressed using · (e.g., ∀xy∃z(xz = y)) are
all positive. In fact, one can identify b(A; ·) with b(A; ·, i, 1) (see Section 2.8).

As with groups, homomorphisms are continuous with respect to the Bohr
topology; this is easy to prove directly from the definition of A#:

Lemma 2.3.10. If A,B are topological structures and ψ : A → B is a
homomorphism which is continuous with respect to the given topologies on
A,B, then ψ is also continuous as a map A# → B#.

The following lemma lets us prove general results about bA by consider-
ing only the case where A# is Hausdorff (equivalently, Φ is 1-1).

Lemma 2.3.11. Let A be any topological structure, and let Φ = ΦA : A→
X = bA. On A, define a ∼ b iff Φ(a) = Φ(b). This defines a quotient map
Φ/∼ : A/∼→ X. Then Φ/∼ is 1-1, and b(A/∼) = (X,Φ/∼).

Remark 2.3.12. One may define a function f : A→ C to be almost pe-
riodic iff f = g ◦ ΦA for some continuous g : bA→ C. Then, trivially, A# is
the coarsest topology which makes all almost periodic functions continuous.
However, we do not see how to define “almost periodic” directly (e.g., in
terms of the translates of f having compact closure in C(A)), without refer-
ence to bA, and thereby use this as an independent way of defining the Bohr
compactification, as one can for groups (or for some varieties of semigroups;
see [16]).

Remark 2.3.13. One might allow L to have predicate symbols as well
as function symbols, but the theory is a little messier that way. The usual
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definition of topological structure requires that the interpretation of each
predicate be closed (but not necessarily open). There are two definitions of
“homomorphism” in the literature. Say ϕ : A → B and p is a binary pred-
icate. One definition requires only that pA(a1, a2) ⇒ pB(ϕ(a1), ϕ(a2)), but
in that case, the requirement of compatibility in Definition 2.3.1 would be
trivial (we could always take pX to be cl(ϕ(pA))), so that the Bohr topology
and Bohr compactification would be computed by ignoring the predicates.
Another definition requires that pA(a1, a2) ⇔ pB(ϕ(a1), ϕ(a2)). But then
we lose the fact that every structure has at least one compactification (the
one-element structure), so that bA would not always be defined.

We next consider the possibility that a given compact structure may be
its own Bohr compactification:

Definition 2.3.14. Let X be a compact structure and let Xd be X with
the discrete topology. X is self-Bohrifying iff b(Xd) is just the identity map
into X. X is self-compactifying iff there is no other compact Hausdorff topol-
ogy on the structure X making all the functions of X continuous.

Note that X is self-Bohrifying iff every homomorphism from X into any
compact structure Y is continuous iff (Xd)# is the original compact topol-
ogy on X. Clearly, self-Bohrifying implies self-compactifying, but the reverse
implication can fail. For example, every compact total order X (viewed ei-
ther as a lattice or as a semilattice) is self-compactifying, since the only
possible compact topology is the usual LOTS topology, but X cannot be
self-Bohrifying if it is infinite, since (Xd)# is discrete (by Lemma 3.4.8). In
fact, by Lawson [23], every compact semilattice and every compact lattice
is self-compactifying.

Every finite structure is self-Bohrifying, but the infinite ones are a bit
unusual. No infinite abelian group is self-Bohrifying (since |b(Xd)| = 22|X|)
(see Theorem 3.3.1), but there are infinite non-abelian examples. A finite-
dimensional compact connected group is self-Bohrifying iff it is a semisimple
Lie group (for example, SO(3)) (Anderson–Hunter [2]; see also van der Waer-
den [34]). There are also zero-dimensional self-Bohrifying groups (see Moran
[24]). Observe that any compact group of the form Xω with |X| > 1 can-
not be self-Bohrifying because it will have discontinuous homomorphisms
into itself. However, such a product can be self-compactifying. For example,
SO(3)ω is self-compactifying, since by Stewart [31], every compact connected
group with a totally disconnected center is self-compactifying.

Semilattices and distributive lattices are self-Bohrifying iff they have no
infinite chains. There is a large class of semilattice examples satisfying this
condition, but for distributive lattices, this condition holds iff the lattice is
finite (see Theorems 3.4.23 and 3.5.12).
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It is also possible to consider just 0-dimensional compactifications, so we
define:

Definition 2.3.15. The 0-dimensional Bohr compactification of a topo-
logical structure A is the maximal 0-dimensional compatible compactifica-
tion, (b0A, Φ0,A). A#0 is the topology on A induced by Φ0,A.

There is such a maximal compactification, since if one computes the
∨

in
the lattice of compactifications (as in Lemma 2.2.7), the

∨
of 0-dimensional

compactifications is 0-dimensional. The following lemma identifies the rela-
tionship between b0A and bA:

Lemma 2.3.16. Let A be any topological structure, and define Γ : bA →
b0A so that b0A ≤Γ bA (see Definition 2.2.1). Then Γ−1(Γ (x)) is the con-
nected component of x for all x ∈ bA.

P r o o f. Obtain ∆ : bA→ X by collapsing each connected component in
bA to a point, and let ϕ = ∆ ◦ ΦA : A → X. Since b0A is 0-dimensional, Γ
must be constant on each component of bA, so there is a Γ ′ : X→ b0A with
Γ = Γ ′ ◦∆. Then (b0A, Φ0) ≤Γ ′ (X, ϕ). But since X is zero-dimensional and
b0A is maximal, Γ ′ is a bijection, so that Γ also is the map which collapses
components to points.

In some cases, bA turns out to be 0-dimensional, in which case b0A = bA.
This happens, for example, when A is a discrete abelian group of finite ex-
ponent n (satisfying ∀n(xn = 1)), in which case every compactification is
0-dimensional. If A is just an infinite discrete set A, then not every com-
pactification of A is 0-dimensional, but the maximal compactification is
0-dimensional; here, b0A = bA = βA.

For semilattices and distributive lattices (see Sections 3.4 and 3.5), it is
useful to study b0A, which always has a fairly simple description, and then
to investigate conditions which imply b0A = bA.

If A is a discrete group, then b0A is obtained as the
∨

(in the lattice
of compactifications) of homomorphisms into finite groups, and A#0 is the
coarsest topology which makes all cosets of normal subgroups of finite index
clopen. For example, Q#0 is indiscrete.

2.4. Uniformities. One can also define the Bohr topology on a struc-
ture using uniformities. This may seem more elegant, as the whole construc-
tion resides just on the set A, and we do not need to deal with arbitrary
representatives of equivalence classes of compactifications. Since the two pre-
sentations turn out to be equivalent in a fairly straightforward way, studying
uniformities provides no new information, so we shall keep our remarks brief
here.



Bohr compactifications 113

Let A be any non-empty set and let ∆ = ∆(A) = {(x, x) : x ∈ A}. If
U ⊆ A × A, let Ux = {y : (x, y) ∈ U}. A uniformity on A is a non-empty
family U ⊆ P(A × A) satisfying the properties described in Kelley [19].
Let T(U) be the topology generated by the uniformity U : W ∈ T(U) iff
∀x ∈ W∃U ∈ U(Ux ⊆ W ). In general, there may be many uniformities
which generate the same topology. However, every compact Hausdorff space
(X, T ) has a unique uniformity U such that T(U) = T ; namely, U = {U ⊆
X × X : ∆ ⊆ U◦}. This uniformity is always intended when discussing
compact Hausdorff spaces.

Now, if (X,ϕ) is a compactification of the set A, then it induces a uni-
formity U on A, generated by sets of the form {(a, b) : (ϕ(a), ϕ(b)) ∈ V },
where V is a neighborhood of ∆ in X × X. This U is totally bounded (see
[19], p. 198). Conversely, given any totally bounded uniformity on A, one
may, by the standard completion process, construct a compactification which
induces it. Thus, if we let L(A) be the lattice of all totally bounded uni-
formities on A, then L(A) and K(A) (see Definition 2.2.3) are isomorphic
lattices.

Now, it is also easy to prove directly that L(A) is a complete lattice; then,
as an alternative presentation, one could work directly with uniformities. Let
(A, T ) be a topological structure. We may say that a uniformity U on A is
compatible with (A, T ) iff every function of A is uniformly continuous with
respect to U and T(U) is coarser than T . One may then define the Bohr
uniformity as the finest (i.e., take the

∨
in L(A)) uniformity compatible

with (A, T ). Equivalently, the Bohr uniformity is the uniformity induced by
the Bohr compactification.

Remark 2.4.1. In the case of groups, the construction of the Bohr topol-
ogy by constructing the Bohr uniformity first is due to Alfsen and Holm [1],
and was the approach later emphasized by Holm [14] (see Theorem 8) for
arbitrary structures. For groups, this approach seems very natural, since
one may read the uniformity directly from the topology (via translations of
neighborhoods of the identity), and then retrieve the usual definition of the
Bohr topology as the finest totally bounded topological group topology. We
do not know if this is possible for more general classes of structures; see also
Remark 3.1.6.

2.5. Cardinal functions. We recall some basic results on weight and
character in compact Hausdorff spaces (see Juhász [17]). If T is a topology
on X, then w(X, T ), or just w(X), denotes the weight of the topology (the
least size of a basis). If F is a closed subset of X, then χ(F,X) denotes the
character of F ; that is, the least size of a local base of neighborhoods of F
in X. Then χ(X) denotes sup{χ({x}, X) : x ∈ X}.
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Lemma 2.5.1. If X is any infinite compact Hausdorff space, then

(1) χ(X) ≤ w(X) = w(X ×X) = χ(∆,X ×X) ≤ |X| ≤ 2χ(X),

where ∆ = {(x, x) : x ∈ X}. If X is homogeneous, then

(2) χ(X) ≤ w(X) = w(X ×X) = χ(∆,X ×X) ≤ |X| = 2χ(X).

We remark that χ(∆,X ×X) is the weight of the natural uniformity on
X (see Section 2.4). The last “≤” in (1) is by Arkhangel’skĭı’s Theorem, and
then the last “=” in (2) follows by applying the Čech–Posṕı̌sil Theorem.

The two “≤”s in (2) may or may not be “=”s, depending on the ho-
mogeneous X. For example, if X is the double arrow space ([0, 1] × {0, 1},
ordered lexically) with the endpoints deleted (to make it homogeneous), then
χ(X) = ℵ0, while w(X) = |X| = 2ℵ0 . However, if X supports a group oper-
ation (or in fact, a quasigroup, or just a homogeneity), then χ(X) = w(X);
see Corollary 3.1.2. Obviously, the two “≤”s cannot both be “=”s, and
under GCH, one of them must be an “=”. However, if κ is any cardinal
with ℵ0 < κ < 2ℵ0 , there is a separable compact homogeneous X with
χ(X) = ℵ0 < w(X) = κ < |X| = 2ℵ0 ; just modify the double arrow con-
struction to double only the points in K ∩ (0, 1), where K is a subfield of R
of size κ.

Now, in (1), assume that X = bA, where A is a discrete structure,
|A| = ℵ0, and |L| ≤ ℵ0. One may then say more about the relevant car-
dinal functions. First, either w(X) ≤ ℵ0 or w(X) = 2ℵ0 (see Corollary
2.10.20). If A is an abelian group, then w(X) = 2ℵ0 (see Theorem 3.3.1),
but this is not true for groups in general (see Section 3.3). It is true for
groups (and, in fact, homogeneities; see Lemma 3.1.3) that whenever bA is
infinite, w(A#) = χ(A#) = w(bA) = χ(bA). These equalities do not hold for
arbitrary structures. For example, if L = ∅, then A# is discrete, so its weight
and character are countable, while bA = βA, so w(bA) = χ(bA) = 2ℵ0 . If A
is a total order, then again A# is discrete, but χ(bA) = ℵ0; w(bA) can be
either ℵ0 or 2ℵ0 , depending on the order type (see Corollary 3.4.19). Fur-
thermore, it is possible to have A countable and L finite and ℵ0 < w(A#) =
χ(A#) < 2ℵ0 ; see Section 3.6.

2.6. Maps into standard structures. If G is an abelian group, then
G# and bG can be computed by considering only homomorphisms into the
circle group, not arbitrary compact structures. We consider the extent to
which this is possible for general structures.

Definition 2.6.1. A class K of compact (Hausdorff) structures is ade-
quate for a compact structure X iff for each x, y ∈ X with x 6= y, there is a
Y ∈ K and a continuous homomorphism ϕ from X to Y with ϕ(x) 6= ϕ(y).



Bohr compactifications 115

Definition 2.6.2. A class K of compact (Hausdorff) structures is ade-
quate for a topological structure A iff K is adequate for bA.

Often, to verify that K is adequate for A, we do not compute bA explic-
itly, but rather verify that K is adequate for every compact model for some
positive logical sentences true in A. For example, using the standard theory
of representations for compact groups, we see that {U(n) : 1 ≤ n < ω} is ad-
equate for every topological group; likewise, U(1) = T alone is adequate for
every abelian group. The two-element algebra is adequate for every boolean
algebra (see Corollary 3.5.17). Given an adequate K, one may use maps into
structures in K to compute the Bohr compactification:

Lemma 2.6.3. Assume that K is a set of compact structures adequate for
the topological structure A. Let ϕα : A→ Xα (for α ∈ κ) list all continuous
homomorphisms which take A into a structure in K. Then A# is the coarsest
topology on A which makes all the ϕα continuous. Let Φ be the natural
product map from A into

∏
α Xα, and let X be the closure of the range of

Φ. Then (X, Φ) = (bA, ΦA).

For example, the Bohr compactification of every abelian group is a sub-
group of some power of the circle group. If L = ∅, then {[0, 1]} is adequate
for all compact Hausdorff spaces; then, if A is a completely regular space,
Lemma 2.6.3 just expresses Tikhonov’s embedding of A into a cube.

We do not have a simple description of classes adequate for an arbitrary
structure, but one can bound the size of such classes by a Löwenheim–Skolem
argument; the following theorem implies that the class can always be taken
to be a set , of size no more than 2max(ℵ0,|L|).

Theorem 2.6.4. The class of all compact structures of weight no more
than max(ℵ0, |L|) is adequate for every topological L-structure.

P r o o f. Fix a compact structure X, and let κ = max(ℵ0, |L|). Fix dis-
tinct a, b ∈ X. We shall produce a Y of weight ≤ κ and a continuous
homomorphism ϕ : X→ Y with ϕ(a) 6= ϕ(b).

Since X is compact Hausdorff, we may assume that X ⊆ [0, 1]P for some
P , and then, by extending all the functions of X arbitrarily, we may assume
that X = [0, 1]P . Our Y will be [0, 1]Q for some Q ⊆ P with |Q| ≤ κ, and ϕ
will be the projection πQ : [0, 1]P → [0, 1]Q. It is thus sufficient to find such
a Q with πQ compatible with X and πQ(a) 6= πQ(b).

In general, if g : Xn → M and R ⊆ P , say R is big enough for g iff
g(x1, . . . , xn) = g(y1, . . . , yn) whenever each πR(xi) = πR(yi). Observe that
if M is compact metric and g is continuous, then there is a countable R
which is big enough for g. It follows that we may find a Q with |Q| ≤ κ such
that πQ(a) 6= πQ(b) and Q is big enough for πq ◦ fX for each q ∈ Q and each
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f ∈ L. Hence, Q is big enough for πQ ◦ fX for each f , which implies that πQ
is compatible with X.

Definition 2.6.5. A discrete L-structure A is nice iff L is countable and
there is a single compact second countable L-structure X with {X} adequate
for A.

Even when L and A are countable, A could fail to be nice (see Example
3.6.7). One may apply Theorem 2.6.4 and take the product of all second
countable L-structures to produce a single X with {X} adequate for A.
However, this X might well have weight 2ℵ0 .

Many of the structures commonly studied turn out to be nice; one usually
proves this by producing one X which is adequate for a whole variety. For
example, groups are nice, taking X to be

∏
0<n<ω U(n), and boolean algebras

are nice, taking X to be the two-element algebra (see Corollary 3.5.17).

2.7. Substructures. As usual, A ⊆ B means not only that A ⊆ B,
but also that all the functions of A are the restrictions of the corresponding
functions of B; in the case of topological structures, A ⊆ B means also that
the topology on A is the relative topology inherited from B. If we are given
a structure B, and a subset A of B which is closed under the functions
of B, then B¹A denotes the structure A on A obtained by restricting all
these functions to A (and relativizing the topology in the case of topolog-
ical structures). Using ΦB to denote the Bohr compactification, (bB, ΦB),
we see that ΦB¹A (i.e., (cl(ΦB(A)), ΦB¹A)) is some compactification of A,
but it need not be the maximal compactification, ΦA. We investigate condi-
tions which imply that ΦB¹A does equal ΦA, and in particular, we prove a
“Löwenheim–Skolem” result (Corollary 2.7.4), saying that given B, we can
find a countable A ⊆ B with ΦB¹A = ΦA.

Lemma 2.7.1. Suppose that A and B are topological structures, A ⊆ B,
and K is a class of compact structures adequate for A. Suppose further that
whenever ϕ : A→ X is a continuous homomorphism from A to some X ∈ K,
there is an extension ψ of ϕ to a continuous homomorphism from B to some
compact structure Y (not necessarily in K) with X ⊆ Y. Then ΦB¹A = ΦA.

This lemma is easily proved from the computation of bA as a product
(see Lemma 2.6.3). For discrete abelian groups, K = {T} and we can always
let Y = X = T . An application with Y 6= X occurs naturally in semilattices
(see Theorem 3.4.26).

For discrete structures, the proof of Theorem 2.7.3 will verify the hy-
pothesis of Lemma 2.7.1 whenever A is algebraically closed in B.

Definition 2.7.2. A system of equations over a structure A is a finite
set, σ(~x), of equations formed by using the symbols of L, together with the
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elements of A as constants, together with some variables ~x = (x1, . . . , xn).
A solution of σ(~x) in A is an n-tuple ~a = (a1, . . . , an) such that σ(~a) is
true in A. If A ⊆ B, then A is algebraically closed in B iff every system of
equations over A which has a solution in B also has a solution in A.

Theorem 2.7.3. If A ⊆ B, where A and B are discrete structures, and
A is algebraically closed in B, then ΦB¹A = ΦA.

P r o o f. By Lemma 2.7.1, it is sufficient to show that whenever ϕ : A→
X is a homomorphism from A to some compact structure X, there is an
extension ψ of ϕ to a homomorphism from B to X. We shall obtain ψ by
using an ultrafilter to take a limit.

Let ∆ be the set of all equations true in B. So, elements of ∆ can be
written as τ1(~b) = τ2(~b), where ~b is a tuple (possibly empty) of elements of
B \A and τ1(~x) = τ2(~x) is an equation over A with τ1(~b) = τ2(~b) true in B.

Let I be the set of all finite subsets of ∆, and let U be an ultrafilter over
I such that {i ∈ I : j ⊆ i} ∈ U for all j ∈ I.

Each i ∈ I can be written as i = σ(~b), where σ(~x) is a system of equations
over A and ~b = (b1, . . . , bn) is a tuple of elements of B \A which is a solution
of σ(~x). For each such i ∈ I, let C(i) be some tuple ~a of elements of A which
is also a solution of σ(~x). Always choose ~a such that whenever bp = bq, we
also have ap = aq; this is possible because we could always add xp = xq
to σ.

For b ∈ B \A, let Fb : I → X be such that whenever i = σ(~b) with b = bq
and ~a = C(i), we have Fb(i) = ϕ(aq). If b is not among the bq, then choose
Fb(i) arbitrarily, but note that the set of i for which this happens is not in
U . If a ∈ A, set Fb(i) = ϕ(a) for all i.

Now, define ψ(b) to be the U -limit of Fb; that is, ψ(b) is the unique x ∈ X
such that {i : Fb(i) ∈ V } ∈ U for every neighborhood V of x. It is easy to
verify that ψ is a homomorphism and extends ϕ.

One may also view this proof as embedding B into an ultrapower, AI/U ,
and then using U -limits to extend a homomorphism ϕ : A→ X to AI/U .

Corollary 2.7.4. If L is countable and B is a discrete L-structure,
then there is a countable A ⊆ B such that ΦB¹A = ΦA, and hence A# is the
same as the topology of B# restricted to A.

In the cases of semilattices (Theorem 3.4.26) and discrete abelian groups,
ΦB¹A = ΦA holds for all A ⊆ B, and furthermore A is closed in B#, but
these facts do not hold in general, even for groups. For example, B could be
one of the groups described by von Neumann and Wigner [25], [26], where
B# is indiscrete. If A is an infinite abelian subgroup, then A# is Hausdorff,
and hence strictly finer than the topology of B# restricted to A. Also, if



118 J. E. Hart and K. Kunen

A is any proper subgroup of B, then A is not closed in B#, so we do not
expect to get A closed in Corollary 2.7.4.

2.8. Reducts. If L0 ⊆ L, and A is an L-structure, then one defines
the reduct, A¹L0, to be the L0-structure obtained from A by applying the
forgetful functor; A is called an expansion of A¹L0. Now, (bA)¹L0 is some
compactification of A¹L0, but is not necessarily maximal. So, we have

Lemma 2.8.1. Suppose that L0 ⊆ L and A is a topological L-structure.
Then (bA)¹L0 ≤ b(A¹L0), and (A¹L0)# is finer than A#.

In some cases, A will be an “inessential” expansion of A¹L0, in which
case we can identify bA with b(A¹L0). The notion of “inessential” here differs
somewhat from the usual notion from logic. Constants are always inessential,
as are functions defined explicitly by terms (Lemma 2.8.3). But functions
defined “implicitly” by logical formulas are only sometimes inessential; not
always, as in first-order logic (see Theorem 2.8.5 and following discussion).

Definition 2.8.2. If A is an L-structure, F : An → A, and τ(x1, . . . , xn,
z1, . . . zm) is a term of L, then F is definable by τ on A iff for some fixed
d1, . . . , dm ∈ A, we have F (a1, . . . , an) = τA(a1, . . . an, d1, . . . , dm) for all
elements a1, . . . , an ∈ A.

Lemma 2.8.3. Assume that L ⊆ L′, A′ is a topological L′-structure, and
A = A′¹L. Assume also that every symbol of L′ \ L is either a constant
symbol or denotes a function on A which is definable on A by some term of
L. Then every compactification compatible with A is compatible with A′ as
well ; hence, bA = (bA′)¹L, and the topologies A# and A′# are the same.

For example, for groups, b(A; ·, i, 1) = b(A; ·, i). But also, if we fix any
a ∈ A and define σ(x) = a−1xa, then b(A; ·, i, σ, 1) = b(A; ·, i).

Next, we consider functions defined implicitly by logical formulas.

Definition 2.8.4. If A is an L-structure and F : An → A, then F is posi-
tively definable on A iff for some positive formula φ(x1, . . . , xn, y, z1, . . . , zm)
of L, and some fixed d1, . . . , dm ∈ A, we have:

1. For all a1, . . . , an, b ∈ A, A |= φ(~a, b, ~d ) iff F (~a) = b.
2. The logical sentence ∀~x∃!y φ(~x, y, ~d ) is provable from the positive

logical sentences true of ~d in A.

A function defined by a term is a special case of a positively definable
function, since here φ(x1, . . . , xn, y, z1, . . . , zm) is just τ(~x, ~z ) = y.

Note that ∀~x∃!y φ(~x, y, ~d ) is not a positive sentence, so its truth in A
does not imply its truth in bA. However, if it happens to be provable from
positive sentences true in A, then ∀~x∃!y φ(~x, y, Φ(~d )) will be true in bA by
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Lemma 2.3.9, so that φ(~x, y, Φ(~d )) will define a function in bA. This function
will be continuous, since its graph is closed by Lemma 2.3.8. Hence,

Theorem 2.8.5. Assume that L ⊆ L′, A′ is a topological L′-structure,
and A = A′¹L. Assume also that every symbol of L′ \ L is either a constant
symbol or denotes a function on A which is positively definable on A by a
formula of L. Then every compactification compatible with A is compatible
with A′ as well ; hence, bA = (bA′)¹L, and the topologies A# and A′# are
the same.

For example, for groups, b(A; ·) = b(A; ·, i, 1), since i is positively defin-
able on (A; ·) (using y = i(x) iff x ·y = 1). Theorem 2.8.5 applies because the
sentence ∀x∃!y(x·y = 1) is provable from positive facts true about 1 in (A; ·)
(namely, the associative law, ∀x(x · 1 = x), and ∀x∃y(x · y = 1)). This argu-
ment also works for some (but not all) varieties of loops (see Lemma 3.2.1).
A similar argument (see Lemma 3.4.1) shows that b(A;∨,∧) = b(A;∧) =
b(A;∨) whenever (A;∨,∧) is a total order; but this does not hold in gen-
eral for distributive lattices, and in fact fails for boolean algebras, although
for boolean algebras, it is true that b(A;∨,∧) = b(A;∨,∧,′ ); see Theorem
3.5.19.

One must take a bit of care in stating Theorem 2.8.5. Say L′ = {p, L,R}
and L = {L,R}, and let A′ be a discrete infinite pairing (see Section 2.1).
Then bA′ is also a pairing, so it is homeomorphic to its square, whereas in
A = (A;L,R), all functions are unary, so bA = βA, which is not homeomor-
phic to its square. On A, the function p is definable by a positive L-formula,
φ(x1, x2, y) (namely, x1 = L(y) & x2 = R(y)), but ∀x1x2∃!yφ(x1, x2, y) is
not provable from the positive logical sentences true in A, and in fact is false
in bA. For an example with loops, see Example 3.2.2.

Note that there is no Löwenheim–Skolem theorem for languages. That is,
if A is countable but L is uncountable, there need not be a countable L0 ⊂ L
such that the topology (A¹L0)# is the same as A#; see Example 3.6.4.

2.9. Products. The product of two topological structures is a topolog-
ical structure in a natural way, and the product of two compactifications is
a compactification of the product.

Lemma 2.9.1. Suppose that A and B are topological structures for L.
Then bA × bB ≤ b(A ×B), and hence the product topology , A# ×B#, is
coarser than (A×B)#.

For semigroups with an identity element 1, we have bA×bB = b(A×B);
deLeeuw and Glicksberg [16] does this in the commutative case, Holm [14]
does it for groups, and Hušek and de Vries [15] has a common generalization
to [16, 14]. The key idea is to use the 1 to build compactifications of the
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factors from compactifications of the product. In Lemma 2.9.3, we abstract
what is needed for this idea to work in our current setting, and then we
describe some cases where we can prove bA× bB = b(A×B) by using other
results in this paper, even though Lemma 2.9.3 does not apply directly. One
cannot assert in general that bA × bB = b(A × B); this fails for infinite
sets (L = ∅), since βA× βB 6∼= β(A× B), and hence it fails for semigroups
without a 1, since if x · y = 0 for all x, y, then bA = βA.

Definition 2.9.2. An element e of a structure A is an idempotent iff
for all functions f of arity ≥ 1, we have e = f(e, e, . . . , e). If ◦ is some
binary function on A, then e is an identity element with respect to ◦ iff
e ◦ x = x ◦ e = x for all x ∈ A.

Lemma 2.9.3. Suppose that A and B are any topological structures for
L, and there are binary operations ◦A and ◦B on A and B respectively ,
defined by the same term of L (in the sense of Definition 2.8.2). Suppose
further that there are idempotents 0A ∈ A and 0B ∈ B such that 0A, 0B are
identity elements in A,B respectively , with respect to ◦A, ◦B respectively.
Then bA × bB = b(A ×B), and hence the product topology , A# ×B#, is
the same as (A×B)#.

P r o o f. We suppress the subscripts A and B. Since ◦ is defined by the
same term in both A and B, it is defined likewise on A × B and on any
compactification of these structures. So, by Lemma 2.8.3, we may deal with
◦ and 0 as if they are symbols of L; likewise, we may assume that L has no
constant symbols other than 0. Let Φ = ΦA×B : A ×B → X = b(A ×B).
It is sufficient to produce compactifications ψ : A → Y and χ : B → Z
and prove that Φ ≤ ψ × χ. Let ψ(a) = Φ(a, 0) and χ(b) = Φ(0, b); these are
homomorphisms into X because 0 is an idempotent and L has no constant
symbols other than 0. Let Y = cl(ran(ψ)) ⊆ X and Z = cl(ran(χ)) ⊆ X.
Now, by definition of “≤”, it is sufficient to produce a continuous Γ : X ×
X → X such that Γ ((ψ×χ)(a, b)) = Φ(a, b) holds for all (a, b) ∈ A×B. So,
let Γ (y, z) = y ◦ z. Then, applying the fact that 0 is an identity element, we
get Γ ((ψ× χ)(a, b)) = Γ (ψ(a), χ(b)) = Φ(a, 0) ◦Φ(0, b) = Φ((a, 0) ◦ (0, b)) =
Φ((a ◦ 0), (0 ◦ b)) = Φ(a, b).

This lemma obviously applies to groups and loops. It also applies to
rings (with ◦ as +), since 0 happens to be an idempotent with respect
to ·, but in fact, by Lemma 3.1.4, it will apply to every structure which
contains a group operation—or even just a homogeneity—plus arbitrary
other functions. Using this, it will apply also to quasigroups; see Section 3.2.

In a lattice, every element is an idempotent, so that Lemma 2.9.3 applies
immediately whenever the lattice has a least element 0 (which is an identity
element with respect to ∨) or a greatest element 1 (which is an identity
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element with respect to ∧). However, it turns out that bA× bB = b(A×B)
does hold for all semilattices and all lattices; see Sections 3.4 and 3.5. In
fact, our counter-examples to Lemma 2.9.3, if one drops the assumption
on idempotent (Example 3.6.8), or if one drops the assumption on identity
(Example 3.6.9), both seem a bit unnatural, so perhaps there is a better
version of Lemma 2.9.3 which applies to a wider class of structures.

2.10. Cp theory. A number of facts about Bohr topologies may be
proved using notions of Cp theory. We recall some relevant definitions; see
Arkhangel’skĭı [3] for further details.

Definition 2.10.1. If H,K are topological spaces, then Cp(H,K) is the
set of continuous functions from H to K, given the topology of pointwise
convergence (i.e., regarding Cp(H,K) as a subset of KH with the usual
product topology).

All compactifications in the sense of Section 2.2 may be viewed in the
context of Cp theory as follows:

Definition 2.10.2. A compactification (X,ψ) of a set A is a Cp(H,K)
compactification iff ψ is equivalent to some (Y, ϕ), where K is compact Haus-
dorff, ϕ : A→ Cp(H,K), and Y is the closure of ran(ϕ) in KH .

Note that Y need not be a subset of Cp(H,K). Every compactification
of A is a Cp(H, [0, 1]) compactification for some (discrete) H, since every
compact Hausdorff space can be embedded in a cube. We shall see that
Cp(H, [0, 1]) compactifications have additional properties when H has some
additional properties, such as compactness. First, we note (Lemma 2.10.4)
that we can often replace K by [0, 1].

Definition 2.10.3. Q is the Hilbert cube, [0, 1]ω.

Lemma 2.10.4. If K is compact and second countable, then eachCp(H,K)
compactification is equivalent to a Cp(H × (ω + 1), [0, 1]) compactification.

P r o o f. We start with ϕ : A→ Cp(H,K). Since K can be embedded in
Q, we may as well assume that K = Q. Now, define Γ : QH → [0, 1]H×(ω+1)

so that Γ (x)(h, n) = (x(h))n · 2−n and Γ (x)(h, ω) = 0. Observe that Γ is
1-1 and continuous, and that Γ takes Cp(H,Q) into Cp(H × (ω+ 1), [0, 1]).
Then ϕ is equivalent to the Cp(H× (ω+ 1), [0, 1]) compactification, Γ ◦ϕ.

In the case of Bohr topologies, a natural H to use is Hom(A,X):

Definition 2.10.5. If A and X are L-structures, then Hom(A,X) is
the set of homomorphisms from A into X. If X is given a topology, then
Hom(A,X) ⊆ XA is given the usual product topology.
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Lemma 2.10.6. If X is a compact L-structure and A is a discrete L-struc-
ture, then Hom(A,X) is closed in XA, and is hence a compact Hausdorff
space.

Definition 2.10.7. An Eberlein–Grothendieck space is any topological
space homeomorphic to a subspace of Cp(H, [0, 1]) for some compact H.

Theorem 2.10.8. If L is countable and A is a nice L-structure (Defini-
tion 2.6.5), then (bA, ΦA) is a Cp(H, [0, 1]) compactification for some com-
pact H, where w(H) ≤ max(|A|,ℵ0).

P r o o f. Fix a compact second countable L-structure X with {X} ade-
quate for A. By Lemma 2.6.3, the Bohr compactification of A is equivalent
to the evaluation map Ψ : A → XHom(A,X), where Ψ(a)(ϕ) = ϕ(a). Note
that ran(Ψ) ⊆ Cp(Hom(A,X), X), so that the Bohr compactification is a
Cp(Hom(A,X), X) compactification. Finally, let H = Hom(A,X)× (ω + 1),
and apply Lemma 2.10.4.

So, Theorem 2.10.8 implies that if A is nice and A# is Hausdorff, then
A# is an Eberlein–Grothendieck space. Note that we are not claiming that
cl(ran(ΦA)) is a subset of Cp(H, [0, 1]); that would imply that bA is an
Eberlein compactum (see §III.3 of [3]); if A is a group, then bA is a compact
group, which cannot be an Eberlein compactum unless it is second countable
(see Theorem III.3.12 of [3]).

If A is not nice, then we cannot just use one X, but as long as the
language is countable, we can apply Theorem 2.6.4 to compute bA using only
Hom(A,X) for various second countable X. Each such X can be topologically
embedded into Q, and then the functions of X can be continuously extended
to functions on all of Q, so that one can compute bA by just considering
topological structures with domain Q. This fact enables us to prove for bA
some (but not all) of the theorems true for nice structures. We can code all
second countable compactifications of a discrete structure A as follows:

Definition 2.10.9. For symbols s ∈ L, let Fs = Q when s is a constant,
and let Fs = C(Qn, Q) whenever s is a function symbol of arity n > 0. Give
C(Qn, Q) its usual metric topology. Let P = PL =

∏
s∈L Fs, with the usual

product topology.

Note that elements p ∈ P are the compact L-structures with domain
Q. The co-ordinate ps, for s ∈ L, is what we were formerly calling sp, the
interpretation of the symbol s in the structure p.

Definition 2.10.10. If A is any discrete L-structure then Homq(A) ⊆
PL ×QA is the set of pairs (p, ϕ) such that ϕ : A→ p is a homomorphism.

Here, “homomorphism” means that ϕ(cA) = pc for each constant c ∈ L,
and that ϕ(fA(a1, . . . , an)) = pf (ϕ(a1), . . . , ϕ(an)) for each f ∈ L of arity
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n > 0 and each a1, . . . , an ∈ A. Unlike the Hom(A,X) of Definition 2.10.5,
Homq(A) is not compact, but it is still of a type useful for Cp theory. Recall
that a Polish space is a separable complete metric space. A more general
class of spaces are the ones of type Kσδ; these are spaces which are Fσδ sets
in some compact Hausdorff space. Every Polish space is Kσδ because it can
be embedded as a Gδ in Q. Both classes, Polish and Kσδ, are closed under
countable products and closed subspaces.

Lemma 2.10.11. Homq(A) is closed in PL × QA. Hence, Homq(A) is
of type Kσδ whenever L is countable, and is Polish whenever A is also
countable.

Theorem 2.10.12. If L is countable and A is any discrete L-structure,
then (bA, ΦA) is a Cp(H, [0, 1]) compactification, where H is of type Kσδ

and w(H) ≤ max(|A|,ℵ0). If A is countable, then H is Polish.

P r o o f. Let D = QHomq(A). Make D into a compact L-structure, D, by
setting cD(p, ϕ) = pc and (fD(d1, . . . , dn))(p, ϕ) = pf (d1(p, ϕ), . . . , dn(p, ϕ)).
Define Φ : A → D so that (Φ(a))(p, ϕ) = ϕ(a). Observe that Φ : A → D is
a homomorphism, and that ran(Φ) ⊆ Cp(Homq(A), Q) ⊆ D. So, Φ (that is
(cl(ran(Φ)), Φ)) is a compactification of A. In fact, it is the maximal (Bohr)
compactification, since it dominates every compactification ϕ of A into a
structure p with domain Q; that is, (p, ϕ) ≤Γ Φ, where Γ : D → Q is
just projection; Γ (d) = d(p, ϕ). This shows that bA is a Cp(Homq(A), Q)
compactification. Now, let H = Homq(A)× (ω + 1).

We now study some aspects of Cp theory which are relevant to Bohr
topologies. We shall see that the nice and non-nice structures for a countable
language share most of the same basic properties, but the following theorem
is an exception, and can sometimes be used to prove that a structure is
not nice. This type of argument was discovered twice: once by L. T. Ram-
sey [30] in the context of Bohr topologies on abelian groups, and once by
Arkhangel’skĭı (see [3], Theorem II.2.2) in the context of Cp theory. We give
a proof, since neither reference has precisely the form we wish to quote.

Theorem 2.10.13. Assume that A is an Eberlein–Grothendieck space.
Then for each E ⊆ A, p ∈ A, and n ∈ ω, we may choose a finite subset ,
T (E, p, n) ⊆ E, with the following property : Whenever p ∈ En for each n,
then p ∈ cl(

⋃
n∈ω T (En, p, n)).

P r o o f. We may assume that A = Cp(H, [0, 1]), where H is compact.
For p ∈ A, finite n, ε > 0, and u1, . . . , un ∈ H, let U(p;u1, . . . , un; ε) be the
set of all a ∈ A such that |a(ui)− p(ui)| < ε for each i = 1, . . . , n. Then the
U(p;u1, . . . , un; ε) form an open base at p.

Fix E, p, n. If p 6∈ E, we set T (E, p, n) = ∅. If p ∈ E then for each
~u = (u1, . . . , un) ∈ Hn, we may choose a point a(~u) ∈ U(p; ~u; 2−n) ∩ E.
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Since each a ∈ A is continuous, {~v ∈ Hn : a(~u) ∈ U(p;~v; 2−n)} is an
open neighborhood of ~u in Hn. By compactness, finitely many of these open
neighborhoods cover Hn, so we may choose T (E, p, n) to be a finite subset
of E such that U(p;~v; 2−n) ∩ T (E, p, n) 6= ∅ for all ~v ∈ Hn.

Now, if p ∈ En for each n, then we have ensured that every neighborhood
of p meets

⋃
n∈ω T (En, p, n).

In particular, as in [3], the Fréchet–Urysohn fan (or hedgehog), defined
in Definition 3.6.5, is not an Eberlein–Grothendieck space, so that Example
3.6.7 will provide a countable structure for a finite language which is not
nice.

However, we shall see now that two other consequences of this theorem
turn out to apply also to non-nice A.

First, Theorem 2.10.13 implies that every Eberlein–Grothendieck space
has countable tightness, but in fact we have:

Lemma 2.10.14. Cp(H, [0, 1]) has countable tightness whenever Hn is
Lindelöf for all n.

This is Theorem II.1.1 of [3]; the proof is as above, but choose countable
sets rather than finite sets, and apply the result with all En = E. Note that
whenever H is Kσδ, all Hn are also Kσδ, and hence Lindelöf, so

Corollary 2.10.15. A# has countable tightness whenever L is count-
able.

Second,

Definition 2.10.16. A topological space X has the splitting property iff
whenever E ⊆ X and p ∈ E \E, then there are disjoint R,S ⊂ E such that
p ∈ R ∩ S.

One may apply Lemma 2.10.13 to prove that Eberlein–Grothendieck
spaces have the splitting property: let R =

⋃
n∈ω Rn and S =

⋃
n∈ω Sn,

where R0 = S0 = ∅, each Rn+1 = Rn ∪ T (E \ (Rn ∪ Sn), p, n), and each
Sn+1 = Sn ∪ T (E \ (Rn+1 ∪ Sn), p, n). In the case of A# for an abelian
group A, this was exactly the argument of L. T. Ramsey [30]. However, the
splitting property is weaker:

Lemma 2.10.17. If H is a Kσδ space, then Cp(H, [0, 1]) has the splitting
property.

P r o o f. Fix p ∈ E \ E. Since all Hn are Lindelöf, we may assume that
E is countable (by Corollary 2.10.14). Let I = {R ⊆ E : p 6∈ R}. Then I
is an ideal on E. Also, using the fact that H is Kσδ, one may show that I
is an analytic subset of P(E) (which we identify with 2E). It follows that I
cannot be a prime ideal, so we can find disjoint R,S 6∈ I.
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Corollary 2.10.18. If the language is countable and A# is Hausdorff ,
then A# has the splitting property.

If A is an infinite abelian group, then there is an infinite D ⊆ A such
that D (the closure of D in bA) is homeomorphic to βD [11]. This is also
true of some (but not all) semilattices and distributive lattices (see Example
3.5.20). By Corollary 2.10.18, no such D can have any limit points in A#.
The methods of [11] and [21] easily show that if E is any infinite subset
of the discrete abelian group A, then there is an infinite D ⊆ E such that
D homeomorphic to βD; hence w(E) = 2ℵ0 if E is countable. For various
other structures, including some non-abelian groups (see Section 3.3), such
closures can have countable weight. However, by Corollary 2.10.20 below,
such closures cannot have weight strictly between ℵ0 and 2ℵ0 .

Theorem 2.10.19. Let H be a Polish space, E ⊆ Cp(H, [0, 1]) with |E| =
ℵ0, and let X be the closure of E in the cube [0, 1]H . Then either w(X) ≤ ℵ0

or w(X) = 2ℵ0 .

P r o o f. This proof is patterned after the proof that every uncountable
analytic set has size 2ℵ0 . Let κ = w(X); then κ ≤ 2ℵ0 because X is sep-
arable. Assume κ > ℵ0, and we shall show that κ = 2ℵ0 . We consider the
Banach space C(X) = C(X,R), with ‖ · ‖ the usual sup norm, and d(·, ·)
the associated metric distance. Note that κ = w(C(X)). For each u ∈ H,
let πu : X → [0, 1] be projection. We shall produce a perfect P ⊆ H such
that {πu : u ∈ P} is discrete in C(X), proving w(C(X)) ≥ 2ℵ0 .

Let M = {πu : u ∈ H} ⊆ C(X). By the Stone–Weierstrass Theorem, the
algebra generated by M is dense in C(X), so that M cannot be separable. It
follows that we can fix an ε > 0 such that whenever S is a countable subset
of M , there is a πu ∈M with d(πu, S) ≥ ε.

Call Z ⊆ H small iff there is a countable S ⊆M such that d(πu, S) < ε
for all u ∈ Z. So, H is not small, and the small subsets of H form a σ-ideal.

Fix an integer N > 0 such that 1/N < ε/2. Let Ii = [i/N, (i + 1)/N ],
for i < N . Observe that if Z ⊆ H is non-small, then for some a ∈ E and
some i, j < N , we have i + 1 < j and the sets {u ∈ Z : a(u) ∈ Ii} and
{u ∈ Z : a(u) ∈ Ij} are both non-small: If not, then for each a ∈ E, let Pa
be the set of i such that {u ∈ Z : a(u) ∈ Ii} is non-small. Note that Pa is
either a singleton or a set of two adjacent integers, so if Ja =

⋃{Ii : i ∈ Pa},
then Ja is an interval of length either 1/N or 2/N . But then Z = {u ∈ Z :
∀a ∈ E[a(u) ∈ Ja]} ∪ ⋃a∈E{u ∈ Z : a(u) 6∈ Ja}, which expresses Z as a
countable union of small sets, a contradiction.

It follows that we may choose, for each s ∈ 2<ω, a closed Zs ⊆ H and
an as ∈ E such that:

(1) Z() = H.
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(2) diam(Zs) < 1/n whenever s has length n > 0.
(3) Zs is not small.
(4) For some i, j: i + 1 < j, and Zs0 = {u ∈ Zs : as(u) ∈ Ii} and

Zs1 = {u ∈ Zs : as(u) ∈ Ij}.
Here, diam refers to the diameter with respect to some (fixed) complete

metric on H. By (2), for each f ∈ 2ω, there is a uf ∈ H with
⋂
n∈ω Zf¹n =

{uf}. By (4), ‖πuf − πug‖ ≥ 1/N whenever f, g are distinct. Thus, M has
a discrete set of size 2ℵ0 , so κ = 2ℵ0 .

Corollary 2.10.20. If A is any structure for a countable language,
(bA, Φ) is its Bohr compactification, and E is a countable subset of A, then
the weight of the closure of Φ(E) in bA is either 2ℵ0 or countable.

P r o o f. By Corollary 2.7.4, we may assume that A is countable. Now,
apply Theorems 2.10.12 and 2.10.19.

Question 2.10.21. Suppose that A is a nice discrete structure for a
countable language, E is a countable subset of A, and a ∈ E is not iso-
lated in E (with the topology inherited from A#). Must χ(a,E) be either 2ℵ0

or countable?

Note that Example 3.6.7 provides a counter-example for non-nice struc-
tures. Question 2.10.21 seems to be open even for abelian groups, but observe
that in that case we must have χ(a,E) ≥ p (the least cardinal κ such that
MA(κ) fails for some σ-centered partial order; see, e.g., Fremlin [10]); oth-
erwise, there would be a subsequence S of E which converges to a, which is
impossible, since there must be a subsequence of S whose closure in bA is
homeomorphic to βN.

3. SPECIFIC STRUCTURES

We now consider these generalities for some specific structures. We con-
sider two general types of structures. One is homogeneities (see Definition
2.1.5) and related structures, such as loops and groups. The other is semi-
lattices and distributive lattices, and special varieties thereof, such as total
orders and boolean algebras. In addition, in Section 3.6, we describe some
special structures cooked up to provide counter-examples.

3.1. Homogeneities. These give us enough structure to prove that
products and cardinal functions work out nicely.

Lemma 3.1.1. Let (X; f, g) be a compact homogeneity , and fix a “base-
point” 0. For each open neighborhood W of 0, let UW = {(x, y) : f(x, 0, y)
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∈W}. Then the set of all UW , for W an open neighborhood of 0 in X, is a
basis for ∆ in X ×X.

P r o o f. Fix any open V with ∆ ⊆ V ⊆ X ×X. By compactness, W =
X \ {f(x, 0, y) : (x, y) 6∈ V } is open. Then 0 ∈W and ∆ ⊆ UW ⊆ V .

This plus Lemma 2.5.1 implies the following corollary, which also follows
from the fact that X is dyadic:

Corollary 3.1.2. Let (X; f, g) be any infinite compact homogeneity.
Then w(X) = χ(X).

Lemma 3.1.3. Suppose A = (A; f, g, . . .) is any topological structure with
bA infinite and (A; f, g) a homogeneity. Then w(A#) = χ(A#) = w(bA) =
χ(bA).

P r o o f. We may assume that A# is Hausdorff (or else, pass to a quotient
by Lemma 2.3.11), and now we may identify A as a sub-structure of bA,
with the induced topology. By homogeneity, all points of A have the same
character in A#, and all points of bA have the same character in bA. We
already know (Corollary 3.1.2) that w(bA) = χ(bA). Since A is dense in bA
and the spaces involved are all regular, χ(A#) = χ(bA) = w(bA). Finally,
χ(A#) ≤ w(A#) ≤ w(bA) = χ(A#).

Note that every element of a homogeneity is an idempotent with respect
to f, g (that is, f(x, x, x) = g(x, x, x) = x). Using this, we obtain:

Lemma 3.1.4. Suppose that L contains 3-place function symbols f, g,
and that A and B are topological L-structures, and are homogeneities (with
respect to f, g). Then b(A×B) = bA×bB, and hence the topology (A×B)#

is the same as the product topology , A# ×B#.

P r o o f. We may assume that L also contains a symbol 0 (interpreted ar-
bitrarily in A,B). Set x◦y = f(0, x, g(0, 0, y)), and note that x◦0 = 0◦x = x.
Thus, the result would follow by Lemma 2.9.3, except that 0 may fail to be
an idempotent with respect to the other functions besides f, g. To fix this
problem, let L1 be obtained from L by replacing each function h ∈ L\{f, g}
with a new symbol h′ of the same arity, and let L2 = L∪L1. Interpret h′ in
A and B by the formula h′(x1, . . . , xn) = f(h(0, . . . , 0), 0, h(x1, . . . , xn)), so
that 0 will be idempotent with respect to h′. We have now defined, in the
obvious way, structures A1,B1 for L1 and A2,B2 for L2. Lemma 2.9.3 ap-
plies immediately to show b(A1×B1) = bA1×bB1. But also, we can retrieve
h from h′ by the formula h(x1, . . . , xn) = g(0, h(0, . . . , 0), h′(x1, . . . , xn)), so
applying Lemma 2.8.3, we get bA1 = bA2 = bA, and likewise for B and
A×B.

The following lemma, together with Lemma 2.2.6, implies that a com-
pactification of A is completely determined by its induced topology on A:
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Lemma 3.1.5. Suppose that A = (A; f, g) is a topological homogeneity ,
and that (X,ϕ) and (Y, ψ) are two compactifications of A compatible with A.
If Tϕ ⊆ Tψ, then (X,ϕ) ≤ (Y, ψ).

P r o o f. Define Γ ⊆ Y × X by Γ = cl{(ψ(a), ϕ(a)) : a ∈ A}. If we can
show that in fact Γ is a function, we will have (X,ψ) ≤Γ (Y, ϕ). So, fix
y ∈ Y and x, z ∈ X with (y, x) ∈ Γ and (y, z) ∈ Γ . We shall show that
x = z.

Let D be a directed set, with the nets 〈(ψ(aα), ϕ(aα)) : α ∈ D〉 con-
verging to (y, x) and 〈(ψ(bα), ϕ(bα)) : α ∈ D〉 converging to (y, z). Fix a
“basepoint” 0 ∈ A. In Y , we have ψ(f(aα, 0, bα)) → f(y, ψ(0), y) = ψ(0),
so in A, f(aα, 0, bα) → 0 in the topology Tψ and hence in Tϕ, so that
in X, ϕ(f(aα, 0, bα)) → ϕ(0). But also, ϕ(f(aα, 0, bα)) → f(x, ϕ(0), z), so
f(x, ϕ(0), z) = ϕ(0), so x = z.

Remark 3.1.6. Note that this lemma does not give us a simple criterion
for deciding whether a given topology T on A is indeed of the form Tϕ for
some compactification (X,ϕ); the lemma only says that this compactifica-
tion is unique if it exists. In the case of groups, the criterion is simply that
T be totally bounded , in the sense that for each open set U ⊆ A, we have
all of A covered by a finite number of translates of U ; then T corresponds
to a totally bounded uniformity; see Remark 2.4.1. It is not clear to what
extent this can be generalized to other varieties of loops.

The fact that homogeneities are homogeneous gives us:

Lemma 3.1.7. Suppose that L contains 3-place function symbols f, g,
and that A is a discrete L-structure which is a homogeneity (with respect
to f, g). Suppose also that there is a homomorphism ψ from A onto the
discrete L-structure B, where |B| = ℵ0 and B# is Hausdorff. Then A#

is homeomorphic to ω × A# (i.e. to a disjoint sum of ω copies of the
space A#).

P r o o f. Note that if X is any countably infinite homogeneous Hausdorff
space, then X is homeomorphic to ω ×X. If we examine the proof of this
fact, applied in the case X = B#, we shall see that in this case, the homeo-
morphism lifts to A# via the continuous (by Lemma 2.3.10) ψ : A# → B#.

First, we observe that if U, V are any non-empty open subsets of B#,
then ψ−1(U) and ψ−1(V ) are homeomorphic open subsets of A#. To prove
this, apply homogeneity of B# (and the fact that there are no isolated
points) to choose points un, vn ∈ B and clopen sets Un, Vn ⊂ B (for n ∈ ω)
so that un ∈ Un, vn ∈ Vn, U is the disjoint union of the Un, V is the disjoint
union of the Vn, and each Un is homeomorphic to Vn via the map x 7→
f(un, vn, x). Then choose pn, qn ∈ A with ψ(pn) = un and ψ(qn) = vn. Now,
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ψ−1(Un) will be homeomorphic to ψ−1(Vn) via the map y 7→ f(pn, qn, y),
so that ψ−1(U),ψ−1(V ) are homeomorphic.

Finally, apply homogeneity again to partition B into non-empty clopen
sets Wn (for n ∈ ω). Then each ψ−1(Wn) and ψ−1(B) = A are homeomor-
phic, so that we have A# partitioned into ω sets homeomorphic to A#.

This lemma is most useful when A is an abelian group, in which case
we get ψ,B for free (see Lemma 3.3.3). For non-abelian groups, we cannot
delete the assumption about ψ,B. For example, let A = SO(3), viewed as
a discrete group. By van der Waerden [34], bA = A# is just SO(3) with its
usual compact topology (i.e., SO(3) is self-Bohrifying (Definition 2.3.14)).
Thus, A# is not homeomeorphic to ω ×A#.

3.2. Quasigroups and loops. Every quasigroup (A; ·, \, /) has a loop
operation, defined via isotopy, as in Bruck [5]. That is, fix any a, b ∈ A and
define

(∗) x ◦ y = (x/b) · (a\y);

then ◦ is a loop operation with identity a · b. It follows (see Hofmann [12]
or Chapter IX of [7]) that every topological space X which supports a con-
tinuous quasigroup operation (X; ·, \, /) also supports a continuous loop
operation. However, it need not be the case that we can read the quasigroup
operation back from the loop operation. For example, if A is infinite and ◦ is
any loop operation on A, then there are 2|A| different quasigroup operations
which yield ◦ via (∗), at most |A| of which can be first-order definable from
◦. So, we are not able to reduce the Bohr compactification of a quasigroup
to the Bohr compactification of a loop.

Likewise, every quasigroup has a defined homogeneity: set f(x, y, z) =
z · (x\y) and g(x, y, z) = z/(y\x); in the case of groups, this reduces to
f(x, y, z) = g(x, y, z) = zx−1y. Hence, topological quasigroups are homoge-
neous. Furthermore, b(A; ·, \, /) = b(A; ·, \, /, f, g) by Lemma 2.8.3, so ap-
plying Lemma 3.1.4 we have b(A×B) = bA× bB for quasigroups. It is not
clear whether b(A; ·, \, /) = b(A; f, g) in general, although this is certainly
true for loops.

If (X; ·, \, /) is a quasigroup and X has a compact Hausdorff topol-
ogy which makes the function · continuous, then \ and / must also be
continuous, since their graphs are closed. However, one cannot in general
identify b(A; ·, \, /) with b(A; ·), since the · of b(A; ·) may fail to be a quasi-
group operation (see Example 3.2.2 below). In the case of IP-loops, one can
make this identification. An IP-loop, or a loop with the inverse property, is
a loop with a unary function i satisfying the equations x/y = x · i(y) and
y\x = i(y) · x (so that also 1/y = y\1 = i(y)). Clearly, for these we have
b(A; ·, \, /) = b(A; ·, i), but one can drop the i as well:
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Lemma 3.2.1. Suppose that (A; ·, \, /) is an IP loop and ϕ : A → X is
a compactification of the set A which is compatible with ·. Then ϕ is also
compatible with \ and /. Hence, b(A; ·) = b(A; ·, \, /).

P r o o f. We apply Theorem 2.8.5; it is sufficient to show that the inverse
operation, i, is positively definable from · and 1. Now, we can define i by
y = i(x)⇔ x ·y = 1. Furthermore, the statement ∀x∃!y[x ·y = 1] is provable
from ∀z[z1 = 1z = z] and ∀x∃z∀y[z(xy) = (yx)z = y], which are positive
statements about · and 1 which are true in all IP loops.

This lemma does not hold for loops in general, as the next example
shows. This example also shows that some care must be used in applying
Theorem 2.8.5. In any loop, one may define / and \ by positive formulas
involving just ·; that is, y = x1/x2 ⇔ yx2 = x1; but one may not be able
to prove ∀x1x2∃!y[yx2 = x1] from positive statements true about · and 1 in
the loop.

Example 3.2.2. Let A denote the rational points in the circle group T ,
and let ϕ : A → T be the identity map. Then there is a commutative loop
operation ◦ on A such that ϕ is compatible with ◦, but not with its \ and /.
Furthermore, the ◦ of b(A; ◦) is not a quasigroup operation.

P r o o f. View T as R/Z, so that A = Q/Z. If f : R → R is continuous
and periodic with period 1, we can define ◦ on T by

x ◦ y = x+ y + f(x)f(y) (mod 1).

Fix an irrational γ ∈ (0.4, 0.6). Then choose f together with rationals 0 =
a0 < a1 < a2 < . . . < γ < . . . < b2 < b1 < b0 = 1 so that an ↗ γ and
bn ↘ γ, and

(1) 0 ≤ f(x) ≤ 0.1 for all x, and f(γ) = 0.1, but f(x) < 0.1 for all
x ∈ [0, 1] \ {γ}.

(2) On each [an, an+1] and [bn+1, bn], f is linear, with rational slope in
[−10,+10].

(3) f(a0) = f(a1) = f(b1) = f(b0) = 0.
(4) f has slope exactly −10 on [b2, b1].

So, ◦ : T × T → T is a continuous function, and, by item (2), ◦ takes A×A
to A. For any c ∈ [0, 1], define Lc(x) = x + c + f(x)f(c). Then Lc(0) = c
and Lc(1) = 1 + c by (3). If c is rational, then Lc has positive slope by
(1) and (2), so Lc, viewed as a map on Q/Z, is invertible. Hence, ◦ is a
quasigroup operation on A. It is a loop because 0 is an identity element.
But also, by (1) and (4), Lγ(x) = x + γ + f(x) · 0.1 is constant on [b2, b1],
so that ◦ is not a quasigroup operation on T . Hence, \ and / on A do not
extend continuously to functions on T ; that is, the closures of their graphs
in T 3 fail to be functions.
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Now, let Φ : (A; ◦)→ (X; ◦) = b(A; ◦), and let Γ : X → T with ΓΦ = ϕ.
In T , let d be the constant value of Lγ on [b2, b1]. In X, let U = Γ−1(b2, b1),
and fix any δ with Γ (δ) = γ. Let V = δ ◦ U . If v = δ ◦ x ∈ V , then Γ (v) =
γ ◦Γ (x) = d. Hence, Γ (V ) = {d}. If (X; ◦) were a quasigroup, then V would
be open, and we could cover X with translates of V : X = x1◦V ∪. . .∪xn◦V .
But then T = Γ (X) = {Γ (x1) ◦ d, . . . , Γ (xn) ◦ d}.

3.3. Groups. If G is any topological group, then it has a defined ho-
mogeneity, so that w(G#) = χ(G#) = w(bG) = χ(bG) by Lemma 3.1.3. In
some cases, we can compute this cardinal. Most notably, we have:

Theorem 3.3.1. If G is any discrete infinite abelian group, then w(bG)
= 2|G| and |bG| = 22|G| .

Of course, the fact that |bG| = 2w(bG) follows immediately from homo-
geneity (see Lemma 2.5.1). This theorem is due to Kakutani [18], but was
improved by Hartman and Ryll-Nardzewski [11], who showed that G con-
tains an I0-set, A, of size |G|. This set has the property that A is discrete in
G#, and is C∗-embedded in bG (equivalently, its closure is homeomorphic
to βA).

This theorem can fail for non-abelian groups, since by von Neumann
and Wigner [26], there are discrete groups G in all infinite cardinalities such
that G# is indiscrete (so w(bG) = 1). Furthermore, by Moran [24], there is
a countably infinite group G such that G# is Hausdorff and w(bG) = ℵ0.
Note that for countable G, w(bG) cannot be strictly between ℵ0 and 2ℵ0 by
Corollary 2.10.20.

For Moran’s G, the topology of G# is characterized as the unique count-
able regular space with no isolated points of weight ℵ0. This raises the
general question:

Question 3.3.2. If G,K are groups, G#,K# are Hausdorff , and |G| =
|K|, when are G#,K# homeomorphic (just as topological spaces)?

In the case of abelian groups, this is an old question of van Douwen, and
some partial results are known: Say |G| = |K| = κ ≥ ℵ0. Then G#,K# are
Hausdorff and have all the same cardinal functions; for example, w(G#) =
w(K#) = 2κ. However, there are examples (for each κ) where G# and K#

fail to be homeomorphic (see [20]). But there are also cases where G,K
are non-isomorphic but G#,K# are homeomorphic. Two classes of such
examples are known. One class is provided by Comfort, Hernández, and
Trigos [8]. Another is provided by:

Lemma 3.3.3. If G is a discrete infinite abelian group, then G# is home-
omorphic to ω ×G#. Hence, if G is a subgroup of the abelian group K and
[K : G] is finite, then G# and K# are homeomorphic.
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P r o o f. Note that there must be a countably infinite B and a homo-
morphism ψ from G onto B. To see this, choose C,D such that C ≤ G,
C ≤ D, D is divisible, and |C| = |D| = ℵ0; then let ψ : G → D extend
the identity map on C, and let B = ran(ψ). Thus, the result follows from
Lemma 3.1.7.

3.4. Semilattices. In this discussion, we emphasize ∧-semilattices,
which are structures of the form (A;∧) where ∧ is associative, commutative,
and idempotent (x∧x = x). These define a partial order by x ≤ y ⇔ x∧y =
x. Of course, we may apply our results to ∨-semilattices, which have exactly
the same axioms, but the binary function is called ∨ and the order is called
≥. So, in discussing lattices, the results apply both to the ∧ and the ∨.

For total orders, it makes no difference whether we consider the struc-
tures to be lattices or semilattices:

Lemma 3.4.1. If A is totally ordered by ≤, and ∧ and ∨ are the corre-
sponding lattice operations, then b(A;∨,∧) = b(A;∧) = b(A;∨).

P r o o f. Apply Theorem 2.8.5. ∨ is positively definable from ∧ by

x1 ∨ x2 = y ⇔ ψ(x1, x2, y),

where ψ is

x1 ∧ y = x1 AND x2 ∧ y = x2 AND (y = x1 OR y = x2).

The statement ∀x1x2∃!y ψ(x1, x2, y) is provable from positive statements
(such as ∀xy(x ∧ y = x OR x ∧ y = y)), which are true about ∧ in A.

In any lattice, the ∨ is first-order definable from the ∧ (since ≤ is), but it
may not be positively definable, and we need not have b(A;∨,∧) = b(A;∧);
see Theorem 3.5.19.

Bohr topologies for abelian groups are handled via the Pontryagin Du-
ality Theorem. There are similar duality theorems for a number of other
algebraic varieties; see Davey [9]. Among these are the Priestly duality [28],
[29] for bounded distributive lattices and the duality of Hofmann–Mislove–
Stralka [13] for semilattices. In these dualities, the two-element lattice or
semilattice, 2, plays the role of the circle group for abelian groups. Using
homomorphisms into 2, one can prove that the Bohr topology for semilat-
tices and distributive lattices is Hausdorff.

Now, the Pontryagin duality is with all compact abelian groups, and this
enables us to prove that the circle group is adequate for abelian groups. How-
ever, the dualities for the lattice varieties are with compact zero-dimensional
structures, so we do not get the analogous result that 2 is adequate for these
varieties, since the Bohr topology is computed using homomorphisms into
all compact structures. So, Hom(A,2) will give a fairly explicit description
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of b0A (see Definition 2.3.15) for all semilattices (Theorem 3.4.17) and for
all distributive lattices (Theorem 3.5.14). Then we shall examine some cases
in which bA = b0A. In particular, this holds for boolean algebras and total
orders, so that 2 is adequate for discrete boolean algebras and discrete total
orders.

Of course, 2 is not adequate for compact total orders, since the order
may be connected. It is easy to see that [0, 1] is adequate for compact total
orders, and we shall show that if A is any discrete lattice or semilattice, then
[0, 1] is adequate for A iff 2 is adequate for A.

Definition 3.4.2. A compact semilattice (X;∧) has the Lawson property
iff the semilattice [0, 1] is adequate for X.

Many equivalents are known for this property; see [6]. Not every compact
semilattice has the Lawson property (by Lawson [22]), and this implies that
there is a discrete semilattice A for which b0A < bA (see [6] and Lemma
3.4.12).

We begin by listing some elementary properties of compact orders and
semilattices; see, e.g., [6], [13] for proofs.

Definition 3.4.3. A compact order is a pair (X;≤), where X is a com-
pact Hausdorff space and ≤ is a partial order on X which is closed in X×X.
If S ⊆ X, then S↓ = {x ∈ X : ∃y ∈ S[x ≤ y]} and S↑ = {x ∈ X : ∃y ∈ S
[x ≥ y]}. If x ∈ X, then x↓ = {x}↓ and x↑ = {x}↑.

For example, the ≤ induced by a compact semilattice is a compact order,
by continuity of ∧.

Lemma 3.4.4. Suppose (X;≤) is a compact order and F is a closed subset
of X. Then F↓ and F↑ are closed.

Lemma 3.4.5. Suppose that (X;∧) is a compact semilattice.

(1) If U ⊆ X is open then U↑ is open.
(2) If K ⊆ X is closed , E ⊆ X, and x ∧ y ∈ K for all distinct x, y ∈ K,

then all limit points of E lie in K.
(3) If E ⊆ X is infinite and x ∧ y = c for all distinct x, y ∈ E, then c is

the unique limit point of E.
(4) If K ⊆ X is clopen, and M is the set of minimal elements of K, then

M is finite, K↑ =
⋃{m↑ : m ∈M}, and m↑ is clopen for each m ∈M .

(5) Suppose that {xα : α < κ} ⊆ X. Let D be [κ]<ω ordered by subset ,
and for each d ∈ D, let xd =

∧{xα : α ∈ d}. Then
∧{xα : α < κ} exists in

X, and the net 〈xd : d ∈ D〉 converges to it.
(6) If (Y ;∧) is another compact semilattice and ϕ : X → Y is a continu-

ous homomorphism, then for any {xα : α < κ} ⊆ X, we have ϕ(
∧
α<κ xα) =∧

α<κ ϕ(xα).



134 J. E. Hart and K. Kunen

By (5)–(6), compact semilattices are complete, and homomorphisms be-
tween them are complete homomorphisms. (4) is essential to the duality
results with compact 0-dimensional semilattices. We do not need the fact
the details of this theory, but we do need the fact that homomorphisms into
2 separate points (Lemma 3.4.7).

Definition 3.4.6. If (X;∧) is a semilattice and b ∈ X, define γb : X → 2
so that γb(x) is 1 if x ≥ b and 0 if x 6≥ b.

Lemma 3.4.7. Each γb is a homomorphism. If (X;∧) is a compact 0-
dimensional semilattice, and x, y ∈ X with x 6= y, then for some b ∈ X, γb
is continuous and γb(x) 6= γb(y).

P r o o f. To get a continuous γb (so b↑ is clopen), use Lemma 3.4.5(4).

Now, just the fact that γb is a homomorphism lets us prove:

Lemma 3.4.8. If A = (A;∧) is a discrete semilattice, then A# is Haus-
dorff. If C ⊆ A is a chain, then C is relatively discrete in A#.

P r o o f. A# is Hausdorff because the γb separate points.
Now, let C be a chain, and fix b ∈ C. Then γ−1

b {1} is a clopen set
containing b and no smaller element of C. Define another homomorphism
ψ(x) = sup{γc(x) : c ∈ C & c > b}. Then ψ−1{0} is a clopen set containing
b and no greater element of C.

It is immediate from Lemma 3.4.7 that we may compute b0A by taking
the

∨
(in the lattice of compactifications) of all homomorphisms into 2. But

in fact we get the same thing if we consider all homomorphisms into [0, 1]:

Lemma 3.4.9. Suppose that (A;∧) is a semilattice and ϕ : A → X is
some compactification of A, where (X;∧) is a compact semilattice which is
totally ordered. Then ϕ ≤ b0(A;∧).

P r o o f. Let Y = X × 2, ordered lexically. So, Y is obtained by doubling
all the points of X. Let Γ : Y → X be the undoubling: Γ (x, i) = x. Then
Γ is continuous. The map ϕ lifts to ψ : A → Y defined by ψ(a) = ϕ(a, 0).
Then ψ (as a map into cl(ran(ψ))) is a compactification of A and ϕ ≤Γ ψ.
Since Y is 0-dimensional, ψ ≤ b0(A;∧).

Corollary 3.4.10. b0A =
∨

(Hom(A,2)) =
∨

(Hom(A, [0, 1])) for every
semilattice A.

Here, the
∨

is in the lattice of compactifications.

Corollary 3.4.11. If (A;∧) is a discrete semilattice and b(A;∧) has
the Lawson property , then b(A;∧) = b0(A;∧), and is hence 0-dimensional.

Conversely, as in [6], pp. 22–23, we have:
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Lemma 3.4.12. If (A;∧) is a discrete semilattice and b(A;∧) = b0(A;∧),
then every compactification of (A;∧) has the Lawson property.

P r o o f. Since b(A;∧) is a compact 0-dimensional semilattice, it has the
Lawson property (by Lemma 3.4.7). Now, just use the fact that the Lawson
property is preserved under continuous homomorphic images; this fact is
easily proved from the equivalents to the Lawson property given in [6].

Corollary 3.4.13. There is a countable discrete semilattice (A;∧) such
that b0(A;∧) < b(A;∧).

P r o o f. By Lawson [22], there is a compact second countable semilattice
(X;∧) which does not have the Lawson property. Let A be a countable dense
sub-semilattice of X, and apply Lemma 3.4.12.

Corollary 3.4.11 may be used to prove that b(A;∧) = b0(A;∧) when A
has finite breadth:

Definition 3.4.14. For n finite, a semilattice (A;∧) has breadth ≤ n iff
whenever E ⊆ A and n < |E| < ℵ0, there is an F ⊂ E with |F | = n such
that

∧
F =

∧
E.

Lemma 3.4.15. If (A;∧) has breadth ≤ n, then b(A;∧) = b0(A;∧).

P r o o f. b(A;∧) also has breadth ≤ n, since this property is expressed
by a positive logical sentence. Thus, b(A;∧) has the Lawson property by [6],
Theorem 2.30.

The clopen sets in a topological space form a semilattice (in which ∧ is ∩).
Every semilattice can be isomorphically embedded into such a semilattice.
The standard way of doing this, as indicated in the proof of the next lemma,
can be used to compute b0A.

Lemma 3.4.16. Let (B;∧) be a semilattice. Then there is a compact 0-
dimensional Hausdorff space X and a sub-semilattice A of the clopen sets
of X such that B is isomorphic to A, and for K ∈ A,

(∗) K \
⋃
{L ∈ A : L 6⊇ K} 6= ∅.

P r o o f. Let X = Hom(B,2), which we regard as a subset of 2B , with
the usual product topology. Define Ψ(b) = {ϕ ∈ X : ϕ(b) = 1}. Then Ψ is
a 1-1 homomorphism from B into the semilattice of clopen subsets of X, so
A is just the range of Ψ . (∗) holds because each K = Ψ(b) in A contains the
element γb and γb 6∈ Ψ(a) for any a 6≥ b.

Condition (∗) implies that Ψ is not a lattice homomorphism; that is, if
a 6≤ b and b 6≤ a and a ∨ b happens to exist, then Ψ(a) ∪ Ψ(b) is a proper
subset of Ψ(a ∨ b). For the analogous embedding to use for lattices in the
computation of the Bohr compactification, see Section 3.5.
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Theorem 3.4.17. Suppose that (A;∧) is a sub-semilattice of the semi-
lattice of clopen subsets of the compact Hausdorff space X, and assume that
(∗) above holds. Give P(X) the usual product topology by identifying it with
2X . A is also a sub-semilattice of P(X). Let Z be the closure of A in P(X).
Then Z = b0(A;∧).

P r o o f. It is sufficient to show that whenever ϕ : A→ 2 is a semilattice
homomorphism, ϕ extends to a continuous homomorphism on P(X), and
hence on Z. Let E =

⋂{K ∈ A : ϕ(K) = 1} \ ⋃{L ∈ A : ϕ(L) = 0}. By
(∗) and compactness, E 6= ∅, so fix x ∈ E. Define ψ : P(X) → 2 so that
ψ(S) = 1 iff x ∈ S. Then ψ extends ϕ and is continuous with respect to the
product topology on P(X).

In particular, for total orders, A is a chain of clopen sets, and we get its
closure by taking unions and intersections. Note that an increasing union of
clopen sets is open but not closed, while a decreasing intersection of clopen
sets is closed but not open. This gives us the following simple description of
bA, which may also easily be verified directly from the basic definitions:

Lemma 3.4.18. If A is a total order , then A# is discrete, and bA = b0A is
computed as follows: First , let A ⊆ Y , where Y is the Dedekind completion.
Then replace each element y ∈ Y \A by two points {y+, y−}, except in the
cases where y is the first or the last element of Y . Finally , for each point
z ∈ A, add a new point z+ directly above z if z is a limit from above, and
also add a new point z− < z if z is a limit from below. So, if z is a limit
point from both sides, it becomes a triple of points: z− < z < z+.

Then applying the standard Hausdorff analysis of total orders gives:

Corollary 3.4.19. If A is a countably infinite total order , then χ(bA) =
ℵ0. If A contains a copy of the rationals, then w(bA) = |bA| = 2ℵ0 . If not ,
then w(bA) = |bA| = ℵ0.

One way to ensure b0A = bA is to bound the breadth (Lemma 3.4.15). In
the opposite direction, we may bound the chain length. In fact, if all chains in
A are finite, then we shall show (Theorem 3.4.23) that b0A = bA = A; that
is, there is a natural compact topology on A which makes the semilattice
self-Bohrifying (see Definition 2.3.14).

Lemma 3.4.20. Let A be any Hausdorff topological semilattice. Then each
a↑ is closed. If a < b and there is no c with a < c < b, then a↑ \ b↑ is closed.

P r o o f. a↑ = {x : x ∧ a = a} is closed by continuity of ∧. If a↑ \ b↑ fails
to be closed, then there is an x ∈ b↑ such that x ∈ cl(a↑ \ b↑). Then, by
continuity of ∧, we have b = b∧x ∈ cl(b∧ (a↑\ b↑)). However, b∧ (a↑\ b↑) =
{x : a ≤ x < b} = {a}, so we would have b ∈ cl{a}.
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Lemma 3.4.21. Let (A;∧) be a semilattice with no infinite chains. Let T
be the coarsest topology which makes all a↑ clopen. Then

(1) T is Hausdorff.
(2) Each a ∈ A has a base consisting of sets of the form a↑ \ (b1↑ ∪ . . .∪

bn↑), where n ∈ ω and each bi > a.
(3) T is compact.
(4) T is coarser than every other Hausdorff topological lattice topology

on A.

P r o o f. (1) is clear, and holds in any partial order.
Next, note that since A has no decreasing ω-sequences, it is actually a

complete semilattice. Hence, A must have a least element, 0. Also, if a, c ∈ A
have some upper bound, they must have a least upper bound, a ∨ c.

Now, for (2), use the fact that the a↑ and A \ b↑ form a sub-base for T ,
plus the fact that a1↑ ∩ a2↑ is either ∅ or (a1 ∨ a2)↑.

Suppose (3) fails. Then A = 0↑ is not compact in the topology T . Since
A has no increasing ω-sequences, there is some maximal a ∈ A such that
a↑ is not compact in the topology T . Let U be any open cover of a↑ with
no finite subcover, and let a ∈ a↑ \ (b1↑ ∪ . . . ∪ bn↑) ⊆ U ∈ U , where each
bi > a. But then, by maximality, we can get a finite subcover for each bi↑,
and hence for a↑, yielding a contradiction.

For (4), suppose that T ′ is a topological lattice topology. It is sufficient
to prove that each b↑ is clopen in T ′. If not, then fix b such that b↑ is not
clopen, but d↑ is clopen for all d < b, and then fix a < b such that there is
no c with a < c < b. We then get a contradiction by applying Lemma 3.4.20
to T ′.

The following tree orders provide a class of such semilattices: Let I be
any set and let A be any sub-tree of I<ω which is well-founded (that is,
¬∃f ∈ Iω∀n(f¹n ∈ A)). A has the usual tree order, with the empty sequence
at the bottom. Of course, a semilattice with no infinite chains need not be
a tree. Still, by Lemma 3.4.21, its intrinsic compact topology is uniquely
determined by the order in a fairly simple way. The next lemma describes
how such a semilattice looks when embedded in a larger compact semilattice.

Lemma 3.4.22. Let (A;∧) be a sub-semilattice of the compact lattice
(X;∧), with A dense in X. Assume that A has no infinite chains. Then
b↑ = {x ∈ X : b ≤ x} is clopen in X for each b ∈ A.

P r o o f. Since A has no infinite chains, it must have a 0, which is then
the least element of X as well (since {x ∈ X : x ∧ 0 = 0} is closed and
contains A). Then 0↑ = X is clopen in X. Thus, if the lemma fails, then we
can fix a, b ∈ A such that a < b, a↑ is clopen in X, b↑ is not clopen in X,
and there is no c ∈ A with a < c < b. Then a↑ \ b↑ fails to be closed, so
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there is an x ∈ b↑ such that x ∈ cl(a↑ \ b↑). Since a↑ \ b↑ is open in X and
A is dense, we have x ∈ cl((a↑ \ b↑) ∩ A). Then, as in the proof of Lemma
3.4.20, we have b = b ∧ x ∈ cl(b ∧ ((a↑ \ b↑) ∩A)) = cl{a}.

Theorem 3.4.23. For a semilattice, (A;∧), the following are equivalent :

(1) A has no infinite chains.
(2) A has a compact topology , T , such that (A;∧, T ) is self-Bohrifying.

P r o o f. (2)⇒(1). If C is a chain, then so is C. If C is infinite, then C
cannot be discrete in the topology T , but it is relatively discrete in bA by
Lemma 3.4.8.

(1)⇒(2). First we show that A = b0A. We may identify A ⊆ X = b0A,
and we need to prove that A = X. Let T be the (unique) compact semilattice
topology on A, let T ′ be the topology on X, and let T ′¹A be the subspace
topology T ′ induces on A. By Lemma 3.4.22, T ⊆ T ′¹A. It is enough to
prove that T = T ′¹A, since then A will be compact in T ′ and hence A = X,
because A is dense in X. Since T ′ is 0-dimensional, it is enough to fix a
T ′-clopen H ⊆ X and prove that H ∩ A is T -closed. If not, fix a ∈ A \H
such that a is a T -limit point of H∩a. Since a↑ is clopen in both topologies,
we may assume that H ⊆ a↑. Let M be the set of minimal elements of H∩A.
Then M is infinite: otherwise,

⋃
m∈M (m↑∩A) would be a T -clopen set con-

taining H∩A but not a. Also, m∧n 6∈ H whenever m,n are distinct elements
of M . But this contradicts H being T ′-clopen in X: if x ∈ X is a T ′-limit
point of M , then x ∈ H (since H is closed); but also x would be a limit of
{m ∧ n : m,n ∈M & m 6= n} ⊆ X \H, so x 6∈ H (since X \H is closed).

Now we show that A = bA, so we identify A ⊆ Y = bA, and we need to
prove that A = Y . In the following, all topological notions refer to the com-
pact topology on Y . Applying Lemma 2.3.16, we know that each connected
component of Y contains precisely one element of A. So, it is enough to fix
a ∈ A, let K be the component of a in Y , and show that K = {a}. Since
A has no infinite chains, we may assume that for all b ∈ A with b > a, the
component of b in Y is {b}, so that a↑ \A ⊆ K. Note that K ⊆ a↑, since a↑
is clopen. Also, if a < y < x and x ∈ K, then y ∈ K; otherwise, y ∈ A and
y↑ would be a clopen set disconnecting K.

Now, assume K 6= {a}, and we derive a contradiction. Let K0 be the set
of x ∈ K \ {a} such that x ≤ b for some b ∈ A. K0 6= ∅: If K0 = ∅, then
b ∧ x = a for all b ∈ a↑ ∩ A and all x ∈ K \ {a}. Fix x ∈ K \ {a}. Since
x ∈ cl(a↑ ∩ A), we have x = x ∧ x ∈ cl((a↑ ∩ A) ∧ x) = cl({a}), which is
impossible.

For y ∈ K0, let y+ ∈ A be the (unique) minimal element of A ∩ y↑.
Note that if a < x ≤ y ∈ K0, then x ∈ K0 and x+ ≤ y+. Since A has no
infinite chains, we can fix y ∈ K0 so that whenever a < x ≤ y ∈ K0, we have
x+ = y+. Since A is dense in Y , we have y ∈ P , where P = A ∩ (a↑ \ y+↑).
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For p ∈ P , a ≤ p ∧ y ≤ y; but then a = p ∧ y; if not then (p ∧ y)+ = y+,
so p ∈ y+↑. But then P ∧ y = {a}, and y = y ∧ y ∈ P ∧ y = {a}, which is
impossible.

The following lemma adds a few more remarks on semilattices with no
infinite chains.

Lemma 3.4.24. Let (A;∧) be a compact semilattice with no infinite chains.
Then every sub-semilattice is closed. Hence, the closure of every countable
set is countable, so that A is scattered. Furthermore, A has countable tight-
ness.

P r o o f. Let S be a sub-semilattice, and suppose a ∈ S. Since there are
no infinite chains, there is a least element, b, of S ∩ a↑. But then a = b ∈ S;
otherwise, a↑ \ b↑ would be a neighborhood of a disjoint from S.

Let E ⊆ A and p ∈ E. Let S be a countable sub-semilattice such that
p ∈ S and for all n ∈ ω and all b1, . . . , bn ∈ S with each bi > a, we have
S ∩ E ∩ a↑ \ (b1↑ ∪ . . . ∪ bn↑) 6= ∅. Then p ∈ S ∩ E.

Note that the tree orders provide a class of examples which can be con-
structed to have arbitrary Cantor–Bendixson rank. Actually, Lemma 3.4.24
can be proved directly from more general facts. A has countable tightness
because the topology is the same as (A;∧)#, which has countable tightness
by Corollary 2.10.15, and to prove that sub-semilattices are closed, one could
apply Theorem 3.4.26 below, since bA = A.

The following lemma says more about a↑ and a↓ in bA.

Lemma 3.4.25. Let A be any semilattice, let X denote either bA or b0A,
and identify A as a sub-semilattice of X. For a ∈ A, we use a↑ and a↓ as
computed in X. Then for each a ∈ A:

(1) a↑ is clopen and a↓ is closed in X.
(2) A ∩ a↑ is dense in a↑ and A ∩ a↓ is dense in a↓.
P r o o f. For (1), we need only show that a↑ is clopen. By maximality of

X, it dominates γa, so there is a continuous homomorphism Γ : X → 2 such
that Γ (b) = 1 iff b ≥ a, for each b ∈ A. Then K = {x : Γ (x) = 1} is clopen;
we show that K = a↑. Now x ≥ a⇒ x ∈ K because Γ is a homomorphism.
Furthermore, A∩K is dense in K and ∀b ∈ A∩K[b ≥ a], so ∀x ∈ K[x ≥ a].

For (2), A ∩ a↑ is dense because a↑ is clopen. If x ∈ a↓, then there is a
net 〈cα : α ∈ D〉 from A converging to x, and then 〈cα ∧ a : α ∈ D〉 is a net
from A ∩ a↓ converging to x ∧ a = x.

Theorem 3.4.26. Let S be a sub-semilattice of A.

(1) S is closed in A#0 , and hence in A#.
(2) b0S is the closure of S in b0A.
(3) bS is the closure of S in bA.
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P r o o f. For (1), suppose a 6∈ S is a limit point of S. Since a↑ is clopen,
it is a limit point of S ∩ a↑. But that is impossible, since there is a ho-
momorphism from A to 2 which takes (S ∩ a↑)↑ to 1 and everything else
(including a) to 0.

For (2), it is sufficient to show that every ϕ ∈ Hom(S,2) extends to some
ψ ∈ Hom(A,2). So, let ψ(a) = 1 iff a ≥ s for some s ∈ S with ϕ(s) = 1.

For (3), we apply Lemma 2.7.1, with K the class of all compact semi-
lattices. Let ϕ : S → X. Let X∗ be the compact semilattice (in the Vi-
etoris topology) of all closed non-empty E ⊆ X such that E = E↓. Define
ϕ∗ : S → X∗ by ϕ∗(s) = ϕ(s)↓. Then ϕ∗ is equivalent to ϕ. We can extend
ϕ∗ to ψ : A→ X∗ by defining ψ(a) = (cl(ϕ(a↓ ∩ S)))↓.

Such use of the hyperspace is a standard trick in this subject; see, e.g.,
Theorem 1.2 of [22]. Note that in (3), we cannot always extend ϕ itself to
some ψ : A→ X. For a counter-example, consider S = X = {0, a, b}, where
a, b are incomparable, and let A = {0, a, b, 1}.

Corollary 3.4.27. For semilattices, b(A×B) = bA×bB and b0(A×B) =
b0A× b0B.

P r o o f. If A and B both have a 1, this is immediate from Lemma 2.9.3
(the same proof works for b0). If not, simply extend them to semilattices
with a 1 by adding a new element on top, and apply Theorem 3.4.26.

3.5. Distributive lattices. It is easy to find lattices (A;∨,∧) whose
Bohr topology is indiscrete. For example, we may let A = {0, 1} ∪ {an :
n ∈ ω}, where 0 is the smallest element, 1 is the largest element, and the
ai are incomparable. Suppose ϕ were a non-constant lattice homomorphism
into a compact lattice. Then ϕ(0) 6= ϕ(1), whence the ϕ(an) must all be
distinct, since ϕ(am) = ϕ(an) for any m 6= n would imply that ϕ(1) =
ϕ(am) ∨ ϕ(an) = ϕ(am) = ϕ(am) ∧ ϕ(an) = ϕ(0). But then, by applying
Lemma 3.4.5(3) (both with ∧ and ∨), {ϕ(an) : n ∈ ω} has both ϕ(0) and
ϕ(1) as its unique limit point, so that ϕ(0) = ϕ(1), a contradiction.

However, for distributive lattices, we obtain a reasonable theory of bA
which closely parallels the theory for semilattices. Unfortunately, we know
of no way of deriving one theory directly from the other, and in fact the
parallel is not exact; for example, the analog of Theorem 3.4.26.3 turns
out to be false (see Example 3.5.20). So, we shall just prove a sequence of
results paralleling those of Section 3.4, abbreviating the proofs when they
are similar. In particular, we obtain a simple description of b0A, which, as
for semilattices, is obtained by homomorphisms into 2 (which now denotes
the two-element lattice). These homomorphisms separate points, so that A#

is always Hausdorff. In some cases, such as with total orders and boolean
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algebras, b0A = bA, but this is not true in general, as we shall see using
lattices which fail to have the Lawson property:

Definition 3.5.1. A compact distributive lattice (X;∨,∧) has the Law-
son property iff the lattice [0, 1] is adequate for X.

As with semilattices, every compact distributive lattice without the Law-
son property (these exist by Lawson [22]) yields a discrete distributive lattice
A for which b0A < bA (see Lemma 3.5.9).

For discrete distributive lattices, there is no analog to the simply defined
homomorphisms γb of Definition 3.4.6, but lattice filters do give rise to point
separating homomorphisms into 2. Ideals and filters are defined as usual;
so, I ⊆ A is an ideal iff ∀x, y ∈ I [x ∨ y ∈ I] and ∀x ∈ I ∀y ∈ A[x ∧ y ∈ I];
filter is the dual notion. Note that ∅ and A are both ideals and filters in A.

Definition 3.5.2. If (A;∨,∧) is a lattice, call (I,F) an ideal-filter pair
of (A;∨,∧) iff I is an ideal, F is a filter, and I ∩ F = ∅.

By Zorn’s lemma, every ideal-filter pair (I0,F0) in (A;∨,∧) can be ex-
tended to a maximal pair (I,F). If A is distributive, then I ∪ F = A.

Definition 3.5.3. If (I,F) is a maximal ideal-filter pair in the distribu-
tive lattice (A;∨,∧), then δI,F : A → 2 is defined to be 0 on I and 1
on F .

Lemma 3.5.4. δI,F is a homomorphism.

Note that allowing ideals and filters to be empty is consistent with the
fact that constant maps into 2 are homomorphisms by our definition.

Lemma 3.5.5. If (A;∨,∧) is a distributive lattice, and a, b ∈ A with
a 6= b, then ϕ(a) 6= ϕ(b) for some homomorphism ϕ : A→ 2.

P r o o f. Assume a 6≥ b. Then (a↓, b↑) is an ideal-filter pair, so let (I,F)
be a maximal ideal-filter pair with a↓ ⊆ I and b↑ ⊆ F . Then δI,F separates
a and b.

These homomorphisms enable us to prove, in analogy with Lemma 3.4.8:

Lemma 3.5.6. If A = (A;∨,∧) is a discrete distributive lattice, then A#

is Hausdorff. If C ⊆ A is a chain, then C is relatively discrete in A#.

P r o o f. A# is Hausdorff by Lemma 3.5.5.
Let C be a chain, and fix b ∈ C. Let I0 = b↓ and let F0 =

⋃{c↑ :
c ∈ C & b < c}. Let (I,F) be a maximal ideal-filter pair with I0 ⊆ I and
F0 ⊆ F . Then δ−1

I,F{0} ∩ C = {a ∈ C : a ≤ b} is relatively clopen in C.
Likewise, {a ∈ C : a ≥ b} is relatively clopen in C, so b is isolated in C.

Since for total orders, semilattice and lattice homomorphisms are the
same, Lemma 3.4.9 and its corollaries are essentially unchanged:
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Lemma 3.5.7. Suppose that (A;∨,∧) is a distributive lattice and ϕ : A→
X is some compactification of A, where (X;∨,∧) is a compact lattice which
is totally ordered. Then ϕ ≤ b0(A;∨,∧).

Corollary 3.5.8. b0A =
∨

(Hom(A,2)) =
∨

(Hom(A, [0, 1])) for each
distributive lattice A. If bA has the property that the continuous lattice ho-
momorphisms into [0, 1] separate the points of A, then bA = b0A, and is
hence 0-dimensional.

Note that identifying b0A with
∨

(Hom(A,2)) here requires the fact (see
[28], [29]) that the continuous homomorphisms from a 0-dimensional com-
pact distributive lattice into 2 separate points.

Analogously to Lemma 3.4.12 and its corollary, we have:

Lemma 3.5.9. If (A;∨,∧) is a discrete distributive lattice and b(A;∨,∧)
= b0(A;∨,∧), then every compactification of (A;∨,∧) has the Lawson prop-
erty.

P r o o f. This follows (as in Lemma 3.4.12) from the fact that the Lawson
property is preserved under continuous homomorphic images. To see this,
use the fact (see Strauss [32] and Theorem 6 of Lawson [23]) that the Law-
son property is equivalent to complete distributivity, which is preserved by
continuous homomorphisms by Lemma 3.4.5(6).

Corollary 3.5.10. There is a countable discrete distributive lattice
(A;∨,∧) such that b0(A;∨,∧) < b(A;∨,∧).

For some distributive lattices A, we do have b(A;∨,∧) = b0(A;∨,∧), as
in the lattice version of Lemma 3.4.15:

Lemma 3.5.11. Let (A;∨,∧) be a discrete distributive lattice. If (A;∧)
has breadth ≤ n, where n is finite, then b(A;∨,∧) = b0(A;∨,∧).

Note that (A;∧) has breadth ≤ n iff (A;∨) has breadth ≤ n; this is true
because in terms of the order, both are equivalent to the non-existence of
x0, . . . , xn, y0, . . . , yn such that xi ≤ yj for i 6= j, but each xi 6≤ yi. To prove
Lemma 3.5.11, we apply the fact (see [23]) that compact distributive lattices
with finite breadth have the Lawson property.

Analogously to Theorem 3.4.23, we may characterize the self-Bohrifying
distributive lattices. Unfortunately, this characterization reduces to:

Theorem 3.5.12. A compact distributive lattice is self-Bohrifying iff it
is finite.

P r o o f. It is sufficient to show that if A is a distributive lattice with no
infinite chains, then A must be finite. Let M(x) = {y > x : ¬∃z(y > z > x)}.
Each M(x) is finite, since otherwise, by distributivity, we would have an
infinite chain of the form y0 < y0 ∨ y1 < y0 ∨ y1 ∨ y2 < . . . , where the yn are
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distinct elements of M(x). Also, note that the lack of infinite chains implies
that x↑ = {x} ∪⋃{y↑ : y ∈ M(x)}. But then, if A were infinite, we would
inductively construct an infinite chain, 0 = x0 < x1 < x2 < . . ., where each
xn↑ is infinite and xn+1 ∈M(xn).

The computation of b0A for semilattices also works for distributive lat-
tices. In fact, it becomes somewhat simpler, since now we can use an arbi-
trary representation of the lattice in a clopen algebra (see [28], [29]):

Lemma 3.5.13. Every distributive lattice is isomorphic to a sub-lattice of
the clopen sets of some compact Hausdorff space.

Theorem 3.5.14. Suppose that (A;∨,∧) is a sub-lattice of the lattice
of clopen subsets of the compact Hausdorff space X. Give P(X) the usual
product topology by identifying it with 2X . Let Z be the closure of A in P(X).
Then Z = b0(A;∨,∧).

P r o o f. Since Z is a zero-dimensional compactification of A, it suffices
to show that Z ≥ b0(A;∨,∧). By Corollary 3.5.8, this will follow if we can
show that each lattice homomorphism ϕ : A → 2 extends to a continuous
homomorphism on P(X), and hence on Z. Let I0 = {H ∈ Z : ϕ(H) = 0}
and F0 = {K ∈ Z : ϕ(K) = 1}. If H ∈ I0 and K ∈ F0, then K 6⊆ H.
Since elements of Z are clopen subsets of X, it follows, by compactness,
that we may fix a point x ∈ (

⋂F0) \ (
⋃ I0). Let (I,F) be the principal

ideal-filter pair in P(X) generated by x; that is, I = {H ∈ P(X) : x 6∈ H}
and F = {K ∈ P(X) : x ∈ K}. Then δI,F : 2X → 2 is a continuous
homomorphism extending ϕ.

In particular, we can apply this to boolean algebras. As defined in Sec-
tion 2.1, these are structures of the form (B;∨,∧, ′, 0, 1). However, one can
consider them simply as lattices:

Lemma 3.5.15. b(B;∨,∧, ′, 0, 1) = b(B;∨,∧) whenever (B;∨,∧, ′, 0, 1)
is a discrete boolean algebra.

P r o o f. By Lemma 2.8.3, one can always drop the constants 0, 1. To drop
the ′, apply Theorem 2.8.5: One can define x′ by x′ = y ⇔ φ(x, y), where
φ(x, y) is the formula x ∧ y = 0 & x ∨ y = 1. Furthermore, the assertion
∀x∃!yφ(x, y) is provable from positive logical sentences true in (B;∨,∧, 0, 1)—
namely, ∀x∃yφ(x, y) and the axioms for distributive lattices.

Theorem 3.5.19 below expands on this lemma. First, we identify bB
explicitly (Theorem 3.5.18).

Theorem 3.5.16 (Strauss [32]). Every compact boolean algebra is con-
tinuously isomorphic to {0, 1}κ for some κ.
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Corollary 3.5.17. The two-element algebra is adequate for every bool-
ean algebra.

Then, applying Theorem 3.5.14, we get:

Theorem 3.5.18. Let B be the clopen algebra of the compact 0-dimen-
sional Hausdorff space X. Then bB = b0B = P(X), where we identify P(X)
with {0, 1}X .

Now, if B = (B; +,∨,∧, ′) is a boolean algebra (where + is symmetric
difference), we obtain potentially 16 different Bohr compactifications by re-
ducting the language to various subsets of {+,∨,∧, ′}. However, only 5 of
these are distinct, by the following theorem. Note that constants, such as
0, 1, are irrelevant for computing bB (by Lemma 2.8.3).

Theorem 3.5.19. If B = (B; +,∨,∧, ′) is an infinite boolean algebra,
and L ⊆ {+,∨,∧, ′}, then

(1) If L is ∅ or {′}, then b(B¹L) = βB.
(2) If {∨,∧} ⊆ L, then b(B¹L) = bB.
(3) If {∨,∧} ∩ L 6= ∅ and {+, ′} ∩ L 6= ∅, then b(B¹L) = bB.
(4) The compactifications, b(B;∧), b(B;∨), and b(B; +) = b(B; +,′ ), are

all incomparable with each other , and hence lie strictly between bB and βB.

P r o o f. (1) just uses the fact that ′ is unary, and (2) is immediate from
Lemma 3.5.15. For (3), just use the fact that either of {∨,∧} together with
1 and either of {+, ′} is sufficient to express every propositional connective.

To prove (4), we first show that b(B; +) 6≤ b(B;∧). Since B is infinite,
there is a strictly decreasing ω-sequence of elements, b0 > b1 > . . . Then the
bn are independent as elements of the abelian group (B; +), so the closure
of {bn : n ∈ ω} in b(B; +) is homeomorphic to βN (see [11], [21]). However,
by Theorem 3.4.17, the closure of {bn : n ∈ ω} in b(B;∧) is homeomorphic
to ω+ 1; if we embed B into the clopen subsets of X, then the unique limit
point of {bn : n ∈ ω} is

⋂
n bn ∈ P(X). The same argument shows that

b(B; +) 6≤ b(B;∨).
To show that b(B;∨) 6≤ b(B; +), we show that the Bohr topology,

(B; +)#, is not finer than (B;∧)#. If bn (for n ∈ ω) are distinct elements of
B, then they have some limit point z ∈ b(B; +), so that 0 = z + z is a limit
point of {bn + bk : k < n < ω} in (B; +)#. However, 0 cannot be a limit
point of any set in (B,∨)#, since 0↓ = {0} is clopen by Lemma 3.4.25(1)
(replacing the ∧ there with ∨). Likewise, using 1 + bn + bk, with limit 1, we
see that b(B;∧) 6≤ b(B; +).

Finally, we show that b(B;∧) and b(B;∨) are not comparable. Let bn,
for n ∈ ω, be pairwise disjoint. Then in (B;∧)#, the sequence 〈xn : n ∈ ω〉
converges to 0 by Lemma 3.4.5(3), whereas, by Lemma 3.4.25(1), {0} is
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clopen in (B;∨)# (note the ↑ and ↓ are reversed). Hence, b(B;∨) 6≤ b(B;∧),
and the dual proof shows b(B;∧) 6≤ b(B;∨).

Example 3.5.20. Suppose that the boolean algebra B contains {dn :
n ∈ ω} which are independent in the boolean algebra sense; this is pos-
sible iff the Stone space of B is not scattered. Then the closure of {dn :
n ∈ ω} in b(B;∨,∧) (and hence also in b(B;∨) and b(B;∧)) is homeo-
morphic to βN. Note that b(B;∨,∧) is 0-dimensional, while b(B;∧) and
b(B;∨) are not; to see this, let (A;∧) be a countable discrete semilattice
with b0(A;∧) < b(A;∧); by virtue of the dn, we may assume (A;∧) ⊆ (B;∧);
then b(A;∧) is not 0-dimensional, and is a closed subset of b(B;∧) (by The-
orem 3.4.26(3)). Note that if (S;∨,∧) is a countable distributive lattice with
b0(S;∨,∧) < b(S;∨,∧), we may again assume that (S;∨,∧) ⊆ (B;∨,∧), and
again b(S;∨,∧) is not 0-dimensional. Now, since b(B;∨,∧) is 0-dimensional,
we see that the analog of Theorem 3.4.26(3), that bS is the closure of S in
bA, is false for distributive lattices.

We do have the analog of the rest of Theorem 3.4.26:

Theorem 3.5.21. Let S be a sub-lattice of the distributive lattice (A;∨,∧).

(1) S is closed in A#0 , and hence in A#.
(2) b0S is the closure of S in b0A.

P r o o f. For (1), fix any a ∈ A\S. To show that a is not in the closure of
S, it is sufficient to produce ϕ,ψ ∈ Hom(A,2) such that ϕ(a) = 1, ψ(a) = 0,
and for all s ∈ S we have either ϕ(s) = 0 or ψ(s) = 1. To do this, first choose
ϕ such that ϕ(a) = 1 and ϕ(s) = 0 for all s ∈ a↓∩S; this is possible because
the filter a↑ is disjoint from the ideal (a↓ ∩ S)↓. Then choose ψ such that
ψ(a) = 0 and ψ(s) = 1 for all s ∈ S such that ϕ(s) = 1; this is possible
because the ideal a↓ is disjoint from the filter {s ∈ S : ϕ(s) = 1}↑.

For (2), it is sufficient to show that every ϕ ∈ Hom(S,2) extends to some
ψ ∈ Hom(A,2). But this is trivial, by Zorn’s Lemma.

We also have the special case of 3.4.26(3) needed to prove the analog of
Corollary 3.4.27, and in fact we do not even need distributivity here:

Theorem 3.5.22. For lattices, b(A × B) = bA × bB and b0(A × B) =
b0A× b0B.

P r o o f. Let Â be A if A has a 1, and let Â be A with a 1 added otherwise.
Likewise, define B̂. Note that A is algebraically closed (Definition 2.7.2) in
Â: This is trivial unless Â 6= A. Consider a system of equations over A with
a solution in Â. Since Â\A = {1}, we may assume our system is of the form
σ(x), in just one variable x, and that σ(1) is true in Â. Say σ(x) mentions
elements a1, . . . , an ∈ A as constants. Fix b ∈ A with b > a1∨ . . .∨an. Then
it is easy to see that σ(b) holds in A.



146 J. E. Hart and K. Kunen

Likewise, B is algebraically closed in B̂. It follows that A × B is alge-
braically closed in Â × B̂. Now use Theorem 2.7.3; note that this theorem
applies also to b0, with the same proof.

Observe that for semilattices, one could not claim that A is algebraically
closed in Â, since the equations {x∧a = a , x∧ b = b} must have a solution
in Â, but need not have a solution in A.

3.6. Counter-examples. We collect here illustrations of some phe-
nomena for which we were not able to find examples among the more well
known classes of structures.

Example 3.6.1. Let A = (ω+1;∨, g), where ∨ is the usual max operation
on ω+ 1, and g(m) is m if m is finite and odd , and ω otherwise. Give ω+ 1
the usual ordinal topology. Then A is self-Bohrifying (see Definition 2.3.14).

P r o o f. By Lemma 3.4.18, we know that b(ω+1;∨) = ω+1∪{d}, where
m < d < ω for all m ∈ ω. Thus, the only possibility for bA, other than A
itself, is this ω + 1 ∪ {d}. However, ω + 1 ∪ {d} is not possible here, as one
cannot extend g continuously to it: since {x : g(x) = x} is closed, we would
have g(d) = d, but since {x : g(x) = ω} is closed, we would have g(d) = ω.

Now, we can make a similar construction with almost disjoint families.
If P,Q are any sets, we say P ⊥ Q iff P ∩Q is finite, and P ⊆∗ Q iff P \Q
is finite. For us, an almost disjoint family will be a non-empty family F of
countably infinite subsets of some index set I such that P ⊥ Q whenever
P,Q are distinct elements of F . Note that I itself need not be countable.

Definition 3.6.2. If F ⊆ P(I) is an almost disjoint family, its induced
topology on I ∪ {∞} is defined by letting U be open iff either ∞ 6∈ U or
P ⊆∗ U for all P ∈ I.

Note that I is always open and discrete. If F is a maximal almost dis-
joint family (which implies that F is either finite or uncountable), then the
induced topology is just the 1-point compactification. In particular, when
F = {I}, the construction described below reduces to the construction in
Example 3.6.1. If F is not maximal, then the induced topology is not com-
pact, but we can always get it to be contained in a Bohr topology:

Example 3.6.3. If F ⊆ P(I) is an almost disjoint family , then there is
an L with |L| ≤ max(|F|,ℵ0) and a structure A built on A = I ∪ {∞} such
that the topology of A# is the topology induced by F .

P r o o f. L now has symbols ∨P and gP for each P ∈ F . For each P ,
choose a bijection πP from ω onto P . Let πP (m)∨P πP (n) = πP (max(m,n)),
and let x ∨P y = ∞ unless x, y ∈ P . Let gP (x) = ∞ unless x = πP (m) for
some odd m, in which case gP (x) = x.
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We first describe what we are claiming to be bA. Let B = {E ∈ P(I) :
∀P ∈ F [P ⊆∗ E] OR ∀P ∈ F [P ⊥ E]}. B is a boolean algebra. B is the
finite-cofinite algebra when F is maximal, but is larger otherwise. Let X be
the Stone space of B; so, elements of X are ultrafilters on B. We identify A
with a subset of X by identifying∞ with the (unique) ultrafilter containing
all E such that ∀P ∈ F [P ⊆∗ E], and by identifying each i ∈ I with the
principal ultrafilter generated by {i}. With this identification, the identity
map ϕ defines a compatible compactification; that is, all the gP and ∨P
extend naturally to X.

Note that the topology, Tϕ, is just the topology induced by F . So, we are
done if we verify that this compactification is maximal. Consider any larger
compactification. We may assume it is also an inclusion, A ⊂ Y , where Y is
compact, A is dense in Y , and all the gP and ∨P extend to Y . The statement
X ≤ Y is expressed by a map Γ : Y → X with Γ the identity on A. We
must show that Γ is 1-1. Each i ∈ I is isolated in X and hence in Y , so Γ is
1-1 on I = Γ−1(I). Also, if E ⊆ I and ∀P ∈ F [P ⊥ E], then in X, E ∼= βE,
so that Γ is 1-1 on Γ−1(E). Thus, the only possibility for Γ not to be 1-1
is that there is some y ∈ Y with Γ (y) = ∞ but y 6= ∞. In Y , let y ∈ U
with U open and ∞ 6∈ U ; if E = U ∩ I, then clY (E) contains y but not ∞,
whereas∞ = Γ (y) ∈ clX(E). In Y , each P ∪{∞} ∼= ω+1 (by the argument
of Example 3.6.1, applied to the structure (P ∪{∞};∨P , gP )); hence P ⊥ E
for each P ∈ F . But then E ∈ B and ∞ 6∈ clX(E).

When F is uncountable, this produces a Bohr topology on A which
is strictly finer than what one obtains by reducting it to some countable
sub-language. In fact, we have:

Example 3.6.4. There is a countable structure A for a language L such
that the topology A#, viewed as a subset of 2A ≡ P(A), is not analytic. Hence
A¹L#

0 is strictly finer than A# whenever L0 is a countable sub-language of L.

P r o o f. Just use Example 3.6.3 with a countable I and a suitable F .
Note that there are only 2ℵ0 analytic sets, but, as F varies, one gets 22ℵ0

different topologies.

As in the proof of Lemma 2.10.17, whenever L is countable, the Bohr
topology on any countable subset of A is analytic. Thus, one cannot in
general replace an uncountable language by a countable one on a larger
set by coding it into a larger structure. In the case of Example 3.6.3, one
might try to code all the ∨P by one ternary function, taking A now to
be I ∪ {∞} ∪ F , but then the requirement that this new function extend
continuously as a function of P ∈ F will change the Bohr compactification.
One can sometimes use coding to replace a countable language by a finite
one, as in Example 3.6.7 below.
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Example 3.6.7 is of interest also for the following reason. We have seen
(Corollary 2.10.20) that if A is a countable discrete structure for a countable
language, then w(bA) is either 2ℵ0 or countable. However, this cannot be
proved of the cardinal functions w(A#) and χ(A#). Following van Douwen,
we use d to denote the least cardinality of a dominating family in ωω. We
shall produce an A with L finite and w(A#) = χ(A#) = d; as is well known,
d ≥ ℵ1, and it is consistent to have d < c. The topology on our A# is just
one of the standard hedgehog topologies:

Definition 3.6.5. H is the hedgehog , (Z × ω) ∪ {∞}. The hedgehog
topology , H, on H is obtained by declaring all points in Z×ω to be isolated,
and giving ∞ a base consisting of the sets Nf = {∞} ∪ {(m,n) ∈ Z × ω :
n > f(m)}, for all f ∈ ωZ.

H with this topology is often called the Fréchet–Urysohn fan. If F is the
set of spines, {m}×ω, then our topology is just the one induced by F as in
Definition 3.6.2.

Lemma 3.6.6. w(H,H) = χ(H,H) = d.

Since H has such a simple description, one can cook up a structure which
has H as its Bohr topology:

Example 3.6.7. There is a finite language L, and a countable discrete
structure, H, built on H, such that H# is exactly the topology H. This H is
not nice.

P r o o f. If we wanted a countable language, this would just be Example
3.6.3, taking F to be the set of spines. Let B be the boolean algebra con-
structed from F as in the proof of Example 3.6.3. Let L = {R,L, g,∨}, where
R,L, g are unary and ∨ is binary. We shall interpret L so that bH is the Stone
space X of B. We again identify H as a subset of X, so that ϕ : H → X
is inclusion. We must use a little care here. If our structure encodes too
much information, the Bohr topology could wind up to be the coarser met-
ric topology. We shall use g,∨ to ensure that spine 0 (i.e., {0} × ω ∪ {∞})
is indeed homeomorphic to ω + 1. Then R,L will ensure that all the spines
look alike.

In H, interpret R : H → H and L : H → H as right and left shifts:
R(m,n) = (m+ 1, n); L(m,n) = (m− 1, n); R(∞) = L(∞) =∞. So, R and
L are bijections, and they define automorphisms R∗ and L∗ of B, and then
by Stone duality, they define homeomorphisms, R∗ and L∗, of X onto X.
So, if U ∈ X, then R∗(U) = {b ∈ B : R−1(b) ∈ U} and L∗(U) = {b ∈ B :
L−1(b) ∈ U}. R∗, L∗ extend R,L, so that ϕ is indeed compatible with R,L.

In H, interpret ∨ to be the lattice operation on spine 0, and trivial
elsewhere; that is, (0,m) ∨ (0, k) = (0,max(m, k)) and x ∨ y = ∞ if either
x or y fails to be in {0} × ω. Define g(0,m) to be (0,m) if m is odd and
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∞ if m is even; g(x) = ∞ if x 6∈ {0} × ω. Then both ∨ and g extend to
continuous functions on X. Note that this could have failed to be true if we
tried to make these functions non-trivial on all the spines. It is now easy to
verify, as in Example 3.6.3, that X is indeed bH.

Finally, we show that H is not nice. If it were, then H# = H would be
an Eberlein–Grothendieck space by Theorem 2.10.8. However, this would
contradict Theorem 2.10.13 (take En to be nth spine, {n} × ω).

It is not clear what cardinals besides d can be of the form w(A#). One
cannot choose an arbitrary cardinal between ℵ0 and c, however. For example,
suppose the universe is of the form V [G], where V |= CH and G is a random
real extension. Then whenever A is a countable discrete structure for a
countable language, w(A) = χ(A) is either countable or c or d = ℵ1.

Finally, we point out that in Lemma 2.9.3, one cannot drop either the
assumption that 0 is an idempotent or that 0 is an identity element.

Example 3.6.8. For any L, there is an L-structure A in which every
element is an idempotent , such that b(A×A) is strictly greater than bA×bA.

P r o o f. Let A be infinite, and define fA(x1, . . . , xn) = x1 for each func-
tion symbol f of L. Then bA = βA and b(A×A) = β(A×A) > βA×βA.

Example 3.6.9. There is an L containing a binary operation ∨, and two
L-structures A and B, such that A,B both contain an identity element with
respect to ∨, but b(A×B) is strictly greater than bA× bB.

P r o o f. Let L = {∨, f}, where ∨ is binary and f is unary. Let A =
B = ω, and let A and B both interpret ∨ as the usual max operation. Let
fA(n) be 0 if n is odd and n if n is even, so that bA is a singleton and A#

is indiscrete. Let fB(n) = n + 1, so that bB = ω + 1. Thus, in A# ×B#,
the closure of {(0, 0)} is ω × {0}. However, (0, 0) is isolated in (A ×B)#;
to see this, consider ϕ : ω × ω → {0, 1} where ϕ(0, 0) = 0 and other points
map to 1; on {0, 1}, we interpret ∨ as the usual max operation and let
f(0) = f(1) = 1.
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