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Multiplicative operations in the Steenrod algebra
for Brown–Peterson cohomology

by

Michael S l a c k (Kalamazoo, Mich.)

Abstract. A family of multiplicative operations in the BP Steenrod algebra is defined
which is related to the total Steenrod power operation from the mod p Steenrod algebra.
The main result of the paper links the BP versions of the total Steenrod power with the
formal group approach to multiplicative BP operations by identifying the p-typical curves
(power series) which correspond to these operations. Some relations are derived from this
identification, and a short proof of the Hopf invariant one theorem is given as a sample
computation.

1. Introduction. A classical tool used to study the Steenrod algebra
is multiplicative operations derived from the reduced powers. In particular,
one may define a total Steenrod power operation

(1) P = P0 + P1 + P2 + P3 + . . . ,

and use the fact that it is multiplicative in order to derive various formu-
las for the Steenrod algebra as a whole. This technique has the advantage
that it reduces potentially large computations into nice generating function
formulas, and it has been used in various forms.

When looking at Brown–Peterson cohomology, and its corresponding al-
gebra of cohomology operations, there is a well-known technique for linking
multiplicative operations to formal group laws [2]. Basically, the correspon-
dence is that multiplicative operations coincide with homogeneous power
series of the form

(2) f−1(x) =
∑

F

n≥0

cnx
pn ,

where cn ∈ BP∗, and the sum is the formal sum determined by the formal
group law for BP, which is universal among p-typical formal group laws.
Such a power series is called a p-typical curve over F .
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It is the object of this paper to link these two important viewpoints. It
is more or less well known that there are ways of defining an analogue of
the operation P and other related operations for BP cohomology, and that
these analogues will be multiplicative. There are, however, several possible
choices for how to define them, and it is not obvious which choice is best. We
show in this paper that one particular choice is most useful for linking the
total power viewpoint with the formal group theory. We then demonstrate
the link.

One way of viewing a p-typical curve is that it gives the action of the
functional inverse of the corresponding BP operation on the Euler class
x ∈ BP∗(CP∞) ∼= BP∗[[x]]. Returning to mod p cohomology, if we modify
the definition of P so that it is a homogeneous operation

(3) P = P0 + up−1P1 + u2(p−1)P2 + u3(p−1)P3 + . . . ,

where u is an indeterminate of degree −2, then we may consider the action
of P on the Euler class x ∈ H∗(CP∞;Z/p). The result is

(4) P(x) = x+ up−1xp.

If we let χ denote the antiautomorphism of the Steenrod algebra [9], so that

(5) χ(P)(P(x)) = x,

then a routine calculation yields

(6) χ(P)(x) = x− up−1xp + up
2−1xp

2 − up3−1xp
3

+ . . .

Now Corollary 3.3 of Theorem 1.1 says that for each m there is a way of
lifting Pm to a BP operation (we use the same name) so that the p-typical
curve corresponding to P is the same as the one from (6), except with
ordinary sums replaced by formal sums.

This phenomenon generalizes to other operations as well. There are sev-
eral multiplicative operations related to P which can be formed from the
Steenrod algebra. We describe a particular family of operations here. Let
δ = (δ1, δ2, δ3, . . .) denote a sequence of zeros and ones indexed by the nat-
ural numbers, where only finitely many of the δn are not zero. Let Hu rep-
resent periodic mod p cohomology, where H∗u = H∗[u, u−1] and |u| = −2.
Define the multiplicative operation Mδ ∈ H∗uH by

(7) Mδ =
∑

δE

u|δE|PδE ,

where the sum ranges over all exponential sequences of the form

(8) δE = (δ1e1, δ2e2, δ3e3, . . .).

In other words, Mδ is the sum of all the elements of the Milnor basis [9] which
have zeros in all of the same slots as δ. We may also define Mδ ∈ BP∗uBP,
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where BPu represents the periodic version of BP, and Theorem 1.1 identifies
the corresponding p-typical curve.

Theorem 1.1. The multiplicative operation Mδ corresponds to the p-
typical curve

(9) f−1
δ (x) =

∑
F

n≥0

[χ(δn)]Fup
n−1xp

n

,

where χ(δn) is determined by the recursive formula

(10) χ(δ0) = 1, χ(δn) = −
n−1∑

k=0

δn−kχ(δk) (n > 0),

and its effect on the coefficient ring is given by

(11) Mδ(λk) =
k∑

j=0

χ(δk−j)λjup
k−pj .

Remark. The formula for χ(δn) may also be obtained as the coefficient
of up

n−1xp
n

in the power series f−1
δ (x) ∈ H∗u(CP∞), where

(12) fδ(x) = x+
∑

n≥1

δnu
pn−1xp

n

= Mδ(x).

Thus the p-typical curve corresponding to the operation Mδ ∈ BP∗uBP is
the one that looks exactly like the series that results by applying χ(Mδ)
to the Euler class in mod p cohomology, and then replacing ordinary sums
with formal sums.

The coefficients λk are defined in Section 2.
We are also interested in studying the subalgebra P ⊂ BP∗BP generated

by the primitive elements P∆k , k ≥ 1. Here ∆k is the exponential sequence
which consists of all zeros except for a one in the kth place. In H∗H, the
subalgebra P is a truncated polynomial algebra generated by the P∆k , where
each P∆k has height p. The situation in BP∗BP differs somewhat; P is not
a truncated polynomial algebra. The main result is given in Theorem 1.2.

Theorem 1.2. The subalgebra P ⊂ BP∗BP generated by the primitive
elements is a polynomial subalgebra. Furthermore, the rationalization P ⊗Q
is isomorphic as an algebra to BP∗BP⊗Q.

The inclusion of the subalgebra P ⊂ BP∗BP is not as well understood
as one might like. For example, Lemma 3.1 suggests that, as a left BP∗-
module, P might be isomorphic to the submodule of BP∗BP generated by
the elements E!PE , where E runs over all exponential sequences (E! is
defined by (26)). This is probably false, but the author does not know of a
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proof in either direction. A nice closed description of P as a BP∗-submodule
of BP∗BP would be interesting to find.

One of the original discoveries that led to this paper was a family of
formulas that relate the elements of the Milnor basis for BP∗BP to the
elements of P . These formulas are useful for doing calculations, since the
generators of P are derivations, and rationally they generate all of BP∗BP.
These formulas are summarized in Theorem 1.3.

Theorem 1.3. The elements of P are related to the elements of the
Milnor basis for BP∗BP by the formulas

(13) Mδ = Exp
(
−
∑

0≤j<k
χ(δk−j)λjup

k−pjP∆k
)
.

Warning. The Exp above is not the exponential series for BP. It is the
usual exponential series from elementary calculus

(14) Exp(x) =
∑

n≥0

xn

n!
.

We distinguish it from the BP exponential, exp, by capitalizing the E in
Exp.

Warning. One must take care in the sum from Theorem 1.3. Different
orderings of the sum will give distinct operations. The sum above should be
expanded so that the ordering from left to right is decreasing with respect
to k.

The layout of this paper is as follows. In Section 2, the necessary back-
ground and terminology for Brown–Peterson cohomology is reviewed. Then
the operations PE ∈ BP∗BP are defined, and their relationship with the
logarithm is explained. We then give a bit of terminology for dealing with
exponential sequences. In Section 3, the main theorems on multiplicative
operations are proved, and in Section 4, we use Theorem 1.3 to give a short
proof of the Hopf invariant one theorem.

2. BP cohomology and the Steenrod algebra. Recall that Brown–
Peterson cohomology is determined by its coefficient ring BP∗ = BP∗(pt) ∼=
Z(p)[v1, v2, v3, . . .], where |vi| = −2(pi − 1). A standard, and very useful,
way of looking at BP−∗ = BP∗ = π∗(BP) is to view it as a subset of
H∗(BP;Z(p)) ∼= Z(p)[λ1, λ2, λ3, . . .] via the Hurewicz homomorphism. Some-
times the generators λi are denoted by mi or mpi−1 in the literature. We
use the notation from Ravenel’s book [10]. The λi are in the same degree
as the vi, but are not contained in BP∗. However, they can be considered
as elements of BP∗ ⊗ Q, and when there is no torsion (which is all of the
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time when we are dealing with universal examples), no information is lost
in using the λi instead of the vi in our various formulas.

For the purposes of this paper, we also wish to use the version of BP
theory which is periodic; we distinguish this theory from BP by using the
notation BPu. The coefficients are BP∗u = BP∗[u, u−1], with |u| = −2. The
periodic theory can be constructed using the Landweber exact functor the-
orem from [7], as follows. Using the map

(15) BP∗ → BP∗u
which sends vi to vi, define a functor from spectra to BPu∗-modules by

(16) BPu∗(E) = BPu∗ ⊗BP∗ BP∗(E).

The BP∗-module BP∗u is Landweber exact, so this functor is a (multi-
plicative) homology theory. There is an isomorphism (of ungraded rings)
BP∗ ∼= BP0

u which is induced by the map sending vi to ui = u1−pivi.
If H is the mod p Eilenberg–MacLane spectrum, then the Hopf algebra

H∗H is called the Steenrod algebra. Many of its properties are well known;
we assume the standard facts are known to the reader. A standard reference
is [9]. We call BP∗BP the Steenrod algebra for Brown–Peterson cohomology.
The approach taken in this paper for studying BP∗BP is motivated by the
approach of [9] for the mod p Steenrod algebra, using the dual BP∗BP.

Recall that BP∗BP is a polynomial algebra

(17) BP∗BP ∼= BP∗[t1, t2, t3, . . .],

where |ti| = 2(pi − 1). The ti are standard generators, and are defined
inductively by the right unit formula

(18) ηR(λk) =
k∑

i=0

λit
pi

k−i.

Let χ : BP∗BP → BP∗BP be the antiautomorphism (induced by the twist
map BP ∧ BP → BP ∧ BP), and let hi = χ(ti). Then a simple inductive
argument shows that

(19) BP∗BP ∼= BP∗[h1, h2, h3, . . .],

where |hi| = 2(pi − 1). The hi are used in [3].
The monomials in the hi form a BP∗-module basis for BP∗BP. Follow-

ing the method in [9], one may form the dual basis: for each exponential
sequence E = (e1, e2, e3, . . .), let PE ∈ BP∗BP be the element BP∗-dual to
the monomial hE = he11 h

e2
2 h

e3
3 . . . Then as E runs through all exponential

sequences, the PE form a basis for BP∗BP as a left BP∗-module. The PE
defined above are BP∗BP lifts of the usual PE ∈ H∗H. This is taken as well
known; a proof can be found in Kane’s paper [6]. We could have chosen a
different set of generators than the hi to define the PE , but as mentioned
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in the introduction this particular choice is the one for which Theorem 1.1
holds.

The multiplicative operations Mδ of Theorem 1.1 are actually elements
of BP∗uBP rather than BP∗BP. This is not a problem, however, as a p-typical
curve f(x) ∈ BP∗u(CP∞) is represented by a map

(20) CP∞ → BPu.

Hence the universality of BP for p-typical formal group laws will have the
corresponding multiplicative operation represented by a ring spectrum map

(21) BP→ BPu.

In [4], Hubbuck defines operations, via the Chern character in K-theory,
which are integral liftings of Steenrod operations. The connection between
Hubbuck’s operations and BP operations is described in Kane’s paper [5];
we briefly explain the connection here. Define a multiplicative operation
Λ ∈ BP∗BP⊗Q by the formula

(22) Λ =
∑

E

λEPE ,

where λE = λe11 λ
e2
2 λ

e3
3 . . . (This operation is not an element of BP∗BP, since

the λk are not contained in BP∗). The operation Λ is characterized by its
being the unique multiplicative operation for which Λ(λk) = 0 if k > 0.
The proof of this follows from the right unit formula (30) in Lemma 3.2. It
also depends on the fact that a multiplicative operation is determined by
its values on the λk. In fact, the corresponding p-typical curve is f−1

Λ (x) =
exp(mog x), where

(23) mog x =
∑

k≥0

Λ(λk)xp
k

= x.

Hence f−1
Λ (x) = expx.

One could attempt to define the PE from Λ by starting with f−1
Λ (x) =

expx. This is essentially what Hubbuck does in [4], except using K-theory
instead of BP. There is a problem with this approach, however. The PE are
not uniquely defined by this process, because the λE have negative degree.
One can define the PE uniquely only modulo higher filtration, otherwise
some choices must be made. In his situation, Hubbuck chooses arbitrarily,
so he is only able to prove certain properties modulo higher filtration. In
our case, we choose to define the PE in a very particular way, and that has
the advantage that our formulas are exact.

There are certain conventions regarding exponential sequences that are
used in this paper which keep notation simple. Recall from [9] that an ex-
ponential sequence E is a sequence of non-negative numbers (e1, e2, e3, . . .)
only finitely many of which are not zero. The degree of E, denoted by |E|,
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is equal to the sum

(24) |E| =
∑

n≥1

en(pn − 1),

the excess, e(E), is given by

(25) e(E) =
∑

n≥1

en,

and the symbol E! refers to the product

(26) E! = e1!e2!e3! . . .

A standard notation that we use is ∆k for the sequence which consists of all
zeros except for a one in the kth space. There are also several places where
there is some indexed set of symbols, for example the λk, and we refer to
E as an exponent, as in λE . In this case the notation should be interpreted
so that the entries of E are the various exponents in a product expansion,
as in

(27) λE = λe11 λ
e2
2 λ

e3
3 . . .

3. Multiplicative operations. In this section the main results of the
paper are proved. First, Lemma 3.1 gives a formula for the action of P on
the rational coefficient ring for BP. Theorem 1.2 is a direct consequence
of Lemma 3.1. In order to prove Lemma 3.1, a second technical lemma is
needed which describes the right unit homomorphism in a particularly useful
way.

We then prove the main result of the paper, Theorem 1.1, which identifies
the p-typical curves associated with the multiplicative operations Mδ. The
beauty of Theorem 1.1 is that it is a clear generalization of what is known
for the mod p Steenrod algebra. In fact, one may characterize Theorem 1.1
as taking what is known for the Mδ in the mod p Steenrod algebra, and
replacing ordinary sums with formal sums.

The identification of the curves associated with the Mδ allows one to
easily compute the action of Mδ on the coefficients. Since the Mδ are com-
pletely determined by this action, we may use these formulas, together with
Lemma 3.1, to prove Theorem 1.3, which relates the Mδ to certain rational
multiplicative operations constructed from the subalgebra P .

Lemma 3.1. We have

(28) (P∆)EλF = (−1)e(E)(F !/(F − E)!)λF−E .

Hence the elements

(29) (P∆)E/E!
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form an additive basis for BP∗BP ⊗ Q as E runs over all exponential se-
quences.

The proof of this lemma is obtained from the right unit homomorphism
ηR. Before proceeding, another lemma is needed.

Lemma 3.2. The right unit homomorphism is given by

(30) ηR(λk) =
k∑

i=1

(λi − hi)pi,

where pi ∈ Z[h1, . . . , hk−i], and pk = 1.

P r o o f. Apply the conjugation c to the standard formula

(31) ηR(λk) =
k∑

i=0

λit
pi

k−i.

The resulting formula is

(32) λk =
k∑

i=0

ηR(λi)h
pi

k−i.

Here the fact that c(tj) = hj is used. A simple manipulation of terms yields

(33) ηR(λk) = (λk − hk)−
k−1∑

i=1

ηR(λi)h
pi

k−i.

By induction, it may be assumed that ηR(λi) has the desired form for all
i < k. Then it is evident that ηR(λk) also has the desired form.

Proof of Lemma 3.1. One may readily see from (30) that

(34) P∆k(λk) = −1.

It is a bit more difficult to see that, when j 6= k,

(35) P∆j (λk) = 0.

This follows from (30) and the fact that |pi| = 2(pk − 1) − 2(pi − 1) =
2(pk − pi), which is never equal to |hj | = 2(pj − 1) for any j. The general
formula

(36) (P∆)EλF = (−1)e(E)(F !/(F − E)!)λF−E

now follows from the fact that the P∆j all commute with each other, and
act as derivations.

Proof of Theorem 1.1. First we will show that the coefficient ring formula
for Mδ gives rise to the p-typical curve indicated. Then we will show that
the action on the coefficient ring is the one that is claimed.
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Suppose that

(37) Mδ(λk) =
k∑

j=0

χ(δk−j)λjup
k−pj .

Let

mog x =
∑

k≥0

Mδ(λk)xp
k

(38)

=
∑

k≥0

k∑

j=0

χ(δk−j)λjup
k−pjxp

k

=
∑

n≥0

∑

j≥0

χ(δn)λjup
n+j−pjxp

n+j

=
∑

n≥0

χ(δn)
(∑

j≥0

λj(up
n−1xp

n

)p
j
)

=
∑

n≥0

χ(δn) log(up
n−1xp

n

).

Then

(39) f−1
δ (x) = exp(mog x) =

∑
F

n≥0

[χ(δn)]Fup
n−1xp

n

.

For each k ≥ 0 let gk ∈ H∗(BP;Z(p))[h1, . . . , hk] be the polynomial given
by gk(h1, . . . , hk) = ηR(λk). If we let ck ∈ H∗(BP;Z(p))[u, u−1] be given by

the formula ck(u) = gk(δ1up−1, δ2u
p2−1, . . . , δku

pk−1), then it follows by the
definition of Mδ that

(40) Mδ(λk) = ck(u).

To complete the proof of the theorem, we will show by induction that

(41) ck(u) =
k∑

j=0

χ(δk−j)λjup
k−pj .

In the case k = 1, we see that

(42) c1(u) = λ1 − δ1up−1.

Hence the result is true in the initial case.
For general k, assume the result holds for all ci(u), where i < k. Then

using (33) we find

ck(u) = (λk − δkup
k−1)−

k−1∑

i=1

ci(u)(δk−iup
k−i−1)p

i

(43)

= (λk − δkup
k−1)−

k−1∑

i=1

( i∑

j=0

χ(δi−j)λjup
i−pj

)
δk−iup

k−pi

= λk −
k−1∑

i=0

i∑

j=0

δk−iχ(δi−j)λjup
k−pj
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= λk +
k−1∑

j=0

(
−
k−1∑

i=j

δk−iχ(δi−j)
)
λju

pk−pj

= λk +
k−1∑

j=0

(
−
k−j−1∑
m=0

δk−j−mχ(δm)
)
λju

pk−pj

= λk +
k−1∑

j=0

χ(δk−j)λjup
k−pj

=
k∑

j=0

χ(δk−j)λjup
k−pj .

Theorem 1.1 has some interesting special cases, corresponding to when
δ = (1, 0, 0, . . .), and when δ = (1, 1, 1, . . .).

Corollary 3.3. The multiplicative operation
∑
m≥0 u

m(p−1)Pm corre-
sponds to the p-typical curve

(44) f−1(x) =
∑

F

n≥0

[(−1)n]Fup
n−1xp

n

.

The multiplicative operation
∑
E u
|E|PE corresponds to the p-typical curve

(45) g−1(x) = x−F up−1xp.

Proof of Theorem 1.3. Because Mδ is a multiplicative operation, it is
determined by its value on λk for each k ≥ 0. In particular,

(46) Mδ(λk) =
k∑

j=0

χ(δk−j)λjup
k−pj .

The P∆i operate as derivations. Hence one may construct multiplicative
operations from the P∆i by using the series

(47) Exp(x) =
∑

n≥0

xn

n!
,

where x is taken to be akup
k−1+|ak|P∆k for some ak in BP∗⊗Q. The formula

for P∆i(λk) given by Lemma 3.1 allows one to compute

(48) Exp(akup
k−1+|ak|P∆k)(λk) = λk − akup

k−1+|ak|.

If we set

(49) ak = −
k−1∑

j=0

χ(δk−j)λjup
k−pj ,
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then

Mδ(λk) = Exp(akup
k−1+|ak|P∆k)(λk)(50)

= Exp
(
−
k−1∑

j=0

χ(δk−j)λjup
k−pjP∆k

)
(λk).

However, for i 6= k,

(51) Exp
(
−
k−1∑

j=0

χ(δk−j)λjup
k−pjP∆k

)
(λi) = λi,

whereas

(52) Mδ(λi) =
i∑

j=0

χ(δi−j)λjup
i−pj = λi +

i−1∑

j=0

χ(δi−j)λjup
i−pj .

In order to compensate for this, we note that the product

(53)
∏

k≥1

Exp
(
−
k−1∑

j=0

χ(δk−j)λjup
k−pjP∆k

)
(λi) = Mδ(λi)

for every i ≥ 0. However, one must take care to order this product cor-
rectly. The correct ordering is the one in which the Exp(akup

k−1+|ak|P∆k)
for smaller values of k are written to the right of the Exp(akup

k−1+|ak|P∆k)
for larger values of k. The need for this ordering arises from the fact that
the P∆k act non-trivially on λk. To complete the proof, the ordered product

(54) Mδ =
∏

k≥1

Exp
(
−
k−1∑

j=0

χ(δk−j)λjup
k−pjP∆k

)

may be rewritten as the Exp of an ordered sum:

Mδ = Exp
(∑

k≥1

k−1∑

j=0

−χ(δk−j)λjup
k−pjP∆k

)
(55)

= Exp
(
−
∑

0≤j<k
χ(δk−j)λjup

k−pjP∆k
)
,

where the ordering from left to right is decreasing with respect to k.

4. The Hopf invariant. In this section, a short proof of the well-
known Hopf invariant one theorem [1], [8] is given which uses the exponential
relations of Theorem 1.3. An interesting point to note is that this proof works
simultaneously for all primes.
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Theorem 4.1. If X is a p-cell complex , and the mod p cohomology of
X is a truncated polynomial algebra,

(56) H∗(X;Z/p) ∼= Z/p[x]
(xp+1)

,

then the degree of x is 2pk, where either k = 0 or pk − pk−1 ≤ k. Hence
k = 0 if p is odd , and k ≤ 2 if p = 2.

P r o o f. It is well known that the Adem relations in the mod p Steenrod
algebra force the degree of x to be twice a power of p. The main body of
the proof here is to restrict the possible values of k. For the duration of this
proof, let δ = (1, 1, 1, . . .). We use the relation

(57) Mδ = Exp
(∑

k≥1

λk−1u
pk−pk−1P∆k

)
.

Formula (57) may be simplified to

(58) Mδ = Exp(up−1P1) mod (λ1, λ2, . . .).

If we write

(59) Mδ =
∑

n≥0

unMδ,n

then (58) may be simplified even further to

(60) (P1)p
k

= (pk)!Mδ,pk(p−1) mod (λ1, λ2, . . .).

Because H∗(X;Z(p)) is torsion free,

(61) BP∗(X) ∼= BP∗[x̃]/(x̃p+1),

where the Thom map BP→ HZ/p takes x̃ to x. Applying both sides of (60)
to x̃ yields

(P1)p
k

x̃ = (pk)!Mδ,pk(p−1)x̃ mod (λ1, λ2, . . .)(62)

= (pk)!Ppk x̃ mod (p(pk)!, λ1, λ2, . . .)

= (pk)!x̃p mod (p(pk)!, λ1, λ2, . . .).

Now it is not difficult to see that, for degree reasons, there is a number
c ∈ Z(p) for which

(63) P1x̃ = cλp
k−1

1 x̃p mod (λ2, λ3, . . .).

Applying (P1)p
k−1 to both sides of (63) and using the fact that P1 is a

derivation yields

(64) (P1)p
k

x̃ = c(−1)p
k−1(pk − 1)!x̃p mod (λ1, λ2, λ3, . . .).
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If we now combine (62), (64) and (63), we may conclude that

(65) c = pk mod pk+1, cλp
k−1

1 ∈ BP∗ mod (λ2, λ3, . . .).

If vi ∈ BP∗ is the Hazewinkel generator, then

(66) vi = pp
i−1
λ

(pi−1)/(p−1)
1 mod (λ2, λ3, . . .).

From the second part of (65), and from (66) one may conclude that when
k > 0, c must be divisible by (pp

k−1
)p−1. Combining this with the first part

of (65) implies pk−1(p− 1) ≤ k, or pk − pk−1 ≤ k, the desired conclusion.
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