Some Generalizations of the Scherrer Fixed-Point
Theorem 9).
By
W. L."Ayres (Amn Arbor, Mich).

1. Following Rosenthal and Kuratowski, we shall call a class
L of Fréchet which is the continuous image of an interval a Peano
continuum (or space). It follows that a Peano continuum is compaet
and metrisable #), so that we may assume distance as already defi-
ned. W. Scherrer has shown that every homeomorphism of an
acyclic Peano continuum into a subset of itself has a tixed-point %),
In this note we shall give several generalizations of the Scherrer
theorem based on the eyclic structure of a Peano continuum, Tt is
assumed that the reader is familiar with the terminology and pro-
perties of the cyclic structure as introduced by G. T. Whyburn.
Reference may be made to the following papers of Whyburn
and the author: (I) Proe. Nat. Acad. Sci, vol 13 (1927), pp. 31—
.38; (II) Awmer. Jour. of Math., vol 50 (1928), pp. 167—194; (I1m)
ibid,, vol 51 (1929), pp. 577—594; (IV) Trans. Amer. Math. Soc.,
vol 30 (1928), pp. 567—578; (V) ibid, vol 31 (1929), pp. 95—
612. In this note we shall use the term maximal cyclic set in place
of maximal cyclic eurve and are-set in place of arc-curve.

. all) Presented to the American Mathematical Society April 18, 1930. The prin-
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The first theorem gives a general result on the cyclic structure
of Peano continua. From this we are able to derive three genera-
lizations of the Scherrer theorem as corollaries.

2. Theorem. If T is a homeomorphisin of the Peano continuum
M such that T(M)C M, then there is a cyclic element C of M such
that T(C)C C.

Let X be a cyclic element of M. If X'= 7'(X)(_X, our proof
is complete. If not, there is a eyclic element ¥ such that XCY.
If Y'C Y, our proof is complete. If not, there is a cyclic element
Z such that Y (CZ. In case X’ is a cut point of M we will choose
Y =X (if there is a choice), and similarly in case of Z. We di-
stinguish several cases according to the position of Z If X is a
single point, let = X; and if X is a maximal cyclic set of M,
let & be a point of X which is a non-eut point of M. Let y=2a
and z=1y". From the choice of  and Y we have X + Y are-
set M(x -+y). Among the points of the arc-set M (z+ y) we may
define order as follows: A point p precedes a point g(p=Fg) if
either (a) p =1, or (b) p separates z and ¢ in M(z -} y), or (c) there
is a cut point ¢ of M (2 - y) such that ¢ separates and ¢ in M(z+y)
but not z and p. By this definition order is defined unless p and
q are both non-cut points of M(z —+ 7) belonging to the same ma-
ximal cyclic set.

Case I. Suppose z ¢ arc-set M(x - y). Then T(M (e 4+9)) C M (x+y).
Let K denote the set of cut points of M(x -+ y). Let N denote the
set consisting of the point x together with all points p of K such
that p’=p or p precedes p’. Evidently if peN then every .point
of K preceding p belongs to N. Due to the linear order of K, if
NN then N— N is a single point ¢ and every point of N pre-
cedes g. As K- a -y is closed and y is not a limit point of N,
geK. Let [p,] be a sequence of elements of N such that lim p,=g¢.

i—+00

Then lim p=g,. As ¢ non-¢N, g precedes g. Then for ¢ suf-
i~p00

ficiently large p; precedes ¢. Thus there is some i for which p; pre-
cedes p,, a contradiction. Then N=N and there is a last point
s of N.

If &' =3, our case is complete. If not, then s is not a limit point
of points of K following 4 and thus s belongs to a maximal eyelie
set A such that s precedes every point of 4 —s For suppose s is
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8 limit point of points of K following s. Then there is a cut point
t of K between s and s'. There is a number d such that all points
within a distance 4 of s precede ¢ and all such points are carried
by T into points following ¢. Then s cannot be the last point of N
for all the points of K within a distance d of s belong to N. Thus
8 a limit point of points of K following s gives a contradiction.
Let r denote the other point of K belonging to 4. As » non-¢N,
" belongs to the component of M(x-y)—r that contains z,
denoted by C(M(z + y)—r, x). And s'e¢ C(M(x +y) —s, y). Then

ACOH(=+y)—r o) CMx+y)—sy) = 4,

which proves Case 1.

Case II. Arc-set M (x - y) - arc-set M(y -} 2) = arc-set M (x - 2).
In this case arc-set M(x + y) and arc-set M(y -+ 2) have in com-
mon only Y or a cyclic element containing ¥ (this last may hap-
pen if ¥ =y), and have no point in common which is a cut point
of both M(x +y) and M(y + 2). If 2’e M(y + 2), we have a fized
point by Case I. If 2’ non-¢ M(y -+ 2), let p be a limit point of
M(z+ #) — M(y +2) in M(y + z). Suppose p and 2 do not belong
to the same cyclic element of M(y 4 z). Then M(y -+ 2) contains
a point g which separates p and 2. The point ¢ is thus a et point
of M(y+2) and also a cut point of M(z-2'). Since g is a cut
point of M(y - 2), ge T(M(z+y)) and there is a cut point » of
M(z+ y) such that +'=gq. Similarly ge T(M(y -+ 2)) and there is
a cut point s of M(y 4 2) such that s’=g¢. Since M{x—+y) and
M(y + 2) have no point in common which is a cut point of both,
we have r==s. But /==s'==g contrary to the hypothesis that 77
is a homeomorphism. Then we see that p and e belong to the same
cyelic element of 37 and in much the same way that p is not a
cut point of M(y 4 2). For this reason M(y + z) - M (24 2)=
=My +2). We may now repeat this with 7(z").

Thus at some stage Case II reduces to Case I or there exists
an infinite set of distinet points [«,] such that () Za=T(x,), (b)
z; and % (i=Fj) do not belong to the same maximal cyclie set of

i=p
M, () ;_2; arc-set M(w, + a,y,) = arc-set M(z,-}-,,,). The set 3z, has
1

at }east one limit point p and from property (c), p is the only
limit point and p'non-¢ 3z, Now suppose p’ == p. Let 29 = ¢(p, p').
There exists an » such that for i>mn, o(p, 2) <7. Since lim z,= P
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and 7' is a homeomorphism, there exists an m such that for i>m,
o(p’s ;) <<7m. Then as z; =w=,,, we have by the triangle axiom for
i>nt+m-41,

20> o(p 2) + o(p, m) = o(p, p) =27,
a contradietion.

Case II1. The point z non-¢ arc-set M(x -} ), and arc-set M (z--y)4-
-} arc-set M (y -+ 2) == arc-set M(z + 2). In this case M(y 4 2)—
— M(z -+ y) has a limit point p in M(z 4 y) which is either a cut
point of M(x 4 y) or there is a cut point of M(z - y) separating
y and p in M(x—+y). As p is a cut point of M(y+=2), peT(M).
Then let ¢ be the point such that ¢'=p, and we see that ¢ is a
cut point of M(x - y). There are three possibilities:

(a) q precedes p in M(z -+ y). Then T(M(z+ q))C My +p)
and 7(M(q +y)) CM(p + 2). As pe M(g+y) we have p'e M(p -+ 2)
Then we reduce to Case II for we have T'(q)=1p, T(p)=1yp and.
Mg + p)+M(p + p) = M(q+p’) since M(q+ p)- M(p + p')=p.

(b) p precedes ¢ in M(x--y). In this case p’ follows p in
M(x + y). The proof may be completed here as in Case I by con-
sidering the set of cut points [s] of M(w - y) such that s' does
not precede s. The fixed element under T' occurs between p and g.

(c) neither p nor g precedes the other in M(x -+t y). As p is
a cut point of M(y - 2), it is & cut point of M’(y 4 2). Then be-
cause 7' is a homeomorphism, ¢ is a cut point of M(z-y). In
the definition of order in M(x -+ y), order was defined for every
pair of distinet points in which one was a cut point of M(x - y).
Then as order is not defined for p and ¢, we have p=gq. As
p=ygq is a cut point of A, it is the desired fixed cyclic element
of M under T.

3. Theorem. If every cyclic element C of the Peano continuum
M has the property that every homeomorphism?) carrying C into a
subset of itself has an invariant point, then the entire continuum M
has the same property.

1) Note from the Editors.

As shown in the Thesis of M. Borsuk, the term ,homeomorphism* may be
replaced in theorems 3—bB by ,continmous transformation®, which in case of theo-
rems 4 and B gives a stronger result. The paper of M. Borsuk will appear in
this Journal,

See also a note by 8, Lefschetz in C. R. Paris vol, 190 of 2, 1. 1930.
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Let T be a homeomorphism such that 7(M)C M. By the pre-
ceding theorem there is a cyclic element C of M such that T'(C)C C
Then by our assumed property there is a point p of C such that
T(p)=p.

As far as homeomorphisms are concerned, this last result answers
a question of C. Kuratowski?). The converse of this theorem
is not true, i. e. there exist Peano continua M having the property
that every homeomorphism of M into a subset of itself has an
invariant point but containing eyclic elements not having this pro-
perty. For an example take a circle plus an interval having one
end point on the circle. :

4. Theorem. If every cyclic element of the Peano continuum
M is an n-dimensional simplex (n may vary for different clements),
then every homeomorphism of M into a subset of itself has a fixed
poind.

This result follows immediately from the result of § 3 and the
Brouwer fixed-point theorem.

b. Theorem. If the Peano continuum M lies in o plane and
does not separate the plane, then every homeomorphism of M into a
subset of itself has an invariant point,

Since M does not separate the plane, it follows by a theorem
of Whyburn (I, p. 188) that every maximal cyclic set of I is
a simple closed curve plus its interior, a two dimensional simplex.
All other cyclic elements of M are points. Hence our theorem fol-
lows from the result of § 4.

This result is a partial solution of the well-known problem as
to whether a general bounded continuum not separating its plane has
this property. We exhibit here the result for any continuum which
is locally connected. '

Y) Quelques applications d'eléments cycliques de M. Whyburn, Fund, Math,
vol. 14 (1929), p. 139, footnote 1),

The University of Michigan, Al

icm

Sur les courbes d’ordre ¢.
Par

Stefan Mazurkiewicz (Varsovie).

Le but de cette Note est de démontrer existence d'une courbe
péanienne *) plane K possédant les propriétés suivantes:

L K=K, c. & d. tout point de K est dordre ¢;

IL K contient un sous-ensemble dénombrable A tel que K— A est
punctiforme.

Il résulte de II, que:

IIe. K ne contient aucune’ famille non dénombrable de contimus
disjoints deux & deux?).

Le plan euclidien sera désigné par R,, la frontiére d’un ensemble
arbitraire U par #(U), son diamdtre par d(U). J'appelle domaine
jordanien tout domaine plan, borné dont la frontiére est une ligne
simple fermée.

A tout domaine jordanien G et & tout nombre 5 > 0 nous fe-
rons correspondre une suite de domaines jordaniens {G\(G, n)} et
un ensemble dénombrable B(G, ) de maniére & satisfaire aux con-
ditions suivantes:

(C) On a: Go(G,NC G; Gu(G,m) X G(G1)=0 pour k]
lim G,(G,n) = F(G), et lensemble: & (G, )= F(G)+

 + 3 Gi(6; ) est un continu.

Fml

Y e. & d, d'un continu localement connexe, de dimension 1.

1) Sai démontré dans une Note antérieure (Fund. Math. XV Pp. 322 ss.) 'existence
d'un continu péanien plan K possedant la propriété I12) et tel que K¢ 4 0. Mais
dans ce cas on avait K¢ =0, :

Fundamonta Mathematicae t. XVL. 22
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