Hopfian and strongly hopfian manifolds

by

Young Ho Im (Pusan) and
Yongkuk Kim (Pusan and Knoxville, Tenn.)

Abstract. Let $p : M \to B$ be a proper surjective map defined on an $(n + 2)$-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' and $C' \setminus O$ is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if $\chi(N) \neq 0$ or $H_1(N) \cong \mathbb{Z}_2$.

1. Introduction. Call a closed manifold N hopfian if it is orientable and every degree one map $N \to N$ which induces a π_1-isomorphism is a homotopy equivalence. A closed n-manifold N is called a strongly hopfian manifold if N_H is hopfian, where H is the intersection of all subgroups with index 2 in $\pi_1(N)$ and N_H is the covering space of N corresponding to H.

In [16] and [17], using the concept of strong hopfianness, Y. Kim showed that all closed strongly hopfian manifolds N with residually finite $\pi_1(N)$ and $\chi(N) \neq 0$ as well as all closed strongly hopfian manifolds with hyperhopfian fundamental group are codimension-2 fibrators. It is well known that every finitely generated residually finite group is hopfian. While every subgroup of a residually finite group is residually finite, a hopfian group can contain non-hopfian subgroups of finite index. For example, consider the group $G = \langle a, b : a^{-1}b^{12}a = b^{18} \rangle$ and a homomorphism $f : G \to \mathbb{Z}_2$ given by $f(a) = 0$, $f(b) = 1$. By the Reidemeister–Schreier method, one can see that the kernel K of f is isomorphic to $\langle c_1, c_2, d : c_i^{-1}d^6c_i = d^3, i = 1, 2 \rangle$, and $[G : K] = 2$. Baumslag–Solitar [1] tells us that G is hopfian but K...
is non-hopfian. Put $H = \bigcap\{H_i \leq G : [G : H_i] = 2\}$. Since $[K : H]$ is finite and K is non-hopfian, H is non-hopfian (see [14]). Of course, this example does not give us the existence of a non-strongly hopfian manifold (see [12]). Consequently, the hopfianness of neither N nor $\pi_1(N)$ guarantees the hopfianness of N_H and $\pi_1(N_H)$.

In this paper, we show that if $p : M \to B$ is a proper surjective map defined on an $(n+2)$-manifold such that each point-preimage is a copy of a hopfian n-manifold, then p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' and $C' \setminus O$ is locally finite. This property enables us to show that, whether or not N_H and $\pi_1(N_H)$ are hopfian, all hopfian manifolds N with hopfian $\pi_1(N)$ and $\chi(N) \neq 0$ are codimension-2 fibrators. Moreover, we can give an affirmative answer to the following question of Chinen [3]: Is every hopfian manifold N with hopfian fundamental group and $H_1(N) \cong \mathbb{Z}_2$ a codimension-2 fibrator?

2. Preliminaries. Throughout this paper, the symbols \sim, \approx, and \cong denote homotopy equivalence, homeomorphism, and isomorphism, respectively. The symbol χ is used to denote Euler characteristic. All manifolds are understood to be finite-dimensional, connected, metric, and boundaryless. Whenever the presence of boundary is tolerated, the object will be called a manifold with boundary.

A proper map $p : M \to B$ between locally compact ANRs is called an approximate fibration if it has the approximate homotopy lifting property (see [4]).

A proper map $p : M \to B$ is N^n-like if each fiber $p^{-1}(b)$ is shape equivalent to N. For simplicity, we shall assume that each fiber $p^{-1}(b)$ in an N^n-like map is an ANR having the homotopy type of N^n.

Let N and N' be closed n-manifolds and $f : N \to N'$ be a map. If both N and N' are orientable, then the degree of f is the nonnegative integer d such that the induced endomorphism $f_* : H_n(N; \mathbb{Z}) \cong \mathbb{Z} \to H_n(N'; \mathbb{Z}) \cong \mathbb{Z}$ amounts to multiplication by d, up to sign. In general, the degree mod 2 of f is the nonnegative integer d such that the induced endomorphism $f_* : H_n(N; \mathbb{Z}_2) \cong \mathbb{Z}_2 \to H_n(N'; \mathbb{Z}_2) \cong \mathbb{Z}_2$ amounts to multiplication by d.

Suppose that N is a closed n-manifold and a proper map $p : M \to B$ is N-like. Let G be the set of all fibers, i.e., $G = \{p^{-1}(b) : b \in B\}$. Put $C = \{p(g) : g \in G\}$ and there exist a neighborhood U_g of g in M and a retraction $R_g : U_g \to g$ such that $R_g|g' : g' \to g$ is a degree one map for all $g' \in G$ in U_g, and $C' = \{p(g) : g \in G\}$ and there exist a neighborhood U_g of g in M and a retraction $R_g : U_g \to g$ such that $R_g|g' : g' \to g$ is a degree one mod 2 map for all $g' \in G$ in U_g. Call C the continuity set of p.
Hopfian manifolds

A group Γ is said to be hopfian if every epimorphism $f : \Gamma \to \Gamma$ is necessarily an isomorphism. A finitely presented group Γ is said to be hyperhopfian if every homomorphism $f : \Gamma \to \Gamma$ with $f(\Gamma)$ normal and $\Gamma/f(\Gamma)$ cyclic is an isomorphism (onto). A group Γ is said to be residually finite if for any non-trivial element x of Γ there is a homomorphism f from Γ onto a finite group K such that $f(x) \neq 1_K$.

A closed n-manifold N^n is a codimension-2 fibrator (respectively, a codimension-2 orientable fibrator) if, whenever $p : M \to B$ is a proper map from an arbitrary (respectively, orientable) $(n + 2)$-manifold M to a 2-manifold B such that each $p^{-1}(b)$ is shape equivalent to N, then $p : M \to B$ is an approximate fibration.

All simply connected manifolds, closed surfaces with non-zero Euler characteristic, and closed manifolds N with $\pi_1(N) \cong \mathbb{Z}_2$ (for example, real projective n-spaces, $n > 1$), are known to be codimension-2 fibrators (see [7]).

The following is basic for investigating codimension-2 fibrators.

Proposition 2.1 [7, Proposition 2.8]. If $p : M \to B$ is a proper surjective map defined on an orientable $(n + 2)$-manifold M with closed orientable n-manifolds as point inverses, then B is a 2-manifold and $D = B \setminus C$ is locally finite in B, where C represents the continuity set of p. Moreover, if either M or some point inverses are non-orientable, then B is a 2-manifold with boundary (possibly empty) and $D' = (\text{int } B) \setminus C'$ is locally finite in B, where C' represents the mod 2 continuity set of p.

The next result summarizes useful information connecting hopfian manifolds and hopfian fundamental groups.

Proposition 2.2 ([8, Theorem 2.2] or [11]). A closed orientable n-manifold N is a hopfian manifold if any one of the following conditions holds:

1. $n \leq 4$;
2. $\pi_1(N)$ is virtually nilpotent;
3. $\pi_i(N)$ is trivial for $1 < i < n - 1$.

The following two recent facts play important roles in this paper.

Lemma 2.3 [17, Lemma 3.2]. Let N be a closed manifold. Suppose that $f : \pi_1(N) \to \pi_1(N)$ is a homomorphism whose induced action on $H_1(N; \mathbb{Z}_2)$ is an automorphism (i.e., $f(H) \subset H$ and the natural map $f' : \pi_1(N)/H \to \pi_1(N)/H$ is an isomorphism). Then

1. f is an epimorphism if and only if $f|H : H \to H$ is an epimorphism.
2. f is an isomorphism if and only if $f|H : H \to H$ is an isomorphism.
Proposition 2.4 [2, Corollary 3.3]. Let N be a codimension-2 orientable fibrator. If N has no 2-to-1 covering, then N is a codimension-2 fibrator.

3. Hopfian manifolds as codimension-2 fibrators

Theorem 3.1. Let N be a hopfian n-manifold with hopfian fundamental group. Let a proper map $p : M \to B$ defined on an $(n + 2)$-manifold M be N-like. Then p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' of p and $C' \setminus O$ is locally finite.

Proof. Let $G = \{ p^{-1}(b) \equiv g_b : b \in B \}$.

Claim. Any $x \in C'$ has a neighborhood V_x and a dense open subset O_x of V_x such that p is an approximate fibration over O_x and $V_x \setminus O_x$ is locally finite.

Fix $g_0 \in G$ with $p(g_0) \in C'$. Take a neighborhood $U (\subset C')$ of $p(g_0)$ such that $p^{-1}(U)$ retracts to g_0, and take a smaller connected neighborhood V of $p(g_0)$ such that $p^{-1}(V)$ deformation retracts to g_0 in $p^{-1}(U)$. Call this retraction $R : p^{-1}(V) \to g_0$. If N has no 2-to-1 covering, the claim follows from [2, Proposition 3.2] and [8, Theorem 2.1]. Now we assume that N has a 2-to-1 covering. Take the covering map $q : M^* \to p^{-1}(V)$ corresponding to $R_\#^{-1}(H)$, where $H = \bigcap_{i \in I} H_i$ with $I = \{ i : [\pi_1(N) : H_i] = 2 \}$. Since $[\pi_1(p^{-1}(V)) : R^{-1}_\#(H)] = [\pi_1(g_0) : H] < \infty$, q is finite. We see that for all $g \in G$ with $p(g) \in C'$, $q^{-1}(g) \equiv g^*$ is connected and has homotopy type of N_H (see [16, Lemma 3.1] for a detailed proof), where N_H is the covering space of N corresponding to H. Set $G^* = \{ g^* : g \in G \text{ with } p(g) \in V \}$. Let $p^* = p \circ q : M^* \to B^* = M^*/G^* = V$ be the composition map. By Proposition 2.1, we see that the continuity set $C(p^*)$ is dense open in V, and $V \setminus C(p^*)$ is locally finite. So it is enough to show that p^* is an approximate fibration over the continuity set $C(p^*)$ of p^*.

Fix $g_b^* \in G^*$ with $p^*(g_b^*) = p(g_b) = b \in C(p^*)$. Carefully take a small neighborhood $W (\subset C(p^*)$) of b and a retraction $R_b : p^{-1}(W) \to g_b$. Let $R_b^*: W^* \equiv q^{-1}(p^{-1}(W)) \to g_b^*$ be the lifting of R_b.

For any $a \in W$, consider the diagram

$$
\begin{array}{cccc}
g_a^* & \to & W^* & \xrightarrow{R_b^*} & g_b^* \\
p \downarrow & & \downarrow q & & \downarrow q \\
g_a & \to & p^{-1}(W) & \xrightarrow{R_b} & g_b
\end{array}
$$

Since $(R_b^*) : g_a^* \to g_b^*$ is a map of degree one, $(R_b) : g_a \to g_b$ has degree one. The hopfian hypotheses of N and $\pi_1(N)$ yield that (R_b) is a homotopy equivalence. In particular, $(R_b)_{\#} : \pi_1(g_a) \to \pi_1(g_b)$ is an isomorphism.
By Lemma 2.3, we see that \((R_b^*)_\# : \pi_1(g_a^*) \to \pi_1(g_b^*)\) is an isomorphism. Moreover, since for \(i \geq 2\), the homomorphism
\[
\pi_i(g_a^*) \cong \pi_i(g_a) \xrightarrow{(R_b^*)_\#} \pi_i(g_b) \cong \pi_i(g_b^*)
\]
is an isomorphism, by the Whitehead Theorem \((R_b^*)\) is a homotopy equivalence. It follows from [8, Theorem 2.1] and [4] that \(p^* = p \circ q\) is an approximate fibration over the continuity set \(C(p^*)\) of \(p^*\).

Now let \(O = \bigcup_{x \in C'} O_x\) and \(C' = \bigcup_{x \in C'} V_x\). Then we are done.

Remark 1. The conclusion of Theorem 3.1 is best possible, in the following sense: there are proper maps from \(S^1 \times \mathbb{R}^2 \to \mathbb{R}^2\) with fiber \(S^1\) which are not approximate fibrations over \(C' = \mathbb{R}^2\) (see [6] or [7, Example 3.6]).

Remark 2. Let \(N\) be a hopfian \(n\)-manifold with some properties. The most common procedure of showing that \(N\) is a codimension-2 fibration can be described as follows: Take any \(N\)-like proper map \(p : M \to B\) from an \((n + 2)\)-manifold onto a 2-manifold. First show that \(p\) is an approximate fibration over the mod 2 continuity set \(C'\) of \(p\), and then show that \(p\) is an approximate fibration over \(\text{int } B\) and \(\partial B = \emptyset\). The usefulness of Theorem 3.1 is that, showing that \(p\) is an approximate fibration over the mod 2 continuity set \(C'\) of \(p\), we can localize the situation so that \(C'\) is an open disk containing \(b_0 = p(g_0)\) and \(p\) is an approximate fibration over \(C' \setminus b\). Also, we may assume that \(R : p^{-1}(C') \to g_0\) is a strong deformation retraction.

Corollary 3.2. Let \(N\) be a hopfian \(n\)-manifold with hopfian \(\pi_1(N)\). Then \(N\) is a codimension-2 fibration if

1. \(\chi(N) \neq 0\), or
2. \(H_1(N) \cong \mathbb{Z}_2\).

Proof. Let a proper map \(p : M \to B\) from an \((n + 2)\)-manifold onto a 2-manifold with boundary be \(N\)-like. Set \(G = \{p^{-1}(b) : b \in B\}\).

Proof of (1). Applying the method of the proof of [16, Theorem 3.3] to \(p|C'\), we see that \(p\) is an approximate fibration over the mod 2 continuity set \(C'\) of \(p\). Then copy the proofs of [16, Lemma 3.2] and [16, Theorem 3.3].

Proof of (2)

Claim (i). \(p\) is an approximate fibration over the mod 2 continuity set \(C'\) of \(p\).

Localize the situation so that \(C'\) is an open disk containing \(b_0 = p(g_0)\) and \(p\) is an approximate fibration over \(C' \setminus b_0\). Also, we may assume that \(R : p^{-1}(C') \to g_0\) is a strong deformation retraction. If for any \(g \in G\) with \(p(g) \in C'\), \((R)|_\# : \pi_1(g) \to \pi_1(g_0)\) is an epimorphism, we are done (see [5]). So now assume that there is a \(g (\neq g_0) \in G\) with \(p(g) \in C'\) such
that \((R\rangle)_\# : \pi_1(g) \to \pi_1(g_0)\) is not an epimorphism. Take the covering \(q : M^* \to p^{-1}(C')\) corresponding to \(R_{\#}^{-1}(H)\), where \(H = \bigcap_{i \in I} H_i\) with \(I = \{i : [\pi_1(N) : H_i] = 2\}\). Here note that \(H\) is the commutator subgroup of \(\pi_1(N)\), for \(H_1(N) = \mathbb{Z}_2\). From the fact that \(\pi_1(g_0)/\langle R\rangle_\#(\pi_1(g))\) is cyclic, we see that \((R\rangle)_\#(\pi_1(g)) = H\), which contradicts the fact that \((R\rangle)_\#^{-1}(H) = H\) (see [17, Lemma 3.1]).

Claim (ii). \(p\) is an approximate fibration over \(\text{int } B\).

In light of Proposition 2.1, we localize the situation so that \(\text{int } B\) is an open disk containing \(b_0 = p(g_0)\) and \(p\) is an approximate fibration over \(\text{int } B \setminus b_0\). Also, we may assume that \(R : p^{-1}(\text{int } B) \to g_0\) is a strong deformation retraction. It suffices to show that for any \(g \in G\), \((R\rangle)_* : H_1(g) \to H_1(g_0)\) is an isomorphism (see [8, Lemma 5.2] or [15]). So now assume that there is a \(g \neq g_0\) such that \((R\rangle)_* : H_1(g) \to H_1(g_0)\) is not an isomorphism. Then, since \(H_1(N) = \mathbb{Z}_2\), \((R\rangle)_* : H_1(g) \to H_1(g_0)\) is trivial. Take the covering \(q : M^* \to p^{-1}(C')\) corresponding to \(R_{\#}^{-1}(H)\), where \(H = \bigcap_{i \in I} H_i\) with \(I = \{i : [\pi_1(N) : H_i] = 2\}\). Then we see that for all \(g \neq g_0\) in \(G\), \(q^{-1}(g)\) has two components which are homeomorphic to \(N\) and \(q^{-1}(g_0)\) is the covering space of \(N\) corresponding to \(H\).

Since \(\pi_1(g_0)/\langle R\rangle_\#(\pi_1(g))\) is cyclic (and so abelian) and \(H\) is the commutator subgroup of \(\pi_1(N)\), \((R\rangle)_\#(\pi_1(g))\) contains \(H\). So we have \((R\rangle)_\#(\pi_1(g)) = H\), because \(H_1(N) = \mathbb{Z}_2\) and \((R\rangle)_\#\) is not an epimorphism. Hence, by the fact that \(H = (q\rangle)_\#(q^{-1}(g_0))\), we have the lifting \(\overline{R}\) of \(R\) so that \((q\rangle) \circ \overline{R} = R\). Hence we have an epimorphism \(\mathbb{Z}_2 \cong H_1(N) = H_1(g) \to H_1(q^{-1}(g_0)) \cong H_1(N_H)\). So \(H_1(N_H)\) is either trivial or \(\mathbb{Z}_2\).

Case 1: \(H_1(N_H)\) is trivial. From the homology exact sequence

\[\mathbb{Z} \cong H_2(M^*, M^* \setminus q^{-1}(g_0)) \to H_1(M^* \setminus q^{-1}(g_0)) \to H_1(M^*) = 0, \]

we see that \(H_1(M^* \setminus q^{-1}(g_0))\) is cyclic. On the other hand, since \((p \circ q) : M^* \setminus q^{-1}(g_0)\) is an approximate fibration, we see that \(H_1(M^* \setminus q^{-1}(g_0)) \cong i_*\langle H_1(q^{-1}(g_0)) \rangle \otimes \mathbb{Z}\) for the inclusion \(i : q^{-1}(g_0) \to M^* \setminus q^{-1}(g_0)\). By [3, Theorem 2.5], we deduce that \(i_*\) is a monomorphism so that \(H_1(M^* \setminus q^{-1}(g_0)) \cong H_1(q^{-1}(g_0)) \otimes \mathbb{Z} \cong \mathbb{Z}_2 \otimes \mathbb{Z}\), which is not cyclic.

Case 2: \(H_1(N_H) = \mathbb{Z}_2\). Let \(K\) be the commutator subgroup of \(\pi_1(N_H) = H\). Then \(K\) is a normal subgroup of \(\pi_1(N)\) with index 4. Since \(\pi_1(N)/K\) is abelian, \(K\) contains the commutator subgroup \(\pi_1(N_H)\) of \(\pi_1(N)\), which is a contradiction.

Therefore, \(p\) is an approximate fibration over \(\text{int } B\).

Claim (iii). The boundary of \(B\) is empty.
Suppose not. As in the proof of [16, Theorem 3.3], we then could have a map \(N \to N_H \) with degree one. But since \(H_1(N) = \mathbb{Z}_2 \), we know that \(H_1(N_H) \) is either trivial or \(\mathbb{Z}_2 \). As in the proof of [3, Lemma 6.7], we see that the case of \(H_1(N_H) = 0 \) cannot happen. Also, as before, we can show that the case of \(H_1(N_H) = \mathbb{Z}_2 \) cannot happen.

Corollary 3.3. Let \(N^n \) be a closed orientable \(n \)-manifold with hopfian \(\pi_1(N) \) and \(\chi(N) \neq 0 \). Then \(N \) is a codimension-2 fibrator if \(N \) is aspherical or \(n = 4 \).

References

[6] —, —, *Mappings from \(S^3 \) to \(S^2 \) whose point inverses have the shape of a circle*, Gen. Topology Appl. 10 (1979), 239–246.

Department of Mathematics
Pusan National University
Pusan, 609-735, South Korea
E-mail: yhim@hyowon.pusan.ac.kr

Department of Mathematics
The University of Tennessee at Knoxville
Knoxville, Tennessee 37996-1300
U.S.A.
E-mail: ykim@math.utk.edu

Received 26 March 1998;
in revised form 26 August 1998