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Algebraic characterization of finite (branched) coverings

by

M. A. M u l e r o (Badajoz)

Abstract. Every continuous map X → S defines, by composition, a homomorphism
between the corresponding algebras of real-valued continuous functions C(S) → C(X).
This paper deals with algebraic properties of the homomorphism C(S)→ C(X) in relation
to topological properties of the map X → S. The main result of the paper states that a
continuous map X → S between topological manifolds is a finite (branched) covering, i.e.,
an open and closed map whose fibres are finite, if and only if the induced homomorphism
C(S)→ C(X) is integral and flat.

Introduction. The aim of this paper is to characterize finite coverings
X → S between topological spaces by means of the algebraic properties of
the induced homomorphism C(S) → C(X) between the algebras of real-
valued continuous functions.

Our starting point is the well-known result which states that, in the
realm of realcompact spaces, every space X is determined by the algebra
C(X) of all real-valued continuous functions defined on it, and that con-
tinuous maps between such spaces are in one-to-one correspondence with
homomorphisms between their algebras of continuous functions. In view of
this equivalence, it seems natural to expect that every property concerning
topological spaces and continuous maps may be characterized in terms of
the algebras of continuous functions.

By a finite (branched) covering we mean an open and closed continuous
map π : X → S with finite fibres. Note that a finite covering is not neces-
sarily a local homeomorphism (for example, π : C→ C, π(z) = z2). The set
of points in X at which π is not a local homeomorphism is called the branch
set of π. In [15] the author gives an algebraic characterization of this branch
set in terms of finite C(S)-subalgebras A of C(X) that separate points in
X and the module ΩA/C(S) of its Kähler differentials.
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The main result of the present paper is the following characterization of
finite coverings between topological manifolds:

Theorem. Let X and S be topological manifolds. A continuous map
X → S is a finite covering if and only if the induced homomorphism C(S)→
C(X) is integral and flat. A continuous map X → S is an unbranched finite
covering if and only if the induced homomorphism C(S) → C(X) is finite
and flat.

The main difficulty is to show that C(S)→ C(X) is flat. This difficulty
was to be expected, since the flatness is a considerably technical algebraic
property and we must obtain it starting from topological properties.

The above formulation is inspired by similar results in algebraic geom-
etry, mainly by Zariski’s Main Theorem that relates the finiteness of the
fibres of a morphism between algebraic varieties to the finiteness of the cor-
responding morphism between rings of algebraic functions ([4, p. 240] or [8,
Theorem 8.12.6]).

Differential geometry is another geometric context where the general
principle of mutual determination between spaces (differentiable manifolds)
and algebras of (C∞) functions remains valid. We believe that similar results
might be stated for C∞ mappings between differentiable manifolds by means
of Malgrange’s Preparation Theorem ([11, Theorem 4.1] or [16, pp. 187–
190]), but we shall not treat this case here.

1. Preliminaries. For rings of continuous functions, we use the same
terminology and notation as in [6]. For algebraic concepts, the reader may
consult [1], [3] or [13]. Throughout the paper we work with the prime spec-
trum of C(X), so that we now review some relevant definitions and results.

The set of prime ideals in a ring A, i.e., the prime spectrum, is denoted
by SpecA. We consider it to be endowed with the Zariski topology: For any
subset C of A, let V(C) = {p ∈ SpecA : C ⊆ p} and take as closed sets in
SpecA all subsets of the form V(C). If f ∈ A, we put D(f) = SpecA−V(f).
The collection of those open sets forms a basis of the topology of SpecA.

Each ring homomorphism h : A → B induces a continuous map h∗ :
SpecB → SpecA which sends p ∈ SpecB to h−1(p) ∈ SpecA.

If h : A→ B is a surjective homomorphism, then h∗ is a homeomorphism
between SpecB and the closed subset V(ker(h)) of SpecA.

If B is the ring of fractions of A with respect to a multiplicatively closed
subset S of A, i.e., B = {a/s : a ∈ A, s ∈ S} and h : A→ B is the natural
homomorphism, h(a) = a/1, then h∗ is a homeomorphism between SpecB
and the subset {p ∈ SpecA : p ∩ S = ∅} of SpecA.

Let M be an A-module. For a ∈ A, we denote by Ma the A-module of
fractions with respect to the multiplicatively closed subset {an : n ∈ N}.
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If p is a prime ideal in A, we denote by Mp the localization, or mod-
ule of fractions, of M with respect to the multiplicatively closed subset
A− p.

Throughout the paper, C(X) is the algebra of all real-valued continu-
ous functions on X and C∗(X) the subalgebra of bounded functions. Every
f ∈ C(X) can be written as the fraction f = f · (1 + f2)−1/(1 + f2)−1, so
that C(X) is the ring of fractions of C∗(X) with respect to the multiplica-
tively closed subset MX = {f ∈ C∗(X) : 0 6∈ f(X)}. Hence, SpecC(X) is
naturally homeomorphic to the subspace {p ∈ SpecC∗(X) : p∩MX = ∅} of
SpecC∗(X).

The zero-set of a function f ∈ C(X) is Z(f) = {x ∈ X : f(x) = 0}, and
coz(f) = X − Z(f) is the cozero-set of f .

An ideal I of C(X) is said to be a z-ideal if Z(f) ⊆ Z(g) and f ∈ I imply
g ∈ I.

If U is a cozero-set, U = coz(f), then C(U) is the localization, or ring of
fractions, of C(X) with respect to the multiplicatively closed subset SU =
{h ∈ C(X) : 0 6∈ h(U)}, i.e., C(U) = {f/h : f, h ∈ C(X), 0 6∈ h(U)}
(see [2]).

For the bounded case we have the following lemma.

Lemma 1.1. Let f ∈ C∗(X). If U = coz(f) then C∗(X)f = C∗(U)f .

P r o o f. If g ∈ C∗(U), it is clear that the function g′ defined by g′ = g ·f
on U = coz(f) and g′ = 0 on Z(f) is continuous on X, and in the ring of
fractions C∗(U)f we can write g/1 = g′/f .

It is well known that the maximal spectrum of C(X), i.e., the subspace of
SpecC(X) consisting of all maximal ideals in C(X), is a Hausdorff compact
space. Every completely regular space X may be identified with a dense
subspace of the maximal spectrum of C(X): each point x ∈ X defines the
maximal ideal mx = {f ∈ C(X) : f(x) = 0}, and the maximal spectrum
of C(X) can be identified with βX, the Stone–Čech compactification of X.
The same holds for the maximal spectrum of C∗(X).

If M is a C(X)-module, we write Mx instead of Mmx .
Unless otherwise specified, X and S will be completely regular spaces.
Every map π : X → S defines, by composition, two homomorphisms

of rings C(S) → C(X) and C∗(S) → C∗(X). Given g ∈ C(S), if no con-
fusion is possible, the function g ◦ π will also be denoted by g. The maps
between spectra induced by these homomorphisms of rings are denoted by
πs : SpecC(X) → SpecC(S) and π∗ : SpecC∗(X) → SpecC∗(S), respec-
tively. The extension of π to the Stone–Čech compactification is denoted by
πβ : βX → βS.
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2. Finite coverings

Definitions 2.1. Let X and S be two arbitrary topological spaces (not
necessarily completely regular, nor even Hausdorff). A map π : X → S is
separated if any two points in the same fibre have disjoint neighbourhoods
in X. The map π is said to be finite if it is proper (closed and with compact
fibres), separated and each fibre is a finite set.

Definitions 2.2. Let X and S be arbitrary topological spaces. A map
π : X → S is a trivial covering if the space X has a cover by pairwise disjoint
open sets, each homeomorphic to S via π.

A map π : X → S is an unbranched covering if every point of S has a
neighbourhood U such that π : π−1(U)→ U is a trivial covering.

By a finite covering we mean a finite and open map π : X → S. Since
the image of a finite covering is an open and closed subset of S, there is no
loss of generality for our purposes in assuming that every finite covering is
a surjective map.

Definition 2.3. Let π : X → S be a finite covering between arbitrary
topological spaces. Let s be a point in S and π−1(s) = {x1, . . . , xn}. We say
that a neighbourhood U of s is special for π if

π−1(U) = U1 t . . . t Un,
where Ui is a neighbourhood of xi such that

π(Ui) = U for every i, Ui ∩ Uj = ∅ if i 6= j.

It is not difficult to prove that each s ∈ S has a basis of special neighbour-
hoods.

Definitions 2.4. The branch set of a finite covering π : X → S is the
set of all points in X where π is not a local homeomorphism. We denote
this closed set by Bπ, or simply B if no confusion is possible.

The closed set π(Bπ) is denoted by Rπ, or simply R, and its complement
S−R by S0. Clearly, a point s ∈ S belongs to S0 if and only if the cardinality
of the fibres of π is constant on some neighbourhood of s.

If X0 = π−1(S0) then the restriction π : X0 → S0 is an unbranched
covering and is said to be the unbranched part of π.

Examples 2.5. The study of unbranched coverings is a classical subject.
(It is well known that unbranched coverings are closely connected with the
study of the fundamental group, see for instance [12].) The following exam-
ples show that the class of finite branched coverings includes some interesting
kinds of maps.

It is a classical result that non-constant analytic maps between Riemann
surfaces are open, hence any non-constant analytic map with finite fibres
between compact Riemann surfaces is a finite covering.
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It is well known and easy to prove that if a group G acts on a space X
(i.e., there is a morphism of groups from G to the group of homeomorphisms
of X) then the natural projection map of X onto its quotient space π : X →
X/G is an open map. If X is Hausdorff and G is finite, this map is a finite
covering.

In order to study branched coverings from the algebraic point of view, we
must define the concepts of “degree” of a finite covering, and “multiplicity”
or “index of branching” at a branching point.

Definitions 2.6. Let π : X → S be a finite covering with unbranched
part π : X0 → S0. Given a point x ∈ X, we say that a number b(x) ∈ N is
the index of branching of π at x if there exists a basis of neighbourhoods U
of x such that U ∩X0 6= ∅ and the cardinality of the fibres of the unbranched
covering π : U ∩X0 → π(U ∩X0) is b(x). It is easy to prove that the index
of branching at x, if it exists, is unique.

If the index of branching of π : X → S exists at every point in X, we
define the degree of π at s ∈ S as the number

∑
x∈π−1(s) b(x). It is easy to

prove that the degree is locally constant, so that there is no loss of generality
if we assume from now on that it is constant.

By a covering of degree n we mean a finite covering π : X → S such
that the index of branching exists at every point in X and the degree of π
at every point in S is n.

Note that if π : X → S is a covering of degree n then the cardinality of
each fibre of the unbranched part π : X0 → S0 is n.

Examples 2.7. It is clear that every unbranched covering has finite de-
gree.

If a finite covering π : X → S of a locally connected space S is such
that the closed set R is thin, i.e., it has an empty interior and each s ∈ S
has a basis of connected neighbourhoods U such that U ∩ S0 is connected,
then the index of branching of π exists at every point in X and therefore
the covering has finite degree. Explicitly: if s ∈ S, π−1(s) = {x1, . . . , xn}
and U is a special neighbourhood of s such that U ∩ S0 is connected and
π−1(U) = U1 t . . .tUn, where xi ∈ Ui and π(Ui) = U , then all fibres of the
unbranched covering π : Ui ∩X0 → U ∩ S0 have the same cardinality b(xi).

In [10] it is proved that, if X and S are topological manifolds, then the
supremum of the cardinalities of the fibres of any finite covering π : X → S
is finite and the closed set R is thin, so that every finite covering between
topological manifolds has finite degree.

Recall that a ring homomorphism h : A → B is said to be integral if
every element of B is a root of a monic polynomial in A[x].
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Proposition 2.8. If π : X → S is a covering of finite degree then the
induced homomorphisms C(S)→ C(X) and C∗(S)→ C∗(X) are integral.

P r o o f. Let n be the degree of π. If π is an unbranched covering, it is
clear that for every f ∈ C(X) the functions Sk(f) defined for s ∈ S by

Sk(f)(s) =
∑

1≤i1<...<ik≤m
f(xi1) . . . f(xik),

where {x1, . . . , xm} = π−1(s), are continuous on S. Obviously f is a root of
the polynomial

tn − S1(f)tn−1 + . . .+ (−1)nSn(f).

In the branched case, f will be a root of the same polynomial provided
we define the value of (−1)kSk(f) at s to be the coefficient of tn−k in the
polynomial

(t− f(x1))b(x1) . . . (t− f(xm))b(xm), {x1, . . . , xm} = π−1(s).

It is easy to prove that these functions Sk(f) are continuous and that
Sk(f) ∈ C∗(S) whenever f ∈ C∗(X).

3. Extensions of a finite covering. This section is devoted to studying
the extensions π∗ : SpecC∗(X)→ SpecC∗(S), πs : SpecC(X)→ SpecC(S)
and πβ : βX → βS of a finite covering π : X → S.

To prove that the homomorphism C(S)→ C(X) induced by a covering
π : X → S of finite degree is flat, we use the fact that these extensions are
also coverings of finite degree. To prove this, we start from the following
results for open and proper maps obtained by the author in [14].

Theorem 3.1. If π : X → S is open and proper then:

(i) The extensions π∗ : SpecC∗(X) → SpecC∗(S) and πβ : βX → βS
are also open and proper.

(ii) C(X) is the ring of fractions of C∗(X) with respect to the multi-
plicatively closed subset MS = {g ∈ C∗(S) : 0 6∈ g(S)}.

(iii) π∗ : SpecC∗(X)→ SpecC∗(S) transforms SpecC∗(X)−SpecC(X)
into SpecC∗(S)− SpecC(S).

(iv) πs : SpecC(X)→ SpecC(S) is open and proper.

Proposition 3.2. If π : X → S is a covering of degree n then its
extensions π∗ : SpecC∗(X) → SpecC∗(S), πs : SpecC(X) → SpecC(S)
and πβ : βX → βS are coverings of the same degree n.

P r o o f. The map πβ : βX → βS is of course proper, and it is known
that it is open (see [9] or [14, Corollary 1.7]). The fibre of any point in βX
has no more than n points, because if the fibre over p ∈ βS has more than n
points, then so does the fibre over every point in a neighbourhood of p. This,
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however, cannot occur, because S is dense in βS and, since π is proper, one
has π−1

β (S) = X [5, Theorem 3.7.16].
By Theorem 3.1, πs and π∗ are open and proper. Since the induced

homomorphism C(S)→ C(X) is integral (2.8), there is no inclusion between
prime ideals belonging to the same fibre [1, Corollary 5.9]. This implies that
πs is a separated map. Explicitly: Let q1 and q2 be two prime ideals in C(X)
such that πs(q1) = πs(q2). Since there is no inclusion between q1 and q2 and
the prime ideals in C(X) containing a given prime ideal form a chain [6,
14.3(c)], there are no prime ideals in C(X) contained in both q1 and q2.
The prime ideals contained simultaneously in q1 and q2 are just the prime
ideals in the ring (C(X)q1)q2 , so that (C(X)q1)q2 = 0, and therefore there
are functions f1 6∈ q1 and f2 6∈ q2 such that f1 · f2 = 0. Clearly, D(f1) and
D(f2) are disjoint neighbourhoods of q1 and q2 in SpecC(X). Clearly, the
same holds for π∗ since the induced homomorphism C∗(S)→ C∗(X) is also
integral. Now, we may prove that the fibres of πs and π∗ have no more than
n points with the arguments given above for πβ . Thus, for all these maps we
only have to prove the existence of the index of branching at every point.

The map π∗ transforms SpecC∗(X) − SpecC(X) into SpecC∗(S) −
SpecC(S) (by 3.1(iii)), i.e., (π∗)−1(SpecC(S)) = SpecC(X). Since π∗ is
separated, it maps SpecC∗(X)−βX into SpecC∗(S)−βS, i.e., (π∗)−1(βS)
= βX. Moreover, (π∗)−1(S) = X, because π is proper, and since S is dense
in SpecC∗(S), this implies that the unbranched part of π∗ is just the re-
striction of π∗ to the subspace of SpecC(X) consisting of the fibres that
have exactly n points. Clearly, the same holds for πs and πβ . Hence, it suf-
fices to prove the existence of the index of branching of π∗ at every point in
SpecC∗(X). We do this by induction on n.

For n = 1 it is trivially true. For a covering of degree n, it is clear that
if the fibre over p ∈ SpecC∗(S) has only one point q then the index of
branching of π∗ at q is n.

Let p ∈ SpecC∗(S) and (π∗)−1(p) = {q1, . . . , qm}, where m ≥ 1. Since
π∗ is a finite covering, we can take a basic neighbourhood D(g) of p special
for π∗ such that (π∗)−1(D(g)) = D(g1) t . . . tD(gm), where each D(gi) is a
neighbourhood of qi such that π∗(D(gi)) = D(g). If U = D(g) ∩ S = coz(g)
and Ui = D(gi) ∩X = coz(gi), then π−1(U) = U1 t . . . t Um, and for each
i = 1, . . . ,m, the map π : Ui → U is a covering of degree less than or equal
to n− (m− 1). Hence, by the induction hypothesis, the index of branching
exists at every point for the covering

SpecC∗(π−1(U)) =
⊔

i=1,...,m

SpecC∗(Ui)→ SpecC∗(U).

Since C∗(S)g = C∗(U)g (see 1.1), we find that SpecC∗(S)g = D(g) is an
open subset of SpecC∗(U). We conclude that the index of branching of π∗
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exists at every point qi ∈ π−1(p), by the following commutative diagram:

(π∗)−1(D(g)) =
⊔
i D(gi) '

⊔
i SpecC∗(Ui)gi ↪→

⊔
i SpecC∗(Ui)

π∗ ↓ ↓
D(g) ' SpecC∗(U)g ↪→ SpecC∗(U)

Corollary 3.3. Let π : X → S be a finite covering. If the supremum of
the cardinalities of the fibres of π is a finite number n, then the extensions
π∗ : SpecC∗(X) → SpecC∗(S), πs : SpecC(X) → SpecC(S) and πβ :
βX → βS are finite coverings and the supremum of the cardinalities of the
fibres of each of them is also n.

P r o o f. Firstly, note that for πβ , the assertion is already proved in 3.2.
We also know that πs and π∗ are open and proper. Thus, we only have to
prove that they are separated and have no more than n points in their fibres.
We prove this by induction on n. For n = 1, this is trivially true. Assume
that it is also true when the supremum of the cardinalities of the fibres is
strictly less than n. Since (π∗)−1(SpecC(S)) = SpecC(X) (3.1(iii)), it is
clear that we can replace X and S with βX and βS and suppose that both
are compact spaces.

Let R be the π-image of the branch set. Since S is a compact space, the
restriction homomorphism C(S) → C(R) is surjective and its kernel is the
ideal IR of all functions vanishing on R. Hence, SpecC(R) is naturally home-
omorphic to V(IR) ⊆ SpecC(S). Similarly, C(π−1(R)) is a quotient ring
of C(X) and SpecC(π−1(R)) is naturally homeomorphic to V(Iπ−1(R)) ⊆
SpecC(X). It is not difficult to prove that IR ·C(X) = Iπ−1(R) and therefore
π−1
s (V(IR)) = V(IR · C(X)) = V(Iπ−1(R)). The cardinality of the fibres of

the points belonging to R is strictly smaller than n and hence, by the induc-
tion hypothesis, πs : SpecC(π−1(R)) = V(Iπ−1(R)) → SpecC(R) = V(IR)
is a covering whose fibres have less than n points. It follows that the num-
ber of points in the fibre of πs : SpecC(X) → SpecC(S) over any point
p ∈ V(IR) is strictly less than n and any two points in π−1

s (p) have disjoint
neighbourhoods in SpecC(π−1(R)). Hence, there is no inclusion between
prime ideals in π−1

s (p) and, as we saw in the proof of 3.2, this implies that
any two points in π−1

s (p) have disjoint neighbourhoods in SpecC(X).
Let now p ∈ SpecC(S)−V(IR). Take g ∈ IR− p. If U = coz(g), then by

1.1 we have
C(S)p = (C(S)g)p = (C∗(S)g)p = (C∗(U)g)p,

C(X)p = (C∗(X)g)p = (C∗(π−1(U))g)p.

Since U = coz(g) ⊆ S0, the covering π : π−1(U) → U is unbranched and
so, by 3.2, the map SpecC(X)p → SpecC(S)p is a finite covering. Since the
fibre over p under this map is just π−1

s (p), we may conclude that any two
points in π−1

s (p) have disjoint neighbourhoods in SpecC(S).
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Finally, we prove that the fibres of πs have no more than n points using
the arguments given in 3.2 for πβ .

Remark 3.4. It is easy to see that if the extension πβ : βX → βS of
an unbranched covering π : X → S is also an unbranched covering then
βS has a finite cover by cozero-sets over which πβ is a trivial covering, and
consequently π is trivial on a finite cover of S by cozero-sets. Conversely,
if an unbranched covering π : X → S is trivial on a finite cover of S by
cozero-sets then it is not difficult to prove that πβ : βX → βS and πs :
SpecC(X) → SpecC(S) are also unbranched coverings, since in this case
C(X) is a locally trivial C(S)-algebra (see the proof of 5.8(ii)).

4. Flatness. Recall that a ring homomorphism h : A→ B is said to be
flat if B with the structure of A-module induced by h is flat, i.e., the tensor
product ⊗AB is an exact functor.

Proposition 4.1. If π : X → S is a covering of finite degree then the
induced homomorphism C(S)→ C(X) is flat.

P r o o f (First step). We use induction on n, the degree of π. For n = 1
the assertion is trivially true. Assume that it is true when the degree is less
than n.

Recall that the homomorphism C(S) → C(X) is flat if and only if for
every p ∈ SpecC(S) and for every q ∈ π−1

s (p) the local homomorphism
C(S)p → C(X)q is flat [13, Theorem 7.1].

If π−1
s (p) = {q1, . . . , qm} and m ≥ 2, we can take a basic neighbourhood

D(g) of p special for πs such that

π−1
s (D(g)) = D(g1) t . . . tD(gm),

where each D(gi) is a neighbourhood of qi such that πs(D(gi)) = D(g). It is
clear that we can take g and gi to be in C∗(S) and C∗(X), respectively.

If U = coz(g) and Ui = coz(gi), then π : Ui → U is a covering of degree
less than or equal to n − (m − 1) and, by Proposition 3.2, the extension
πβ : βUi → βU is also a covering of the same degree. Then, by the induction
hypothesis, C(βU) = C∗(U)→ C∗(Ui) = C(βUi) is flat, and therefore so is
C∗(S)g = C∗(U)g → C∗(X)gi = C∗(Ui)gi .

By 3.1(ii), C(S)g and C(X)gi are the rings of fractions of C∗(S)g and
C∗(X)gi respectively, with respect to the multiplicatively closed subset MS

= {f ∈ C∗(S) : 0 6∈ f(S)}, and C(S)g → C(X)gi is just the homomorphism
between the rings of fractions induced by

C∗(S)g = C∗(U)g → C∗(X)gi = C∗(Ui)gi .

Hence, C(S)g → C(X)gi is flat, and consequently so is C(S)p → C(X)qi .
Thus, we have proved that, except for those points p ∈ SpecC(S) which

have only one point q in their πs-fibre, the homomorphism C(S)p → C(X)q
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is flat. That is, we have proved that for every ideal I in C(S) the kernel of
the natural homomorphism

I ⊗C(S) C(X)→ C(X),

which is just N = Tor1(C(X), C(S)/I), is a C(X)-module such that Nq = 0
for every point q ∈ SpecC(X) where the index of branching of πs is less
than n. Or, in other words, the support of the C(X)-module N , Supp(N) =
{p ∈ SpecC(X) : Np 6= 0}, is contained in the closed subset of SpecC(X)
consisting of the points where the index of branching of πs is n. To proceed
with the proof, therefore, we need to identify this closed subset.

Definitions 4.2. Let π : X → S be a covering of degree n. The trace of
a function f ∈ C(X) is defined to be the continuous function on S

tr(f)(s) =
1
n

∑

x∈π−1(s)

b(x)f(x)

where b(x) denotes the index of branching of π at x.
The map tr : C(X)→ C(S) that sends f to tr(f) is a homomorphism of

C(S)-modules that is the identity over C(S). Hence, we have an isomorphism
between C(X) and C(S)⊕Ker(tr) because we may write each f ∈ C(X) as
f = (f − tr(f)) + tr(f).

We denote by K the ideal in C(X) generated by Ker(tr).

Lemma 4.3. Let π : X → S be a covering of degree n, and let F be
the closed subset in SpecC(X) consisting of the points where the index of
branching of πs : SpecC(X)→ SpecC(S) is n.

(i) Every minimal element q in F is a z-ideal in C(X).
(ii) F = V (K).

P r o o f. (i) Let q be a minimal element in F and p = πs(q). If q is a
minimal prime ideal in C(X) then it is a z-ideal [6, Theorem 14.7]. If this is
not the case, we may take a minimal prime ideal n1 contained in q. Since πs is
open, the prime ideal n = πs(n1) is minimal in C(S), and clearly n ⊆ p. Let
n1, . . . , nm be the points of the fibre over n. They are minimal prime ideals
in C(X), because πs is separated and so there is no inclusion between prime
ideals belonging to the same fibre. Since πs is closed, πs(V(ni)) contains the
closure V(n) of n = πs(ni), i.e., πs(V(ni)) = V(n), and as q is the unique
prime ideal in C(X) such that πs(q) = p, we see that the prime ideals
n1, . . . , nm are all contained in q, and consequently n1 + . . .+ nm ⊆ q.

The ideal n1 + . . .+ nm is prime [6, Problem 14B] and a z-ideal [6, 14.8
Lemma]. It is the unique point in the fibre over πs(n1 + . . .+nm), because if
another point q′ ∈ SpecC(X) is in the same fibre then, since πs is open, q′

contains one of the ideals ni. But this cannot occur because, on the one hand,
the prime ideals containing ni form a chain [6, 14.3(c)], and on the other
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hand, since πs is separated, there is no inclusion between q′ and n1+. . .+nm.
Thus, by the choice of q, we have q = n1 + . . .+ nm and hence q is a z-ideal.

(ii) To show that F ⊆ V(K), it suffices to prove that every minimal
element q of F belongs to V(K), i.e., q contains every function with null
trace. Let f ∈ Ker(tr), f+ = sup(f, 0) and f− = − inf(f, 0). Since f+ · f−
= 0, one of the functions f+ or f− belongs to q. Denote this function by
g, and define g∗ on S by g∗(s) = sup{g(x) : x ∈ π−1(s)} (g∗ is clearly
continuous). Since 0 ≤ g one can prove that πs(D(g)) = D(g∗) (see the
proof of [14, Corollary 1.6]). As q is the unique point in the fibre over πs(q),
we see that g∗ ∈ πs(q) and hence g∗ ∈ q. Moreover, since tr(f) = 0, the sign
of f changes in every fibre of π so that Z(g∗) ⊆ Z(f). As q is a z-ideal, this
implies that f ∈ q.

Conversely, to prove that V(K) ⊆ F , consider a point q ∈ V(K) and
suppose that q′ is another prime ideal in C(X) such that πs(q) = πs(q′). If
f ∈ q then, since f − tr(f) ∈ q, one has

tr(f) ∈ q ∩ C(S) = πs(q) = πs(q′)

and therefore tr(f) ∈ q′. If f ≥ 0 then 0 ≤ f ≤ n·tr(f), and by the convexity
of q′ [6, Theorem 5.5], this implies that f ∈ q′. Thus q ⊆ q′, and since πs is
separated, we conclude that q = q′.

Corollary 4.4. If π : X → S is a covering of finite degree, then K,
the ideal in C(X) generated by the functions with null trace, is a z-ideal.

P r o o f. This follows from 4.3 because, as is shown in [14, Corollary 2.5],
if every prime ideal minimal in V(K) is a z-ideal, then so is K.

Continuation of the proof of Proposition 4.1. We have proved that for
every ideal I in C(S) the C(X)-module N = Tor1(C(X), C(S)/I) has its
support contained in the closed subset of SpecC(X) consisting of the points
where the index of branching of πs is n, i.e., Supp(N) ⊆ V(K). Since K is
a z-ideal, this implies that K ·N = 0 (see [14, Proposition 2.7]).

If
∑
gi ⊗ fi is an element of N then, by the definition of N , one has∑

gi · fi = 0 and therefore
∑
gi · tr(fi) = 0. Thus, we can write

∑
gi⊗ fi =∑

gi ⊗ (fi − tr(fi)) and replacing fi by fi − tr(fi) we can take fi such that
tr(fi) = 0, i.e., fi ∈ K. It is proved in [14] that, since K is a z-ideal, there
exist functions h, f ′i ∈ K such that

Z(h) = Z(f1) ∩ . . . ∩ Z(fn), Z(f ′i) = Z(fi), fi = h2 · f ′i .
Since

∑
gi · h · f ′i = 0, we see that

∑
gi ⊗ h · f ′i ∈ N , and hence

∑
gi ⊗ fi = h ·

∑
gi ⊗ h · f ′i ∈ K ·N.

Thus we have proved that N = K · N = 0, and, by the ideal criterion
[13, Theorem 7.7], that C(X) is a flat C(S)-module.
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5. Characterization of finite coverings

Theorem 5.1. If π : X → S is a covering of finite degree, then the
induced homomorphism C(S)→ C(X) is integral and flat.

P r o o f. This follows from Propositions 2.8 and 4.1.

Remark 5.2. If a finite covering π : X → S = X/G is the natural pro-
jection map of a topological space X onto the quotient space by an action
of a finite group G, then G acts in a natural way on the ring C(X), and
consequently on the topological space SpecC(X). It is not difficult to see
that the subring of G-invariant elements is just C(X)G = C(S) and that
SpecC(X)/G = SpecC(X)G = SpecC(S). Hence, the induced homomor-
phism C(X) → C(S) is trivially integral and πs : SpecC(X) → SpecC(S)
is just the natural projection map, so that it is also a finite covering. More-
over, one may repeat the arguments given in Proposition 4.1 and prove
that C(S)→ C(X) is flat. Thus, Theorem 5.1 also holds for such coverings
π : X → S = X/G.

Now, our aim is to prove the converse of 5.1. In the following propositions
we start from algebraic properties of the homomorphism C(S) → C(X) to
obtain topological properties for the corresponding map X → S.

Proposition 5.3. Let π : X → S be a map between locally compact
metric spaces. If the induced homomorphism C(S) → C(X) is flat , then π
is open.

P r o o f. If C(S) → C(X) is flat then, for every x ∈ X, the local homo-
morphism C(S)s → C(X)x (where s = π(x)) is also flat. Since ms ·C(X) ⊆
mx, this homomorphism is faithfully flat, and therefore injective. Then, as
is proved in [7], π carries every neighbourhood of x onto a neighbourhood
of s.

Proposition 5.4. Let π : X → S be a map between realcompact spaces.
If the induced homomorphism C(S)→ C(X) is integral then π is finite and
πs : SpecC(X)→ SpecC(S) is proper and separated.

P r o o f. We first prove that π is proper, or equivalently, that πβ : βX →
βS transforms βX−X into βS−S [5, Theorem 3.7.16]. Since X is realcom-
pact, a point in βX belongs to X if and only if the corresponding maximal
ideal m is real, i.e., C(X)/m = R. If m′ = πβ(m) then C(S)/m′ → C(X)/m
is an algebraic extension, because C(S) → C(X) is integral. Since every
residue field of a ring of continuous functions is totally ordered [6, Theorem
5.5] and real-closed [6, Theorem 13.4], we have C(X)/m = R, or equivalently
m = mx for some x ∈ X, if and only if C(S)/m′ = R, i.e., m′ = ms for some
s ∈ S. This proves that πβ(βX −X) = βS − S.
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Now, as π is proper, every fibre π−1(s) is a compact subspace of X. Thus,
every continuous function on π−1(s) can be extended to the whole X [6,
3.11.(c)]. In other words, the restriction homomorphism C(X)→ C(π−1(s))
is surjective. This implies that the homomorphism C({s}) = R→ C(π−1(s))
is also integral, i.e., every function in C(π−1(s)) is a root of a polynomial
with coefficients in C({s}) = R, and therefore such functions have finite
range. Hence, the set π−1(s) is finite [6, Problem 3L]. Thus, π is finite.

The fibres of the map between the prime spectra induced by a ring
homomorphism are always compact (not necessarily Hausdorff). If the ring
homomorphism is integral then the corresponding map is closed [1, Chapter
5, Exercise 1] and there is no inclusion between prime ideals belonging to
the same fibre [1, Corollary 5.9]. This latter property implies (see the proof
of 3.2) that if C(S) → C(X) is integral, then πs : SpecC(X) → SpecC(S)
is separated.

Remark 5.5. It is not difficult to prove that if π : X → S is a finite
covering and the induced homomorphism C(S) → C(X) is integral, then
the supremum of the cardinalities of the fibres of π is finite. Explicitly:
suppose that, on the contrary, for every n ∈ N there are points in S with n
or more points in their fibres. Then S contains a countably infinite discrete
subset S′ = {sn} such that π−1(sn) has n or more points. Consider in X
the countably infinite discrete subset X ′ = π−1(S′) = {xm}. If {rm} is a
convergent sequence of real numbers such that rm 6= rk whenever m 6= k,
then there exists a continuous function f on X such that f(xm) = rm [6,
Problem 3L]. It is clear that f cannot be a root of any polynomial with
coefficients in C(S). This contradicts the hypothesis that C(X) is integral
over C(S).

Recall that a ring homomorphism h : A → B is said to be finite if B
with the structure of A-module induced by h is finitely generated.

Proposition 5.6. Let π : X → S be a map between realcompact spaces.
If the induced homomorphism C(S) → C(X) is finite, then π : X → S,
πβ : βX → βS and πs : SpecC(X) → SpecC(S) are finite and locally
injective.

P r o o f. Every finite ring homomorphism h : A → B has the following
properties (see [1]): the fibres of the induced continuous map h∗ : SpecB →
SpecA are finite; if m is a maximal ideal in B then h∗(m) is a maximal ideal
in A and m ·Bm is a unique prime ideal in Bm that contains h∗(m) ·Bm.

Thus, if the induced homomorphism C(S) → C(X) is finite, then the
fibres of πs are finite and, by 5.4, this map is separated, so that πs is finite
and then so are π and πβ .
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To see that these maps are locally injective, it suffices to prove that
every point m in the maximal spectrum of C(X) has a neighbourhood in
SpecC(X) where πs is injective, since every prime ideal p is contained in
some maximal ideal m and then every neighbourhood of m is also a neigh-
bourhood of p.

If m′ = πs(m) then m′ is a maximal ideal in C(S) and the homomor-
phism between the residue class fields C(S)/m′ → C(X)/m is also finite.
Moreover, since m ·C(X)m is the unique prime ideal in C(X)m that contains
m′ ·C(X)m and m is a z-ideal, it can be proved that m′ ·C(X)m = m ·C(X)m

[14, Corollary 2.6]. Thus, the quotient ring C(X)m/m
′ · C(X)m is just the

field C(X)m/m · C(X)m = C(X)/m. This field C(X)/m is totally ordered
[6, Theorem 5.5] and C(S)/m′ is real-closed [6, Theorem 13.4], so that the
degree of the field extension C(S)/m′ → C(X)/m is one. Since the homo-
morphism between the local rings C(S)m′ → C(X)m is finite, we can apply
Nakayama’s Lemma [13, Proposition 2.8] to conclude that this homomor-
phism is surjective. It is not difficult to prove that, since C(S) → C(X)
is finite, there exist g ∈ C(S) − m′ and f ∈ C(X) − m such that the in-
duced homomorphism between the rings of fractions C(S)g → C(X)g·f is
surjective, and consequently SpecC(X)g·f → SpecC(S)f is injective. Since
SpecC(X)g·f = D(g · f) is a neighbourhood of m, this proves that πs is
locally injective.

Remark 5.7. It follows from 5.6 that the obstruction to the finiteness of
the homomorphism C(S) → C(X) induced by a finite covering π : X → S
is just the existence of the branched set. Moreover, for a branching point
x, even the local homomorphism C(S)s → C(X)x (where s = π(x)) is not
finite. If this local homomorphism is finite, then with the same arguments
given in 5.6, one can prove that it is surjective. And, as is shown in [7], for
locally compact metric spaces X and S, this implies that π is injective in
some neighbourhood of x.

Theorem 5.8. Let X and S be topological manifolds (Hausdorff and
paracompact).

(i) A continuous map π : X → S is a finite covering if and only if the
induced homomorphism C(S)→ C(X) is integral and flat.

(ii) A continuous map π : X → S is an unbranched finite covering if and
only if the induced homomorphism C(S)→ C(X) is finite and flat.

P r o o f. (i) As was noted in 2.7, every finite covering between manifolds
is a covering of finite degree. Thus, the necessity follows from Theorem 5.1,
and the sufficiency from Propositions 5.4 and 5.3.

(ii) It is not difficult to prove that, since S has finite (cover) dimension,
every open cover of S has a refinement that may be written as the union of
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finitely many families consisting of pairwise disjoint open sets. Hence, S has
a finite cover by open sets U such that π : π−1(U)→ U is a trivial covering.
Every open subset of S is a cozero-set U = coz(g). If π−1(U) = U1t . . .tUn,
where each Ui is homeomorphic to U under π, then the functions gi defined
by gi = g on Ui and gi = 0 on X −Ui are continuous on X. Since gi · gj = 0
if i 6= j, g2 =

∑
g2
i , and every prime ideal in C(X) is convex [6, Theorem

5.5], one has the following decomposition of SpecC(X)g:

SpecC(X)g = D(g) = D(g1) t . . . tD(gn).

Hence, C(X)g = C(X)g1 × . . .×C(X)gn [3, Chap. II, §2, no. 3, Proposition
15].

The natural homomorphism C(S)g → C(X)gi is an isomorphism, be-
cause it is a localization of C∗(S)g = C∗(U)g → C∗(X)gi = C∗(Ui)gi (see
3.1(ii)) and the latter is clearly an isomorphism. Thus, C(X)g is a trivial
C(S)g-algebra, i.e., C(X)g = C(S)g × . . .× C(S)g. Since S is covered by a
finite number of these cozero-sets U , we conclude that C(X) is a finite, and
of course flat, C(S)-algebra.

Conversely, if C(S)→ C(X) is finite and flat, then π : X → S is a finite
covering, as we have proved in (i), and it is unbranched by 5.6.

Acknowledgments. This paper is based in part on the author’s doc-
toral dissertation, written under the supervision of Professor J. B. Sancho de
Salas. The author wishes to express her gratitude to Professors J. A. Navarro
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