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Standardness of sequences of σ-fields
given by certain endomorphisms

by

Jacob F e l d m a n (Berkeley, Calif.) and
Daniel J. R u d o l p h (College Park, Md.)

Abstract. Let E be an ergodic endomorphism of the Lebesgue probability space
{X,F , µ}. It gives rise to a decreasing sequence of σ-fields F , E−1F , E−2F , . . . A central
example is the one-sided shift σ on X = {0, 1}N with 1

2 ,
1
2 product measure. Now let T

be an ergodic automorphism of zero entropy on (Y, ν). The [I|T ] endomorphism is defined
on (X × Y, µ× ν) by (x, y) 7→ (σ(x), Tx(1)(y)). Here F is the σ-field of µ× ν-measurable
sets. Each field is a two-point extension of the one beneath it. Vershik has defined as
“standard” any decreasing sequence of σ-fields isomorphic to that generated by σ. Our
main results are:

Theorem 2.1. If T is rank-1 then the sequence of σ-fields given by [I|T ] is standard.

Corollary 2.2. If T is of pure point spectrum, and in particular if it is an irrational
rotation of the circle, then the σ-fields generated by [I|T ] are standard.

Corollary 2.3. There exists an exact dyadic endomorphism with a finite generating
partition which gives a standard sequence of σ-fields, while its natural two-sided extension
is not conjugate to a Bernoulli shift.

1. Background and examples. Consider a decreasing sequence of
σ-fields

F = F0 ⊃ F1 ⊃ . . .
on the Lebesgue probability space (X,F , µ) where

⋂
n Fn is the trivial al-

gebra of null and co-null sets. The term “σ-field” will implicitly be taken to
mean complete with respect to the obvious measure, so that we always get
Lebesgue spaces (on appropriate quotient spaces and apart from the pos-
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sible presence of atoms). The sequence is called dyadic if µ(Fn|Fn+1) almost
surely consists of two atoms of equal probability. It is called standard if there
exist independent partitions C1, C2, . . . for which Fn =

∨
m>n Cm. It is easy

to see that Cn is an independent complement to Fn in Fn−1. Obviously
each Cn consists of two sets of equal measure. If we label these two sets 0
and 1 then we get an i.i.d. sequence of {0, 1}-valued random variables which
generates all measurable sets, enabling us to identify X with {0, 1}N with
1
2 ,

1
2 product measure. For σ the shift map on {0, 1}N we can now identify

Fn as σ−n(F).
The introduction of the study of sequences of σ-fields as above and the

introduction of standardness (in general, not just the dyadic case as de-
scribed above) are due to A. M. Vershik. An overview of his work on this
subject over the last 25–30 years is given in [19]. Here we have restricted
ourselves to the dyadic case, but the p-adic case (where the positive integer
p replaces 2) can be treated in the same way at the price of more notation.

Let E be an ergodic measure-preserving map of a Lebesgue probability
space into itself, i.e. an endomorphism of (X,F , µ). Recall that such a map
can always be “extended” to be 1-1. That is, there is a Lebesgue proba-
bility space (X,F , µ), an automorphism E of this space, and a measurable
π : X → X sending µ to µ with πE = Eπ. It may be made unique in the
obvious sense by requiring that

⋃∞
n=1E

n(π−1F) be dense in F . E is called
the natural extension of E. The endomorphism E is called exact if

⋂
nE
−nF

is trivial. The natural extension will likewise be ergodic. Hereafter when we
write E we will always mean the natural extension of E. Exactness of E
implies that E is K-mixing.

We shall be especially interested in the case when the endomorphism E
has a finite generator ; that is, there exists a finite measurable partition P
of X for which the sequence of partitions P, E−1P, E−2P, . . . generates F .
This property has an interpretation in terms of entropy: the existence of
a finite generator is precisely equivalent to the equality of the dynamical
entropy h(E) and H(F|E−1F). Also, if there is a finite generator for E,
then E will be exact whenever E is K-mixing. We will only be considering
endomorphisms for which there is a finite generator. Hence for our purposes
exactness of E and K-mixing of E will be equivalent.

E is called dyadic if µ(F|E−1F) consists almost surely of two atoms of
equal measure. To say E is dyadic is then equivalent to saying the sequence
of σ-fields Fn = E−nF is dyadic as defined above. If an ergodic E is dyadic
and has a finite generator then its entropy must be just log2 2 = 1.

Here are a few examples of exact dyadic endomorphisms.

1. The canonical example. Set X = {0, 1}N with 1
2 ,

1
2 product measure,

and σ the shift. The natural extension σ is the full-shift on {0, 1}Z and σ
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clearly has a finite generator. σ is isomorphic to the map λ 7→ 2λ mod 1 on
[0, 1) with Lebesgue measure.

2. Toral endomorphisms. If A is a d× d matrix with integral entries and
detA = 2 then A gives rise to an algebraic endomorphism of Td and this
to EA, a measure-preserving endomorphism of Td with normalized Haar
measure. It is evident that EA is dyadic. It will be ergodic if and only if
A has no eigenvalues which are roots of unity (as an easy Fourier series
argument shows). EA may be realized as an ergodic automorphism of a
compact group (the inverse limit under A of Td) and hence is a Bernoulli
automorphism ([12], [14], [16]). The entropy of EA is the log of the product
of the norms of all eigenvalues of A of norm ≥ 1. But the product of all the
eigenvalues is the determinant of A, namely 2. Then h(EA) = 1 if and only
if all eigenvalues have norm ≥ 1 and this—in addition to the aforementioned
ergodicity condition—is precisely what is required for EA to have a finite
generator. Thus, under these assumptions, EA is exact.

3. The [T−1|T ] endomorphism. This is defined on the space (X×Y,F , µ)
where X is the one-sided two-shift as above with 1

2 ,
1
2 product measure

and T is a measure-preserving automorphism of (Y, ν). The endomorphism
E = [T |T−1] is defined by the formula

(x, y) 7→ (σx, T 2x(1)−1y),

σ being the shift on X. Note that when T is the identity on a one-point space
then [T |T−1] is isomorphic to σ. Ergodicity of E is equivalent to ergodicity
of T 2. E is clearly dyadic and has a finite generating partition. The natural
extension E of E is just the [T |T−1] automorphism, where σ is replaced
by the shift σ on {0, 1}Z. In the ergodic case E was shown in [15] to be a
K-automorphism and consequently E is exact. Of special interest is the case
where T is of positive entropy. It was shown in [8] that then the [T |T−1]
automorphism is not Bernoulli (or even “loosely Bernoulli”; see [2] or [17]
for definitions and details).

4. The [I|T ] endomorphism. This is similar to the previous example.
Both have the form of a “cocycle extension” of the one-sided two-shift. In
the previous example one applied the automorphism T or T−1 to the second
coordinate depending upon the current value of the first coordinate. Here
we apply either the automorphism T or I, the identity. More precisely, E is
defined by the formula

(x, y) 7→ (σx, T x(1)y).

Again if T is the identity on a one-point space then E is isomorphic to σ.
For E = [I|T ], ergodicity of E is equivalent to that of T . Again E is clearly
dyadic. Its natural extension is just the [I|T ] automorphism, replacing σ
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by σ as above, and is again a K-automorphism by [15]. If T is of zero
entropy then E has a finite generating partition. Thus it is also exact. It is
shown in [2] that when T is an irrational rotation then E is Bernoulli, but
that it is also possible to construct T of zero entropy for which E is not
Bernoulli (or even loosely Bernoulli). This leads one to ask if there is any
connection between Bernoullicity of E and standardness of the sequence of
σ-fields F , E−1F , E−2F , . . . It has been speculated that for proper dyadic
endomorphisms E the corresponding decreasing sequence of σ-fields will be
standard if and only if E is Bernoulli. In the present paper we will give a
counterexample to the “only if” direction.

The authors are grateful for the hospitality of the Mathematics Institute
and the Institute for Advanced Studies of Hebrew University while this work
was being done.

2. Discussion of results

Theorem 2.1. If T is rank-1 then the sequence of σ-fields given by [I|T ]
is standard.

Corollary 2.2. If T is of pure point spectrum, and in particular if it is
an irrational rotation of the circle, then the σ-fields generated by [I|T ] are
standard.

Corollary 2.3. There exists an exact dyadic endomorphism with a fi-
nite generating partition which gives a standard sequence of σ-fields, while
its natural two-sided extension is not conjugate to a Bernoulli shift.

Corollary 2.2 simply uses the fact that any automorphism of pure point
spectrum is of rank 1 (see [7]). Corollary 2.2 has already been stated by Ver-
shik, who—in conversation with one of the authors—outlined an alternate
argument. Corollary 2.3 follows from the construction by R. Burton (in his
PhD thesis [1]) of a rank-1 automorphism for which the [I|T ] automorphism
is not Bernoulli.

Some related results have recently been found:

1. C. Hoffman [6] has given an example of a zero entropy T for which
[I|T ] gives a nonstandard sequence of σ-fields.

2. D. Heicklen and C. Hoffman [4] have shown that if T has positive
entropy then the sequence of σ-fields given by the [T |T−1] endomorphism is
not standard.

3. D. Heicklen, C. Hoffman, and D. J. Rudolph [5] have shown that if
[T |T−1] and [S|S−1] give isomorphic sequences of σ-fields then S and T are
of equal entropy.

Probabilistic significance may be attached to Corollary 2.3 in connection
with coding of stationary processes from i.i.d. processes. Questions about
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such coding were raised and studied by P. Lévy [13], N. Wiener [11], and
M. Rosenblatt [18]. (The work of Kallianpur and Wiener to our knowledge
remains unpublished, but in [10] there is a discussion of the work.) Corol-
lary 2.3 implies the following: there exists a stationary stochastic process
ξ1, ξ2, . . . with finite state space such that

(a) There are i.i.d. random variables ηn so that both

ξn = fn(ηn, ηn+1, . . .) and ηn = gn(ξn, ξn+1, . . .).

(b) On the other hand, there is no way of choosing i.i.d. random variables
η′n and a measurable function f so that

ξn = f(η′n, η
′
n+1, . . .).

3. Proof of Theorem 2.1. There is a basic criterion, due to A. Ver-
shik [19], for standardness of a dyadic decreasing sequence of σ-fields. First
note that an atom of Fn consists of 2n points arranged as the branches of a
binary tree of height n. This arrangement goes as follows. Each atom of F1

consists of two points, the branches of a binary tree of height 1. If the atoms
of Fn−1 are taken to be binary trees of height n−1, two of these combine to
form an atom of Fn and we construct the corresponding tree by attaching
their two roots together to form a binary tree of height n. In these terms,
Vershik’s criterion says—roughly—that standardness of a dyadic sequence
of σ-fields is equivalent to the following property: for any ε > 0 if n is large
enough, then for all but ε in measure of the atoms of Fn, the finite sets of
points they consist of can be matched in such a way that all but ε in measure
of the matched points are within ε of each other (in X as a metric space),
with the match being obtained via a tree automorphism of the binary tree.
We now discuss this with more precision for the case of σ-fields arising from
an [I|T ] endomorphism. Further discussion of Vershik’s criterion is in [3].

For (x, y) ∈ X×Y , the two inverse images under [I|T ] of (x, y) are (0x, y)
and (1x, T−1y). For p ∈ {0, 1}n set

p =
n∑

i=1

p(i).

More generally, [I|T ]−n(x, y) consists of the 2n points {(px, T−py) : p ∈
{0, 1}n}. These sets then are the atoms of Fn. The tree structure on such an
atom is then the natural tree structure on {0, 1}n. In this tree the collection
of branches (read “elements of {0, 1}n”) which meet at a common node at
height k in the tree are precisely the words that agree on there rightmost
k indices. An automorphism α of this tree structure is then a bijection
of {0, 1}n with the property that if two words agree on their rightmost k
indices, the same is true of their images.
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We can put metrics on these bijections in a consistent fashion by setting
D(α, α′) = 2−k if for all p ∈ {0, 1}n, α(p) and α′(p) agree on there first (i.e.
leftmost) k indices and k is the largest such value. (If k = n, i.e. α = α′ then
of course we set D(α, α) = 0.) Here is a simple way to view this collection of
metrics. Any map from {0, 1}n can be extended to all of {0, 1}N by setting
α(px) = α(p)x, i.e. just extend the map as the identity on the rest of the
coordinates. Now {0, 1}N is a compact metric space and these extensions are
all continuous endomorphisms. Any of our tree automorphisms will actually
extend to a homeomorphism that is a tree automorphism for the infinite
tree. On the space of continuous maps from {0, 1}N we have the topology
of uniform convergence. A natural metric for these continuous maps is of
course D(φ, φ′) = 2−k if for all x, φ(x) and φ′(x) agree on their first k indices
and k is the largest such value. Our metrics are simply this single metric on
the extensions to {0, 1}N of the tree automorphisms.

Suppose the automorphism T has a finite generator Q = {Qa : a ∈ A}
where A is some labeling set for the elements of Q. The space Y can be taken
to be AZ, a representation as a compact metric space. Of course two points in
this space are close together iff they agree on a long interval of coordinates
[−N,N ]. The topology on X × Y is then simply the product of the two
“product” topologies. Referring back to our brief description of Vershik’s
criterion, notice that for an automorphism of one tree of inverse images
to match most of the points in it to some other tree the automorphism
is not necessarily close in D to the identity, but on “most” branches it
must preserve lots of indices at the left end of a word x. Since Vershik’s
criterion only specifies that most points be close, we could then actually
replace this automorphism with one which is close in D to the identity and
still have most points matched closely. Knowing the automorphism is close
in D to the identity now, in order for most points to be close comes down
to just asking that most points in one set are matched to points in the
other that belong to the same element of Q. If the tree automorphism is D
close to the identity and most points match to points in the same element
of Q then most (this “most” is of course smaller than the previous one)
points will be matched to points which have the same T,Q-name across
a long segment [−N,N ]. That is to say, the two inverse images will have
been matched in the sense Vershik’s criterion demands. Stated with more
precision, Vershik’s criterion for the endomorphism [I|T ] is then equivalent
to the following.

Vershik’s Standardness Criterion stated for [I|T ]. For some
generating partition Q = {Qa : a ∈ A} for T and for each ε > 0 there is
some positive integer N , some sequence (a0, . . . , aN ) of members of A (which
we call Q-symbols, or just symbols), a set Y0 ⊆ Y of measure > 1− ε, and
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for each y ∈ Y0 a tree automorphism α of {0, 1}N such that

(1)
1

2N
∑

p∈{0,1}N
d(Q(T−α(p)y), ap) +D(α, id) < ε.

Here Q(y) is the subscript in A of the partition element in Q containing y
and d is the discrete 0, 1 valued metric on the finite space A.

To help understand this criterion, notice that for any point y the 2N

inverse images of a point (x, y) each have the form (x′, y′) where y′ is one of
y, T−1y, . . . , T−Ny and the values x′ all agree with x after the Nth binary
coordinate (where they are all just x). The number of times a particular
value T−k(y) occurs in this list is simply

(
N
k

)
, once for each x′ with precisely

k ones in its first N positions. This list of N + 1 points in Y gives a list of
N + 1 labels in A, Q(y),Q(T−1y), . . . ,Q(T−Ny). Such a list can be thought
of as putting a label at the tip of each branch of the tree. If x′ = px then the
label for this branch is just Q(T−py), the label of the y′ where the branch
“ends”.

Any list of N+1 values from A will give rise to a labeling of the branches
of the tree. In particular, the list (a0, a1, . . . , aN ) in the description of the
criterion gives rise to such a labeling. Notice that these labelings are not
arbitrary labelings of branches. All branches with the same value for p yield
the same label. A tree automorphism α, or for that matter any bijection
of the branches {0, 1}N will permute a labeling to a new labeling of the
branches. Of course it would be quite unusual for this new labeling to still
arise from a list of N symbols; two branches “ending” at the same symbol
in a list may not be mapped to branches ending at the same symbol. Given
two lists (a0, a1, . . . , aN ) and (a′0, a

′
1, . . . , a

′
N ) one can use them to produce

two labelings of the tree {0, 1}N and then see how closely the two labelings
can be matched by a tree automorphism. That is to say, for p ∈ {0, 1}N
let a(p) and a′(p) be the labels the two lists attach to p. Now for any tree
automorphism α one can calculate

1
2N

∑

p∈{0,1}N
d(a(p), a′(α(p))) =

#{p ∈ {0, 1}N : a(p) 6= a′(α(p))}
2N

.

We also need to pay a price for how badly the automorphism itself dis-
rupts the tree, i.e. we add in the distance D from the automorphism α to
the identity automorphism. The minimum value this sum takes as α varies
over the tree automorphisms gives a pseudometric on the space of all names.
This bears a strong resemblance to f and other similar constructions. What
Vershik’s criterion says is that there is essentially only one name in this pseu-
dometric, that is to say once N is large enough, “most” (read “all but ε”)
of the values y yield lists of labels close to some fixed list in this pseudomet-
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ric. Here is an observation which provides a useful notational simplification.
Notice that if in (1) one replaces y with T−N (y) one gets the identical state-
ment, except that the minus sign in front of α(p) disappears. Hereafter we
will use this equivalent but simpler looking version of (1).

Rank-1 transformations. The proof of Theorem 2.1 will consist in veri-
fying this criterion when T is rank-1. The definition of rank-1 which will be
used is the following. First we will have a sequence of finite “words” in two
symbols {a, b}. W1 will just be the word a. Inductively the words Wn will
have a concatenated structure of the form

Wn+1 = Wnfn,1WnFn,2 . . . fn,lnWn,

where each Fn,j is a sequence of b’s of length fn,j ≥ 1 (yes 1, not 0). We
refer to the b’s in a substring fn,j as n-filler . The number of terms of Wn

in n-filler is fn =
∑ln
j=1 fn,j and the length of Wn is wn. We assume, in

order to have a finite measure space, that ln > 1 and
∑
n fn/wn < ∞. By

dropping to a subsequence of words we may assume that w2
n/wn+1 → 0.

We say T is a rank-1 transformation of the Lebesgue space (Y, ν) if there
is a list of words Wn as described above, and T has a two-set generating
partition Q = {Qa, Qb} so that for ν-a.e. y, if n is sufficiently large, there is
some value k between 0 and wn so that

Q(T−ky) . . .Q(T−1y)Q(y) . . .Q(Twn−ky) = Wn.

Here Q(x) = a or b according as x ∈ Qa or x ∈ Qb.
It is a fact that such a T must be ergodic and of zero entropy, and

that the positions of the Wn’s in the Q-name of y are uniquely determined
(see [9]).

To verify Vershik’s criterion in our case we will show that using tree
automorphisms to rearrange Q-names we can modify most names to be
close to some single name. We can now tell you what that single name will
be. For each value n set Nn to be the infinite concatenation of copies of Wn.
More precisely,

Nn(j) = Wn(j mod wn).
Proof of Theorem 2.1. To prove Theorem 2.1 we must show how to use

tree automorphisms to “shift” most occurrences of Wn in the names of most
y’s to lie at the uniformly spaced positions they have in Nn.

Here are some preliminaries. On {0, 1}J denote by Pr fair-coin-tossing
measure, i.e. uniform mass 2−J on each element of {0, 1}J . As before, for
any p ∈ {0, 1}J we set p =

∑J
j=1 p(j) (the number of 1’s in p).

Lemma 3.1 (localization). Given ε > 0 there exists a C such that for all
sufficiently large J ,

Pr{p ∈ {0, 1}J : |p− J/2| < C
√
J} ≥ 1− ε.
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Lemma 3.2 (scaling). Given ε > 0 and C there exists D such that for all
J ∈ N, if S is a set of integers in (J/2−C√J, J/2+C

√
J) and #S < C

D

√
J ε

then
Pr{p ∈ {0, 1}J : p ∈ S} < ε.

Lemma 3.3 (shifting). Given ε > 0 there exists σ > 0 so that for all
sufficiently large J , if s is an integer with |s| < σ

√
J , then there is a tree

automorphism α of {0, 1}J with D(α, id) < ε so that

Pr{p− α(p) = s} ≥ 1− ε.
P r o o f. The first two of these three lemmas are fairly obvious from the

Central Limit Theorem. The third may be seen as follows. We assume s is
nonnegative. The nonpositive case follows directly: solve the problem for −s
and use α−1. We will in fact only use the nonpositive case. On the probability
space {0, 1}J we construct J steps of a random walk: Xn(p) = 2p(n) − 1.
Thus the Xn are i.i.d. on {−1, 1} and

Sn(p) = X1(p) + . . .+Xn(p) = 2
n∑
n=1

p(j)− n, 0 ≤ n ≤ J,

is a standard symmetric random walk. Let Λ = {Sn ≥ s for some n, 0 ≤
n ≤ J}. Then

Pr{Λ} ≥ Pr{Λ, SJ ≥ s}+ Pr{Λ, SJ ≤ s} − Pr{SJ = s}.
Symmetry and independence of the Xn’s give

Pr{Λ, SJ ≥ s} = Pr{Λ, SJ ≤ s}
(reflect the portion of the path beginning from the last time Sn = s across
the horizontal line of height s). Since Λ ⊃ {SJ ≥ s}, we have

Pr{Λ} ≥ 2Pr{SJ ≥ s} − Pr{SJ = s}
≥ Pr{|SJ | ≥ s} − Pr{SJ = s}
≥ Pr{|SJ | ≥ σ

√
J} − Pr{SJ = s}.

Now

Pr{|SJ | ≥ σ
√
J} → 1− 1√

2π

σ\
−σ
e−λ

2/2 dλ

as J → ∞, while Pr{SJ = s} is either
(

J
(J−s)/2

)
/2J or 0 depending on

whether J and s are or are not of the same parity. This latter tends to zero
as J → ∞ and the integral of course tends to 0 as σ → 0. Thus once J is
large enough we can be sure Pr{Λ} > 1− ε.

We now define an auxiliary map α′. If p ∈ Λ and n is the first integer
for which S(n) = s, then set α′(p)(j) = 1 − p(j) for all j < n, that is to
say interchange 0 and 1 along this string of n indices. For such a p ∈ Λ and
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j ≥ n set α′(p)(j) = p(j); that is, do not change the value at the rest of the
indices. For such a p it is an easy calculation that

p− α′(p) =
n∑

j=1

(p(j)− (1− p(j))) = 2
n∑

j=1

p(j)− n = s.

For p 6∈ Λ, define α′(p)(j) = 1 − p(j) for all j, that is to say switch all
indices.

The construction of α′ can be envisioned in the following dynamic fash-
ion. To find α′(p) we start switching the 0, 1 values of p index by index.
We are looking for a time when the difference between the running sum of
p and its switched version becomes precisely s. If and when this happens,
we stop switching. If it does not ever happen, all the values get switched.
Notice that this constructs a map on {0, 1}J with the property that the
images of any two names that agree on their leftmost k indices still agree on
their leftmost k-indices. This is symmetric to what we want of a tree auto-
morphism. Define α to be α′ conjugated by the flip φ(p)(j) = p(n− j + 1).
This now makes α a tree automorphism. Since φ leaves the number of 1’s
in the string unchanged, we still obtain p − α(p) = s, provided φ(p) ∈ Λ.
Vershik’s criterion (1) also requires that D(α, id) < ε. That is to say, for
all p, p and α(p) should agree in their leftmost [− log(ε)] indices. To obtain
this, modify the construction of α′ so that if after J − [− log(ε)] indices it
is still switching, then stop switching and start fixing values.

Now let T be a rank-1 map as described above.
A finite string W of symbols from {a, b} is said to appear in position [k, l]

in the name of y if Q(T k(y)), . . . ,Q(T l(y)) = W. Thus for our rank-1 map
T and for a.e. y, if n is sufficiently large, then for some k = 0, 1, . . . , wn, the
word Wn appears in position [−k,wn − k] in the name of y.

Lemma 3.4. Given ε > 0 there is some e > 0 so that for all n large
enough and all y in a set of measure ≥ 1− ε there is a substring of Wn+1

which appears in position [−ewn+1, ewn+1] in the name of y (of course
e < 1).

P r o o f. As remarked earlier, the breakup of the name of a point y into
copies of Wn+1 is unique. In this breakup the origin is either at some position
k between 0 and wn+1 − 1 in Wn+1 or is in filler. Once n is large enough
the set of points y with the origin in filler will have measure less than ε/3.
Among the points y with the origin inside a copy of Wn+1, the probabilities
of the origin being at various values k are all equal. Hence those within a
fraction e of either end have probability at most 2e. Thus e = ε/3 will do.

By [[j]] we denote the smallest even integer ≥ j.
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Lemma 3.5. Let C be as in Lemma 3.1 and

K(n) = [[ewn+1/C]]2.

If n is sufficiently large then

Pr{p : |p−K(n)/2| < ewn+1} < ε.

P r o o f. Immediate from Lemma 3.1.

To verify Vershik’s criterion we need to construct some tree automor-
phisms. These will be built in stages. We will write {0, 1}N as {0, 1}M ×
{0, 1}L × {0, 1}K where N = K + L + M , writing a string of length N as
a concatenation of three strings rqp. Our automorphisms will be built by
choosing for each p a tree automorphism α(p) of {0, 1}L and for each qp
a tree automorphism β(qp) of {0, 1}M . Given these, we can define a tree
automorphism

γ(rqp) = (β(qp)(r))(α(p)(q))p.

(This brief description has omitted the dependence our choices of α’s and
β’s must have on the Q-name of y.)

To begin the proof choose a (large) integer H and then a (small) positive
value δ. Also choose even positive integers L(n) and M(n) for the purpose
of shifting names. We require

(
2
σ
wn

)2

< L(n) <
(

ε

2CD
Hwn

)2

(so H had to be chosen appreciably larger than 4CD/(σε)) and
(
δHwn+1

σ

)2

< M(n) <
(

ε

2CD
wn

)2

(so δ needs to be chosed appreciably smaller than σε/(2DCH)). Here C, D,
and σ are the values considered in Lemmas 3.1–3.3.

Let N(n) denote K(n) +L(n) +M(n). Mark off intervals of length Hwn
starting from 0 in Z. Such an interval will look like this:

[kHwn, . . . , (k + 1)HWn − 1].

For H fixed, n can be chosen so large that
2Hwn
ewn+1

<
ε

D
,

where D is again from Lemma 3.2. It will help to keep in mind as we con-
tinue our construction that we regard the “origin” in a name as sitting at
position N(n)/2, the mean position of the random walk. We call the interval
[−ewn+1, ewn+1] the n-center. It will contain many n-blocks. We fix a “bor-
der” on the n-center consisting of two intervals of length Hwn, i.e. the union
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of the two intervals [−ewn+1,−ewn+1 + Hwn] and [ewn+1 − βwn, ewn+1].
By Lemma 3.2,

Pr{p ∈ {0, 1}K(n) : p−N(n)/2 ∈ this border} < ε.

In each n-block B we make a border of width
ε

2D
#(B) =

ε

2D
Hwn.

If this is done for all n-blocks B that lie entirely in the n-center, then
Lemma 3.2 implies that

Pr{p : p ∈ the border of some n-block ⊆ n-center} < ε.

The part of an n-block B not contained in this border will be called the
interior of B.

To get a sense of relative sizes at this point, K(n) is on the order of
((small constant)×wn+1)2 and hence

√
K(n) grows more rapidly in n than

w2
n. L(n) is on the order of ((large constant)×wn)2, hence grows less rapidly

than
√
K(n). As both C and D can be assumed very large, M(n) is on the

order of (very small constant)× wn. Thus N(n) is essentially just K(n).
We will be able to work with those y for which the interval In =

[K(n)/2 − ewn+1, N(n)/2 + ewn+1] in the name of y lies entirely within
Wn+1. Such a y we will call n-usable. Notice N(n)−K(n) = L(n)+M(n) <
(constant)×w2

n and w2
n/wn+1 → 0 in n. Recalling that e ≤ ε/2, we see that

the length of In divided by wn+1 converges in n to 2e ≤ ε. Now Lemma 3.4,
where the value of e was set, tells us that once n is large enough the set of
n-usable y will have measure ≥ 1− 2ε.

Let y be n-usable. An n-block B is called good for y if it is entirely in the
n-center and the portion of the name of TN(n)/2y in B contains a fraction
< δ of n-filler. If n is sufficiently large, then for all n-usable y, a proportion
more than 1− ε/D of the n-blocks in the n-center are good for y. Then by
Lemma 3.2, for any n-usable y,

Pr{p ∈ {0, 1}K(n) : p+ L(n)/2 +M(n)/2 is in a y-good n-block} ≥ 1− 2ε.

For an n-block B which is good for y define s(B, y) to be the number of
symbols to the left of the leftmost Wn in the name of TN(n)/2y which is
fully contained in B. Then

s(B, y) < wn + δHwn ≤ 2wn.

Now we define a tree automorphism αy(p) of {0, 1}L(n). If p + (L(n) +
M(n))/2 is in an n-block B which is good for y, choose αy(p) by Lemma 3.3
so that

Pr{q − αy(p)(q) = s(B, y)} ≥ 1− ε.
For other p it does not matter, but for expliciteness let αy(p) be the identity.
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Let B be an n-block which is good for y (y is assumed n-usable). Then
B is mostly covered by disjoint intervals of length wn in which the name of
TN(n)/2y is a copy of Wn. Call these intervals n-cells. We will label them
from left to right as Γi. The leftmost n-cell Γ1 begins after precisely s(B, y)
steps, in B, and in general the kth n-cell Γk begins after s(B, y) + (k−1)wn
+ t(k, y) steps, where we know

0 ≤ t(k, y) < δHwn.

This last is true because we know that the total number of indices in B
that lie in n-filler in the name of TN(n)/2y is less than δHwn. The rightmost
n-cell has its right end within 2Hwn of the right end of B and so is inside
the right border of B.

Now we define tree automorphisms of {0, 1}M(n) to implement a shift by
t(k, y) for the n-cell Γk. If p + αy(p)(q) + M(n)/2 lies in Γk, an n-cell in a
good n-block in the name of TN(n)/2y, then once more use Lemma 3.3 to
choose a tree automorphism βy(p, q, k) of {0, 1}M(n) so that

Pr{r − βy(p, q, k) = t(k, y)} ≥ 1− ε.
Suppress k, defining βy(qp)(r) by defining it as β(p, q, k) for r as above. For
other p, q or y the effect of the tree automorphism will not matter, and so
we extend it to be the identity.

We write a sequence in {0, 1}N(n) as rqp where p ∈ {0, 1}K(n), q ∈
{0, 1}L(n), and r ∈ {0, 1}M(n) and now define a tree automorphism on
{0, 1}N(n) by

γy(rqp) = βy(pq)(r)αy(p)(q)p

(remember that placing two strings of symbols next to one another concate-
nates them). Furthermore, for most rqp we have

Q(T γ(rqp)y) = Nn(rqp).

More precisely:

Proposition 3.6. If n is sufficiently large, then for each n-usable y we
have

Pr{Q(T γ(rpq)y) = Nn(rqp)} > 1− 11ε.

P r o o f. This is just a bit of bookkeeping. Fix some n-usable y. First we
consider {0, 1}K(n); its typical element we call, as always, p. Then

Pr{p : |p−K(n)/2| < ewn+1} ≥ 1− ε,
Pr{p : p+ (L(n) +M(n)/2 lies in an n-block entirely in the n-center}

≥ 1− ε,
Pr{p : p+ (L(n) +M(n)/2 is interior to an n-block} ≥ 1− ε,
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Pr{p : p+ (L(n) +M(n))/2 lies in an n-block which is good for y}
≥ 1− ε.

So the intersection of these four sets has measure ≥ 1− 4ε.
Next, for each fixed p in the above intersection we examine {0, 1}L(n)

whose typical element we denote by q. Let B be the good n-block in which
p+ (L(n) +M(n))/2 lies. From Lemma 3.1,

Pr{q : p+ q +M(n) ∈ B} ≥ 1− ε.
From the fact that tree automorphisms are measure-preserving,

Pr{q : p+ αy(p)(q) +M(n) ∈ B} ≥ 1− ε.
By assumption on p,

Pr{q : q − αy(p)(q) = s(B, y)} ≥ 1− ε.
From Lemma 3.2,

Pr{q : q − s(B, y) +M(n) is interior to a cell in B} ≥ 1− ε.
Thus for each such fixed p we have a set of q of measure ≥ 1− 4ε in all four
of these sets.

Finally, we examine r ∈ {0, 1}M(n). Fix p and q satisfying the above
eight conditions (four on each). Assume p+αy(p)+M(n)/2 is in an n-block
B good for y, and interior to an n-cell Γk. Then

Pr{r : p+ αy(p)(q) + r ∈ Γk} ≥ 1− ε,
Pr{r : p+ αy(p)(q) + βy(qp)(r) ∈ Γk} ≥ 1− ε,
Pr{r : r − βy(qp)(r) = t(k, y)} ≥ 1− ε.

For each given such p and q the set of all r in these three sets has measure
≥ 1 − 3ε. Thus the set of rqp satisfying all eleven of the conditions has
probability ≥ 1− 11ε. If all these conditions are satisfied then

Q(T γ(rqp)y) is precisely Nn(rqp).

Replacing ε by ε/11 we see that our version of Vershik’s criterion is
satisfied.
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