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Conformal measures for rational functions revisited

by

M. Denke r (Göttingen), R. D. Mau ld i n (Denton, Tex.),
Z. N i t e c k i (Medford, Mass.) and M. Urba ń s k i (Denton, Tex.)

Abstract. We show that the set of conical points of a rational function of the
Riemann sphere supports at most one conformal measure. We then study the problem of
existence of such measures and their ergodic properties by constructing Markov partitions
on increasing subsets of sets of conical points and by applying ideas of the thermodynamic
formalism.

Introduction. In this paper we recall from [U2] the notion of conical
points and analyze some of its aspects. The idea of conical points has been
used implicitly in [DU2], [DU3], [U1], [U3] and other papers of Denker and
Urbański. Recently this idea has been used for example in [BMO] to study
conformal measures and in [MM] to characterize the Hausdorff dimension
and the Poincaré exponent of the Julia sets for certain rational functions.
Note that McMullen used the term “radial Julia set” instead of “conical
limit set” in analogy with Kleinian groups.

We would also like to remark that our approach here is one possible
means for examining these notions in the case of parabolic or “geometrically
finite” rational maps, that is, those whose Julia sets contain no critical
points but some rationally indifferent periodic points. In fact, in these cases
(and others also) our construction shows that the h-dimensional Hausdorff
measure, where h is the Hausdorff dimension of the Julia set, is supported
on the conical set. From this it is not so hard to show that the dimension of
the conical set equals the dimension of the measure, hence also equals the
Poincaré exponent defined by McMullen and the dimension of the Julia set.

1. Conical points. Let f : C → C be a rational function of degree
d ≥ 2. Following [U2], by analogy with the theory of Kleinian groups, we call
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a point z in J(f), the Julia set of f , a conical point of f if there exist δ > 0
and an infinite increasing sequence nk ≥ 1 of positive integers such that for
each k, there exists f−nk

z , a holomorphic inverse branch of fnk , defined on
the disk B(fnk(z), δ) and sending fnk(z) to z. If we want to be more specific
we call z a δ-conical point to keep track of the radii of the balls around the
iterates fnk(z). We denote the set of conical points by Con(f) and the set of
δ-conical points by Con(f, δ). Other alternative definitions of conical points
have been later on provided by P. Jones (oral communication), F. Przytycki
(see [Pr4]) and Lyubich and Minsky (see [LM]).

Let us begin with some comments concerning conical points. If z is a
periodic repelling point, then there is some δ such that for every n, there
is a holomorphic inverse branch, f−n

z , defined on the ball B(fn(z), δ) and
sending fn(z) to z. Thus, in this case z is a conical point and we may take
nk = kp, where p is the period of the point. If z is a δ-conical point and
there is a critical point c ∈ ω(z), then the corresponding sequence nk must
have gaps of arbitrarily large length.

To see this suppose to the contrary that the gaps are bounded by some
constant b. Now, there exists a positive integer n (in fact infinitely many
of them) such that |fn(z) − c| < δ‖f ′‖−b, where the supremum norm ‖ · ‖
is taken with respect to the spherical metric. Consider the only subscript k
such that nk−1 < n ≤ nk. Then

f
−(nk−n)
fn(z) (B(fnk(z), δ)) ⊃ B(fn(z), δ‖f ′‖−(nk−n)) ⊃ B(fn(z), δ‖f ′‖−b).

Since this last set contains the critical point c, we have a contradiction which
finishes the argument.

Let PC be the closure of the post-critical set. If z ∈ J(f) and ω(z) is
not a subset of PC, then z is a conical point. To see this note that there
is some ε > 0 and a sequence nk such that dist(fnk(z),PC) ≥ ε. So, by
the monodromy theorem there is a holomorphic branch f−nk

z defined on the
ball B(fnk(z), ε) such that f−nk

z (fnk(z)) = z. In particular, note that if the
post-critical set is not dense in J(f), then each transitive point is a conical
point. This occurs for example for the maps z2 + c, where c is real and J(f)
is not a subset of R. As we mention in the course of the paper, for every
invariant ergodic measure with positive entropy almost every point of J(f)
is a conical point. Notice that the measure of maximal entropy is such a
measure and therefore, there are always plenty of conical points. On the
other hand, any preimage of a critical point of any order is not conical. So,
if PC 6= ∅, then there is a dense set of non-conical points.

Note that if f is parabolic, then all points of J(f) other than the inverse
images of parabolic periodic points are conical. In this case there exists a
unique conformal measure with exponent equal to HD(J(f)), the Hausdorff
dimension of the Julia set. This measure is supported on the set of conical
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points (see [ADU]). On the other hand, for all exponents strictly greater than
the Hausdorff dimension there also exist conformal measures and all these
measures are supported on the complement of the conical points (see [DU2]).
This discussion indicates that the property of being a conical point is rather
delicate. One of our main goals is to examine conditions under which there
is precisely one conformal measure supported on the set of conical points.
We prove here that there is always at most one such conformal measure.

Given t ≥ 0 we say that a Borel probability measure m supported on
J(f) is t-conformal provided

m(f(A)) =
\
A

|f ′|t dm

for all Borel sets A ⊂ J(f) such that f : A → f(A) is 1-to-1.
Let us now collect some properties of conical points.

Lemma 1.1. The set of conical points is a Borel set , in fact it is a Gδσ-set.

P r o o f. Given δ > 0 and an integer n ≥ 1 let Fn(δ) be the union of all

connected components C of f−n(B(z, δ/2)), z ∈ J(f), such that C̃, the only
connected component of f−n(B(z, δ)) containing C, is disjoint from the set
of critical points of fn. Since for every δ,

Con(f, δ) ⊂ F (δ) =
⋂

n≥1

⋃

k≥n

Fk(δ) ⊂ Con(f, δ/2),

it follows that Con(f) =
⋃

n≥1 F (1/n). Since all the sets F (δ) are Gδ , the
proof is complete.

It follows from [DU1] and [Pr1] that HD(Con(f)) = DD(J(f)) = e(f),
where DD(J(f)) is the dynamical dimension of J(f) defined as the supre-
mum of the dimensions of f -invariant ergodic probability measures of posi-
tive entropy and e(f) is the minimal exponent allowing a conformal measure.
It follows from [PU] that DD(f) coincides with the hyperbolic dimension
introduced in [Sh]. In the case of rational functions with no recurrent crit-
ical points in J(f) (they include hyperbolic, subhyperbolic, and parabolic
maps) Con(f) is the whole Julia set with a countable set formed by all
the inverse images of critical points and rationally neutral periodic points
(see [U1], comp. [ADU]) deleted. Moreover, in this case there exists a
unique conformal measure supported on the set of conical points. Confor-
mal measures concentrated on the set of conical points also exist for some
subclasses of Collet–Eckmann maps (see [Pr2] and [Pr3]).

Recall that a Borel σ-finite measure µ supported on J(f) is said to be
ergodic if all f -invariant sets on J(f) (a set A ⊂ J(f) is f -invariant if
f−1(A) = A) are of measure 0 or their complements are of measure 0, and
µ is said to be conservative if

∑
n≥0 1A ◦ fn = ∞ µ-a.e. for all Borel sets A
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of positive measure. Of course, by the Poincaré recurrence theorem every
finite f -invariant measure is conservative, but if finiteness is relaxed, this
implication may fail; we will return to this point in Theorem 2.9. Let us
also mention that if f -invariance is relaxed, the implication may also fail. In
fact, there are non-conservative t-conformal measures, e.g., in the parabolic
case for any t larger than the Hausdorff dimension.

Our main result in this section is the following.

Theorem 1.2. There exists at most one value of t for which a t-conformal

measure exists and is supported on the set of conical points of f . Addition-

ally , for such a t there is exactly one t-conformal measure supported on the

set of conical points of f .

P r o o f. Let m be a t-conformal measure and let z be a δ-conical point.
First, using a normal family argument, we observe that there is a subse-
quence nk of the sequence associated with z as a conical point such that
limk→∞ diam(f−nk

z (B(fnk(z), δ))) = 0. In view of the Koebe distortion
theorem, there are constants C > 0 and 0 < η ≤ 1/2 depending on δ such
that

f−nk
z (B(fnk(z), ηδ)) ⊂ B(z,C|(fnk)′(z)|−1δ) ⊂ f−nk

z (B(fnk(z), δ/2)).

Set rk(z) = C|(fnk)′(z)|−1δ. Since by topological exactness of f on the Julia
set, the measure m is positive on non-empty open sets, using the above two
inclusions and employing conformality of the measure m along with the
Koebe distortion theorem, we see there is a constant Cδ ≥ 1 such that

(1.1) C−1
δ ≤

m(B(z, rk(z)))

rk(z)t
≤ Cδ.

Since z is a conical point, limk→∞ |(fnk)′(z)| = ∞ and consequently

(1.2) lim
k→∞

rk(z) = 0.

Now, formulas (1.1) and (1.2) show that if we have two conformal mea-
sures mt and ms with two distinct exponents t and s respectively (say s > t),
then ms(Con(f, δ)) = 0 for all δ > 0 and consequently ms(Con(f)) = 0.
This proves the first part of our theorem.

Notice that formulas (1.1) and (1.2) also show that any two t-conformal
measures restricted to the set of δ-conical points are equivalent. Since
Con(f) =

⋃
n≥1 Con(f, 1/n), any two such measures are equivalent. Now,

suppose a t-conformal measure µ supported on Con(f) is not ergodic. Then
Con(f) = A ∪ B where A ∩ B = ∅ and µ(A) 6= 0, µ(B) 6= 0 and A,B are
invariant. Then after normalization we obtain two t-conformal measures:
µ1 = (µ|A)/µ(A) and µ1 = (µ|B)/µ(B) which are mutually singular. This
contradicts the statement above: any two t-conformal measures on Con(f)
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are equivalent. Thus, every t-conformal measure on Con(f) must be er-
godic. This implies there can only be one t-conformal measure supported
on Con(f).

2. Markov partitions and associated maps. There already exists
a fairly rich flow of papers aiming toward exhibiting and understanding
various quasi-Markovian properties of rational functions. In what follows
we provide a partial contribution toward this end by further developing
some ideas contained in [DNU] and [MU]. In particular, we focus on the
subset X0 of conical points with some natural dynamical properties. We
begin by recalling [DU, Lemma 7] (comp. also [Ma]):

Fix an ergodic invariant probability measure µ of positive entropy. Let
1 > λ > 0. Then there exist an integer m ≥ 1, C > 0, an open topological
disk U containing no critical values of f up to order m and analytic inverse
branches f−mn

i : U → C of fmn (i = 1, . . . , kn ≤ dnm, n ≥ 0), satisfying:

(2.1) ∀n≥0 ∀1≤i≤kn+1
∃1≤j≤kn

fm ◦ f
−m(n+1)
i = f−mn

j ,

(2.2) diam(f−mn
i (U)) ≤ cλn for n = 0, 1, . . . and i = 1, . . . , kn,

(2.3) for each fixed n ≥ 1, for all i = 1, . . . , kn the sets f−mn
i (U) are

pairwise disjoint and f−mn
i (U) ⊂ U ,

(2.4) µ
( ∞⋃

n=1

kn⋃

i=1

f−mn
i (U)

)
= 1.

In the sequel, in order to simplify exposition, we will take m = 1. In
what follows we suppress the dependence of this construction upon µ and
U unless otherwise noted.

Remark 2.1. It follows from the proof of [DU, Lemma 7] that there
exists K ≥ 1 such that for every i = 1, . . . , k1, every n ≥ 2, every j =
1, . . . , kn such that fn−1(f−n

j (U)) = f−1
i (U), and every pair of points x, y ∈

f−1
i (U) we have

|(f−n
j ◦ f)′(y)|

|(f−n
j ◦ f)′(x)|

≤ K.

Let us also state as a lemma the following consequence of (2.1) and (2.3).

Lemma 2.2. For each n, let Nn =
⋃
{f−n

j (U) : j = 1, . . . , kn} and let

N =
⋃

Nn. Then N is a net , i.e. any two sets in N are either disjoint or

one is a subset of the other.

Set now

U∞ =

∞⋃

n=1

kn⋃

i=1

f−n
i (U).
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We define inductively a partition γ0 of U∞ into elements of the form f−n
i (U),

n ≥ 1, i = 1, . . . , kn. First, all the sets f−1
i (U) are in γ0 and secondly

f−n
i (U) ∈ γ0, n ≥ 2, if and only if f−n

i (U)∩
⋃n−1

j=1

⋃kj

i=1 f−j
i (U) = ∅. Notice

that ⋃

A∈γ0

A = U∞,

since by the net property (see Lemma 2.2) either f−n
i (U)∩

⋃n−1
j=1

⋃kj

l=1 f−j
l (U)

= ∅ or f−n
i (U) ⊂

⋃n−1
j=1

⋃kj

l=1 f−j
l (U).

The partition γ0 gives rise to a map F0 : U∞ → U as follows: take
x ∈ U∞ and consider the unique element γ0(x) ∈ γ0 such that x ∈ γ0(x).
By the definition of U∞, there exists a minimal j ≥ 1 such that f j(γ0(x)) ∈
γ0 ∪ {U}. We now define F0(x) to be f j(x) and we set

X0 = J(f) ∩
∞⋂

n=0

F−n
0 (U∞) =

∞⋂

n=0

F−n
0 (U∞).

Then F0(X0)⊂X0 and we may consider the dynamical system F0 : X0→X0.
To see that

⋂∞

n=0 F−n
0 (U∞) ⊂ J(f), notice that by (2.2) for each ε > 0, if

n is sufficiently large, then (f−n
i (U)) lies in the ε-neighborhood of J(f).

Notice also that X0 = X0(µ) is a subset of the set of conical points of f
and by (2.4), µ(X0) = 1. It is a Gδ set by construction. Also, note that if µ
has full support (for example if µ is the measure of maximal entropy) then
X0(µ) is dense in J(f). In particular, if the conformal measure admits an
equivalent invariant measure µ, then the conformal measure is supported on
the set X0(µ). Examples of such maps can be found for instance in [ADU],
[Pr3], and [U3].

Finally, X0 may be a proper subset of the set of conical points. This is
the case for example for the map z 7→ z2, where we take U to be the bounded
component of the complement of [0, 1 + ε] ∪ H ∪ G, where H is the circle
centered at the origin with radius 3/2 and G is the closed disk centered at
the origin with radius 1/2. In fact, in this case, the dyadic points on the
unit circle are not included in X0.

At this moment we want to raise two problems.

Problem A. Does there always exist a conformal measure supported on
the set of conical points?

Problem B. Suppose that for a conformal measure m the set of conical
points is of measure 1. Is it true that m(X0(µ)) = 1 for some ergodic
invariant measure µ of positive entropy?

If we keep the same symbol γ0 for the partition γ0|X0
, property (2.3)

along with our construction gives the following.
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Lemma 2.3. The partition γ0 is a Markov partition for the dynamical

system F0 : X0 → X0, i.e., the image of any element of γ0 under F0

can be represented as a union of some elements of γ0. Additionally , if

x ∈
⋃∞

n=2

⋃kn

i=1 f−n
i (U), then F0(γ0(x)) ∈ γ0.

P r o o f. By the construction of γ0 and F0 the second part of Lemma 2.3
is obvious. Now, we only need to remark that for every i = 1, . . . , k1, we
have F0(X0 ∩ f−1

i (U)) = X0 and X0 is the union of all elements of γ0.

Observe that although we have gained a Markov property, the map F0

may fail to have Rényi’s property (distortion) because the elements of γ0

may accumulate arbitrarily close to the boundary of U and consequently
arbitrarily close to the critical values of order 1 of f . In order to remedy
this possible failure we introduce below a family of induced maps Fk as
follows. Given k ≥ 1 and x ∈ X0, let

Nk(x) = min{j ≥ 1 : F j
0 (γ0(x)) ∈ {f−s

i (U) : 1 ≤ s ≤ k, i = 1, . . . , ks}}.

Set Ek =
⋃
{f−s

i (U) : 1 ≤ s ≤ k, i = 1, . . . , ks} and let

Xk = X0 ∩ Ek

= {x ∈ X0 ∩ Ek : Nk(Fn
0 (x)) < ∞ for infinitely many n’s}.

This last equality holds since if x ∈ Xk, then its forward trajectory under
F0 must pass through E1 and consequently Ek infinitely often.

Finally, we define the induced map Fk : Xk → Xk by setting

Fk(x) = F
Nk(x)
0 (x).

We also introduce a partition γk of Xk corresponding to Fk as follows:

γk =
⋃

l≥0

(γ)l
0 ∩ N−1

k (l)|Xk
,

where (γ)l
0 =

∨l
j=0 F−j

0 (γ0). We then have

Lemma 2.4. Fix k ≥ 1 and suppose that Xk 6= ∅. Then the system

(Xk, Fk, γk) is a Markov system with the bounded distortion property in the

sense that there exists a constant Kk ≥ 1 such that

|(Fn
k )′(y)| ≤ Kk|(F

n
k )′(x)|

for all n ≥ 1, G ∈ (γ)n
0 and all x, y ∈ G.

P r o o f. This lemma follows immediately from Lemma 2.3 which is re-
sponsible for the Markov property along with Remark 2.1 and the fact that
the number of sets of the form f−s

i (U), 1 ≤ s ≤ k, i = 1, . . . , ks, is finite,
which are responsible for bounded distortion.
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For each k ≥ 0 and t ≥ 0, define the topological pressure Pk(t) of the
system Fk with respect to the potential − log |F ′

k| as follows:

Pk(t) = lim
n→∞

1

n
log

∑

ν∈νk(n)

‖(F−n
k,ν )′‖t,

where νk(n) enumerates all the inverse branches of Fn
k . The limit exists since

for each k, the sequence ak(n) = log
∑

ν∈νk(n) ‖(F
−n
k,ν )′‖t is subadditive.

Notice that Pk(t) is convex, continuous in its domain of finiteness, and
strictly decreasing on that domain by (2.1). Using the Koebe distortion
theorem we obtain ak(m + n) ≥ ak(m) + ak(n) − t log Kk. So, we conclude
that Pk(t) ≥ ak(1) − t log Kk > −∞. Since

∑
ν∈νk(n) ‖(F

−n
k,ν )′‖2 ≤ K2

k ×

(area of U) < ∞, we get inf{t : Pk(t) < ∞} ≤ 2. Following [MU], we denote
this infimum by θ = θ(Fk). In fact, we have the following little lemma.

Lemma 2.5. For each k, θ(Fk) = inf{t :
∑

ν∈νk(1) ‖(F
−1
k,ν )′‖t < ∞} and

θ = θ(Fk) is independent of k.

P r o o f. The first statement immediately follows from subadditivity esti-
mates from above and below of the sequence ak(n)=log

∑
ν∈νk(n) ‖(F

−n
k,ν )′‖t.

In order to see why the second statement is true observe that the se-
ries

∑
ν∈νk(1) ‖(F

−1
k,ν )′‖t and

∑
ν∈νk+1(1) ‖(F

−1
k+1,ν)′‖t actually differ by only

finitely many summands. To be more precise, if F−1
ν is an inverse branch of

Fk (resp. Fk+1) defined on an element of the form f−s
i (U), 1 ≤ s ≤ k − 1,

i = 1, . . . , ks, then it is simultaneously an inverse branch of Fk+1 (resp. Fk).
If now F−1

k,ν is an inverse branch defined on an element f−k
i (U), 1 ≤ i ≤ kk,

then F−1
k,ν (f−k

i (U)) ⊂ f−1
i (U) for some i = 1, . . . , k1 and F−1

k,ν = F−1
k+1,µ◦f−1

j

for some µ and j = 1, . . . , k1. If in turn F−1
k+1,ν is an inverse branch defined

on f−k+1
i (U), i = 1, . . . , kk+1, then F0|f−(k+1)

i (U)
is a composition of at most

k mappings f and F−1
k+1,ν ◦ (F0|f−(k+1)

i (U)
)−1 is an inverse branch of Fk.

Therefore, the only inverse branches of Fk+1 which do not correspond
to any inverse branches of Fk are of the form (f |

f
−(k+1)
i (U)

)−1, where 1 ≤ i

≤ kk+1 and f
−(k+1)
i (U) ∈ γ0, and there are only finitely many of them. The

proof is finished.

Lemma 2.6. If Pk(t) < ∞, then there exists a |F ′
k|

tePk(t)-conformal

measure for Fk : Xk → Xk.

P r o o f. The proof employs the Perron–Frobenius argument and most
directly the reasoning given in [MU]. Indeed, for every bounded function
φ : Ek → R define L(φ) : Ek → R by setting

L(φ)(x) =
∑

ν∈νk(1,x)

|F−1
k,ν (x)|te−Pk(t)φ(F−1

k (x)),
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where the summation is taken over all inverse branches of Fk that are defined
on that element of the family {f−s

i (U) : 1 ≤ s ≤ k, 1 ≤ i ≤ ks} which
contains x.

Denote by L∗ : C(Ek) → C(Ek) the operator dual to L. Consider
the continuous map µ 7→ L∗(µ)/L∗(µ)(1) defined on the space of Borel
probability measures on Ek treated as a subspace of C(Ek)∗. In view of the
Schauder–Tikhonov theorem, this map has a fixed point, say m. Writing λ =
L∗(m)(1) we thus have L∗(m) = λm and consequently L∗n(m) = λnm for
every n≥1. Fix ε>0. Then for every n large enough,

∑
ν∈νk(n)‖(F

−n
k,ν )′‖t≤

e(Pk(t)+ε)n. Therefore, for those n,

λn = λnm(1) = L∗n(m)(1) =
\
Ln(1) dm

≤
\∑

ν∈νk(n)

‖(F−n
k,ν )′‖te−Pk(t)n dm =

∑

ν∈νk(n)

‖(F−n
k,ν )′‖te−Pk(t)n ≤ eεn.

Hence, letting n → ∞, we get λ ≤ eε, and letting ε ց 0 gives λ ≤ 1.

In order to get the opposite inequality, first notice that if x ∈ Xk, then
f−s

i (x) ∈ Xk for every s = 1, . . . , k, and every i = 1, . . . , ks. This enables
us to show that m(A) > 0 for every set A of the form f−s

i (U), 1 ≤ s ≤ k,

i = 1, . . . , ks. Indeed, since Xk ⊂
⋃k

s=1

⋃ks

i=1 f−s
i (U) and m(Ek) = 1, there

exist 1 ≤ j ≤ k and 1 ≤ l ≤ kj such that m(f−j
i (U)) > 0. Set A = f−j

i (U).
Then

m(A) = m(1A) = λ−1m(L(1A))

≥ λ−1
\

f
−j
i (U)

∑

ν∈νk(1,x)

|(F−1
k,ν )′(x)|te−Pk(t)1A(F−1

k,ν (x)) dm(x).

Since m(f−j
i (U)) > 0 and

∑
ν∈νk(1,x) |(F

−1
k,ν )′(x)|te−Pk(t)1A(F−1

k,ν (x))

> 0 for every x ∈ f−j
i (U), we conclude that m(A) > 0. Since the fam-

ily {f−s
i (U) : 1 ≤ s ≤ k, i = 1, . . . , ks} is finite and Xk is contained in its

union, it follows from the definition of Pk(t) that there exists 1 ≤ s ≤ k
such that

Pk(t) = lim sup
n→∞

1

n
log

∑

ν∈νn(s,i)

‖(F−n
k,ν )′‖t,

where νn(s, i) enumerates all the inverse branches of Fn
k which begin with

f−s
i . Therefore, fixing ε > 0, taking n ≥ 1 sufficiently large and using

Lemma 2.3, we get

λn =
\∑

ν∈νn(x)

|(F−n
k,ν )′(x)|te−Pk(t)n dm(x)
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≥
\

f−s
i (U)

∑

ν∈νn(x)

|(F−n
k,ν )′(x)|te−Pk(t)n dm(x)

≥ K−t
∑

ν∈νn(s,i)

‖(F−n
k,ν )′‖te−Pk(t)nm(f−s

i (U))

≥ K−te(Pk(t)−ε)ne−Pk(t)nm(f−s
i (U))

= K−tm(f−s
i (U))e−εn,

where as above νn(x) enumerates all the inverse branches of Fn
k that are

defined on that element of the family {f−s
i (U) : 1 ≤ s ≤ k, 1 ≤ i ≤ ks}

which contains x. Thus, log λ ≥ −ε and letting ε → 0, we get λ = 1.

Our aim now is to show that m is |F ′
k|

teP(t)-conformal. Indeed, for every

set A ⊂ f−s
i (U), s = 1, . . . , k, i = 1, . . . , ks, and every inverse branch F−n

k,ν

of Fn defined on f−s
i (U), we have

m(F−n
k,ν (A)) =

\
Ek

∑

q∈νn(x)

|(F−n
k,q )′(x)|te−Pk(t)n1F−n

k,ν (A) ◦ F−n
k,q (x) dm(x)

=
\
A

|(F−n
k,ν )′(x)|te−Pk(t)n dm(x),

where the last equality holds since the sets f−s
i (U) are mutually disjoint.

Thus the conformality requirement is satisfied and we only need to show

that m(Xk) = 1. In order to do this put Un =
⋃

ν∈νn
f−s

i (U). Then

1Un
◦ F−n

k,ν (x) = 1 for all ν ∈ νk(n) and all x ∈ U . Therefore

m(Un) =
\

Ek

∑

ν∈νn(x)

|(F−n
k,ν )′(x)|te−Pk(t)n1Un

◦ F−n
k,ν (x) dm(x)

=
\

Ek

∑

ν∈νn(x)

|(F−n
k,ν )′(x)|te−Pk(t)n dm(x) =

\
Ek

1 dm = 1.

Since Un is a descending family and
⋂

n≥1 Un = Xk, we conclude that
m(Xk) = 1. The proof is finished.

Lemma 2.6 makes up the central component of the following main result
of this section.

Theorem 2.7. For each k and t, there exists exactly one |F ′
k|

tePk(t)-

conformal measure for Fk : Xk → Xk and Pk(t) is the only number αt

which admits a |F ′
k|

teαt-conformal measure. There also exists exactly one

Fk-invariant probability measure µk absolutely continuous with respect to m.

This measure is ergodic, positive on non-empty open sets and equivalent

to m.
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P r o o f. First notice that Lemma 2.2 easily implies topological exactness
of Fk : Xk → Xk and this along with the conformality condition implies that
any conformal measure is positive on non-empty open sets of Xk. In par-
ticular, all the sets f−s

i (U), 1 ≤ s ≤ k, 1 ≤ i ≤ ks, have positive measure.
Therefore using the conformality condition and the bounded distortion prop-
erty we easily deduce the existence of a constant C ≥ 1 such that if m1 and
m2 are respectively |F ′

k|
teα

1 - and |F ′
k|

teα
2 -conformal measures then

e(α1−α2)nC−1 ≤
m2(F

−n
k,ν (U))

m1(F
−n
k,ν (U))

≤ Ce(α1−α2)n

for all n ≥ 1 and all the inverse branches of Fn
k . Using now Besicovitch

covering theorem type arguments, we conclude that α1 = α2 and the mea-
sures m1 and m2 are equivalent with bounded Radon–Nikodym derivatives.
Now, Rényi’s condition along with topological exactness imply that each
conformal measure has an equivalent Fk-invariant measure. Since all such
measures must also be mutually equivalent, there can exist at most one such
measure. Invoking now Lemma 2.6 finishes the proof.

Theorem 2.8. If Pk(t) = 0 for some k ≥ 1, then Pn(t) = 0 for all n ≥ k
and mn|Xk

coincides with mk up to a multiplicative constant. Moreover ,
there exists a σ-finite |F ′

0|
t-conformal measure for F0 : X0 → X0 which is

finite on all the sets Xn and whose restriction to Xn coincides with mn up

to a multiplicative constant.

P r o o f. Since Xn ∩ Ek = Xk ∩ Ek = Xk and mn(Xn ∩ Ek) > 0 and
since Fk restricted to any atom of its Markov partition can be expressed
as a composition of at most two mappings Fn, using the chain rule we
conclude that after normalization mn|Xk

is |F ′
k|

t-conformal. Thus applying
Theorem 2.7 finishes the proof of the first part.

In order to prove the second part consider the sequence of measures m′
n,

n ≥ k, defined inductively as follows: m′
k = mk and mn+1 = cn+1mn+1,

where cn is chosen such that m′
n+1|Xn

= m′
n. Thus the formula ν(A) =

m′
n(A) for A ⊂ Xn defines a measure on

⋃
n≥k Xn = X0 which has all the

required properties.

As a converse to Theorem 2.8 we prove the following.

Theorem 2.9. Up to a multiplicative constant , there exists at most one

σ-finite |F ′
0|

t-conformal measure for F0 : X0 → X0 which is finite on all the

sets Xk, k ≥ 1. If such a measure exists, then Pk(t) = 0 (so such a t is

also uniquely determined) for all k ≥ 1 and m is conservative ergodic with

respect to F0.

P r o o f. All the claims of this theorem except ergodicity and conserva-
tivity follow immediately from Theorem 2.7 combined with the remark that
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for every k ≥ 1, m|Xk
is |F ′

k|
t-conformal for Fk : Xk → Xk. Conservativity

and ergodicity follow now from the fact that X0 =
⋃

k≥1 Xk and from the
fact that all the maps Fk : Xk → Xk are conservative (conservativity of at
least one of these maps would be sufficient for us as every point in X0 visits
X1 under F0 infinitely often), which in turn is a consequence of the second
part of Theorem 2.7 producing Fk-invariant ergodic probability measures
equivalent to m|Xk

.

We finish the paper with the following problem.

Problem C. Suppose that m is a σ-finite |F ′
0|

t-conformal measure for
F0 : X0 → X0. Is m finite on the sets Xk, k ≥ 1?

We wish to thank the referees for their useful comments and criticism in
improving this paper.
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