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Jordan tori and polynomial endomorphisms in C2

by

Manfred D e n k e r and Stefan-M. H e i n e m a n n (Göttingen)

Abstract. For a class of quadratic polynomial endomorphisms f : C2 → C2 close to
the standard torus map (x, y) 7→ (x2, y2), we show that the Julia set J(f) is homeomorphic
to the torus. We identify J(f) as the closure R of the set of repelling periodic points and
as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it
turns out that (J(f), f) is a mixing repeller and supports a measure of maximal entropy
for f which is uniquely determined as the harmonic measure for K(f).

1. Introduction. Ergodic theory for the dynamics of endomorphisms
has been mostly studied for zero- and one-dimensional systems. This is often
motivated by number-theoretical problems, reduction of flows to (Poincaré)
sections or coding problems. Only recently, attempts have been made to de-
velop a theory for one-dimensional complex systems (see e.g. [1]). Whereas
the generalisation of number-theoretical transformations to higher dimen-
sions has been partly successful (see [21]), only a few results on the ergodic-
theoretic aspects of higher-dimensional endomorphisms have been published
(e.g. [17]).

In this paper we study quadratic polynomial mappings f of the form(
x

y

)
7→
(
p(x, y)
q(x, y)

)
:=
(
x2 + k(y)
y2 + l(x)

)
,

where k and l are quadratic polynomials with complex coefficients satisfying,
for some ε > 0,

sup
|x|≤1/2+

√
1/2−ε

max{|k(x)|, |l(x)|} ≤ 1/4− ε.

These maps are called torus maps (see Definition 3.3). One of the basic
problems in order to clarify the ergodic-theoretic behaviour of a dynamical
system is to prove or disprove the existence of attractors (repellers, resp.).
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Here we show the existence of an expanding repeller homeomorphic to the
torus |x| = |y| = 1, with f topologically conjugate to the standard map on
the torus. We identify the repeller as the closure R of the set of repelling
periodic points and provide other characterisations.

From [15] we recall the notion of weak normality :

Definition. A family {fk : U → Cn} of holomorphic functions on a
domain U ⊆ Cn is called weakly normal at a point z ∈ U if there is an
open neighbourhood V of z and a family {Cx} of at least one-dimensional
(complex) analytic sets indexed by the points x ∈ V , such that each x lies
in the corresponding analytic set Cx and, for each x ∈ V , the family {fk}
restricted to Cx ∩ V is normal (including convergence to infinity).

Throughout the paper ‖ ·‖ denotes the maximum norm on C2, hence the
ball Br of radius r equals the poly-disk Pr of radius r.

Our main result is the following.

Theorem. For a torus map f : C2 → C2 the following sets are equal :

(A) the Julia set J(f) := {z ∈ C2 : {fk : k ≥ 0} is not weakly normal
at z};

(B) the Shilov boundary ∂SHK(f), where

K(f) := {z ∈ C2 : sup
k
‖fk(z)‖ <∞};

(C) the closure R of the set of repelling periodic points;
(D) the limit of the pull backs f−k(∂SHBr) for sufficiently large r > 0;
(E) the support of the harmonic measure µK for K(f) which has maxi-

mal entropy (for f).

The strategy to prove this result is by using iteration theory of holo-
morphic maps in dimension ≥ 2. This has been developed for the case
of polynomial automorphisms of C2, so-called complex Hénon maps (see
e.g. [3]). There are also investigations of endomorphisms of complex projec-
tive spaces, hence homogeneous polynomial mappings, for example [5]. One
might investigate the dynamics of skew products in C2 (cf. [15]). Here we
use a different approach and consider polynomial endomorphisms of complex
spaces in general (at least as general as possible) and look for characteristics
of their dynamical behaviour. Hence, besides the above mentioned theorem
we study basic, non-trivial dynamical properties of these maps.

In Section 2 we describe the set of polynomial mappings f : Cn → Cn
for arbitrary n ∈ N which satisfy a growth condition similar to that for
polynomials in C1. These maps are called strict polynomials (see [13]).

It turns out that, for a strict polynomial f : Cn → Cn, the set K(f) is
compact, hence it makes sense to investigate the different definitions for the
Julia set mentioned in the theorem. We first discuss this for the standard



Jordan tori and polynomial endomorphisms 141

torus map σ2 : (x, y) 7→ (x2, y2). In particular, we define the Julia set using
weakly normal convergence. For n = 1, normal convergence and weakly
normal convergence are equivalent. Furthermore, for the special case of n-
vectors of polynomials of one variable (including the standard torus map),
we show that the Julia set in Cn is exactly the product of the associated one-
dimensional Julia sets. As a direct consequence we obtain the equivalence
of the different definitions in this case.

In the last and main part of this paper (Section 3) we prove the the-
orem stated above. In the course of proof we also derive some theorems
and corollaries of independent interest. We show that the Julia sets of torus
maps are homeomorphic to the torus. This is established by splitting C2

into subsets G0, G∞, G1x, G1y, and G1xy (see Figure 1 in Section 3). We
show (weak) normality of (fn) on G0 and G∞, then we find an invariant
compact set (∂K)∗ ⊂ G1xy which turns out to be homeomorphic to the
torus. We then prove that (∂K)∗ is equal to ∂SHK(f) (it makes sense to
define the Shilov boundary for K instead of for the space A of maximal
ideals of the algebra Hol(K(f)), because K(f) is polynomially convex and
hence K(f) is isomorphic to A (cf. [8])). Weak normality is established in
G1x ∪G1y ∪ (G1xy \ (∂K)∗), as, for each z ∈ ∂K \ (∂K)∗, we find a stability
set given by a complex analytic curve Cz. Thus (∂K)∗ also equals the Julia
set J(f). The dynamics of f on J(f) gives a mixing repeller conjugate to
σ2, in particular, J(f) is the support of a measure of maximal entropy for f .

Acknowledgements. We would like to thank the referee for his valuable
comments which improved the paper considerably.

Dedication. Diese Arbeit ist in besonderem Maße Wiesław Szlenk
gewidmet. Wir schätzen uns glücklich, daß wir einige wesentliche Ideen für
diese Arbeit mit Wiesław bei seinem letzten Besuch in Göttingen disku-
tieren konnten. Der erstgenannte Autor war mit Wies law Szlenk mehr als
25 Jahre verbunden. In dieser Zeit sind viele neue Entwicklungen in der Dy-
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holomorpher Abbildungen in Cn.

2. Product maps. In this section we briefly recall some basic facts from
[13], [14] and [15]. We also derive some general results on the dynamics of
strict polynomials and illustrate the method of proof of the main theorem
for product maps. In particular, Theorem 2.6 below gives the main theorem
for the case of product maps in any dimension. The proofs are only given
for the results which are neither direct modifications of their counterparts
in dimension one nor immediate consequences of the growth condition (1)
given below.
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Recall ([13], Ch. 1) that an entire mapping f : Cn → Cn is called a strict
polynomial of degree p ∈ N if, for some k1, k2 > 0, r ∈ R,

(1) k1‖z‖p ≤ ‖f(z)‖ ≤ k2‖z‖p for ‖z‖ > r.

For future use we define

Rf := max{r, 1/ p−1
√
k1}

and note that ‖z‖ > Rf implies ‖f(z)‖ > ‖z‖. As in dimension 1 we deduce
from the growth condition that the composition of strict polynomials is
a strict polynomial. In particular, all iterates fk (for k ∈ N) of a strict
polynomial f : Cn → Cn are also strict (of degree pk). It is clear that strict
polynomials are proper mappings, hence are compatible with the Alexandrov
compactification and admit a continuation to Cn := Cn ∪ {∞} by setting
f(∞) :=∞. We note that the attracting basin F∞ := F∞(f) for “infinity”,
i.e. the set of points whose forward orbits eventually leave any compact set
in Cn (“converge to infinity”), is not empty.

Applying Bézout’s theorem it has been shown in [13] that a strict polyno-
mial f : Cn → Cn is surjective and has mapping degree pn. It immediately
follows that a strict polynomial has pkn periodic points of order k ∈ N
(counted with multiplicity), hence the set K(f) is not empty. Only [f ], the
terms of maximal degree of f , are relevant to the strictness of f . This shows
that the strict polynomials are dense in the parameter space of polynomials
of a given (algebraic) degree. In this context we note that condition (1) can
be weakened to yield an even larger class of endomorphisms, the so-called
(p, q)-regular mappings (cf. [14], Ch. 2). Namely, we require that, for some
p ∈ Q, q ∈ N, k1, k2 > 0, r ∈ R,

k1‖z‖p ≤ ‖f(z)‖ ≤ k2‖z‖q for ‖z‖ > r.

The reader may check that, with the exception of the immediate application
of Bézout’s theorem and the direct calculation of the Green function, the
results of this paper can be generalised to families of (p, q)-regular mappings
(e.g. maps close to σa,b : (x, y) 7→ (xa, yb), where a, b ≥ 2).

Remark 2.1. It is clear that we should expect the Julia set J(f) to
be contained in ∂K(f). This is simply an application of Cauchy’s integral
formula which has a complete analogue in higher dimensions ([9], p. 13).

We prepare our investigation of the Julia sets of general torus maps by
a brief discussion of maps of product type. Recall that the Julia set J(f)
of a strict polynomial is defined to be the set of points where {fk} is not
weakly normal (see [13]). We refer to its complement as the Fatou set F (f)
of f .
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Definition 2.2 (standard torus map). Let us define the standard torus
map σ2 : C2 → C2 by

σ2 :
(
x

y

)
7→
(
x2

y2

)
.

It is obvious that

K(σ2) = B× B.
Further, in view of Remark 2.1, we see that

∂K(σ2) = (S1 × S1) ∪̇ (B× S1) ∪̇ (S1 × B)(2)

= {points where (fk) is not normal convergent}.
Each of the sets in (2) is completely invariant. The last two are not compact,
but contain the compact invariant sets {0}×S1, S1×{0}, resp. We see that
f restricted to either of

S1 × S1, {0} × S1, S1 × {0}
gives rise to a topologically mixing system, but only the subsystem f |S1×S1

has maximal topological entropy 2 log(2) (cf. [11]), whereas the others yield
log(2) (each obtained by considering suitably normalised Lebesgue measure).
From the point of view of the ergodic-theoretic behaviour of one-dimensional
complex polynomials the set S1 × S1 should be contained in the Julia set
of σ2. Since one-dimensional Julia sets are equal to the Shilov boundary of
K(f), we would like to investigate the relation of S1 × S1 and ∂SHK(σ2).
To do so we need an additional definition.

Definition 2.3. A set D ⊂ Cn is called a Weil analytic polyhedron if it
can be defined in terms of finitely many holomorphic functions ϕi : G→ C,
i = 1, . . . , N , on a domain G ⊆ Cn with D ⊂ G, by

D := {z ∈ G : |ϕi(z)| < 1 for all i}.
We call the set

Σ(D) := {z ∈ G : |ϕi(z)| = 1 for all i}
the skeleton of D.

With this terminology we obtain the following result.

Theorem 2.4 ([7], Th. 15.4). Let D be a Weil analytic polyhedron defined
above. If for each vector χ := (χ1, . . . , χn) ∈ (S1)n and each set of indices
1 ≤ i1 < . . . < in ≤ N the set Σ(χ) := {z ∈ G : ϕij (z) = χij for all ij}
consists of isolated points, then

∂SHD = Σ(D).

Evidently, K
◦
(σ2) = B × B is a Weil analytic polyhedron defined by the

coordinate functions ϕ1(x, y) := x, ϕ2(x, y) := y. It satisfies the conditions
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of Theorem 2.4 as Σ(χ1, χ2) = {(χ1, χ2)}. We deduce that

∂SHK(σ2) = Σ(B× B) = S1 × S1.

The reader should note that this standard fact can be established directly
by using the fact that K(σ2) is a product set. However, the above proof
carries over to the general setting in 3.9.

For the standard torus map σ2, we note that the set of points where
the sequence of iterates of σ2 is not normal convergent coincides with (2).
However, for (x∗, y∗) in S1×B (resp. in B×S1), there still is some convergent
behaviour. Namely {fk} restricted to {x∗}×B (resp. restricted to B×{y∗})
is a normal family. Moreover, this also holds for any (x′, y′) in the open
neighbourhood C× B ∪ B× C of these (x∗, y∗).

This shows that {fk} is weakly normal on C2\S1×S1. Evidently, J(σ2)
must be a closed set according to the definition of weak normality. One
cannot obtain normal convergence on any (at least one-dimensional) analytic
set containing one of the repelling periodic points (exp(2πi · r/(2k − 1)),
exp(2πi · s/(2k − 1))), r, s ∈ N, k ∈ N∗, of f . But these points are dense in
S1 × S1. We conclude that J(σ2) = S1 × S1.

For the reader’s convenience, we recall some basic properties of the Julia
set from [13]. J(f) is closed and contained in ∂K(f), hence compact. Ap-
plying the Open Mapping Theorem ([10], p. 108) and the Proper Mapping
Theorem ([10], p. 213) one can show that J(f) is completely invariant under
f . For n = 1, we remark that weakly normal and normal convergence give
the same result as one-dimensional analytic sets are just open sets in C.

In the final part of this section we investigate the behaviour of products
of one-dimensional maps. For n polynomials fi : C → C in one variable,
where deg(fi) = pi ≥ 2, we define a polynomial vector f : Cn → Cn by
setting

f(z1, . . . , zn) := (f1(z1), . . . , fn(zn)).

Evidently, f is (p, q)-regular, where p = mini pi and q = maxi pi. Let J(fi)
⊂ C denote the Julia set of each fi : C→ C. The following theorem holds.

Theorem 2.5. For f : Cn → Cn as above,

J(f) =
n×
i=1

J(fi).

P r o o f. In view of the preceding example, it suffices to show that we get
normal convergence on the sets

∂K(i) := {(z1, . . . , zn) ∈ ∂K(f) : zi ∈ K
◦
(fi)}

(which might be empty for ∂K(fi) = K(fi), e.g. for J(fi) a Cantor set),
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which implies

J(f) ⊆ ∂K(f) \
n⋃

i=1

∂K(i) =
n×
i=1

J(fi).

Furthermore, the repelling periodic points of f are dense in×n

i=1
J(fi). By

the same argument as in the case of σ2 we obtain

J(f) ⊇
n×
i=1

J(fi).

We now show the main theorem in the case of product maps. We can
characterise the set J(f) in various ways.

Theorem 2.6. In the product case we obtain (let r ≥ Rf ):

J(f) = {z ∈ Cn : (fk) is not weakly normal at z}(A)

= ∂SHK(f)(B)

= {z : z is a repelling periodic point of f}(C)

= lim
k→∞

f−k(∂SHBr)(D)

= supp(measure µf of maximal entropy for f).(E)

P r o o f. First note that by Theorem 2.5 the form (A) is equivalent to

(A′) J(f) =
n×
i=1

J(fi).

We show that (A′) is equivalent to (B) by using the following well known
fact from dimension one: A point z∗ ∈ K(f) lies in ∂SHK(f) if and only if
for each neighbourhood U 3 z∗ there exists a peak function ϕU ∈ A such
that |ϕU | has its maximum in U but takes only smaller values on {U (for
the notation, see [15]).

In view of this we have to show that for points z∗ ∈ J(f) and open sets
U 3 z∗ there exist peak functions ϕU : Cn → C, and that for z∗ 6∈ J(f)
one cannot find ϕU for arbitrary U 3 z∗. For one-dimensional maps fi we
know J(fi) = ∂SHK(fi), hence for z∗i ∈ Ui ⊂ C we can find appropriate
peak functions ϕUi : K(fi) → C. We may assume that U is given in the
form

∏
i Ui and set ϕU (z) :=

∏
i ϕUi(zi). This shows J(f) ⊆ ∂SHK(f). The

remaining points z∗ ∈ ∂K(f) lie in sets ∂K(i). If we consider the mapping
ϕU restricted to

{z∗1} × · · · ×K(fi)× · · · × {z∗n}
we see by the maximum principle that it takes its maximum in

{z∗1} × · · · × ∂K(fi)× · · · × {z∗n},
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hence by iterating the argument we see that any ϕU takes its maximal
modulus in

∂K(f1)× · · · × ∂K(fn) = J(f),
thus ∂SHK(f) ⊇ J(f).

For the equivalence of (A′) and (C) observe that z∗ is a repelling periodic
point of f if and only if each component z∗i is a repelling periodic point for fi.

In order to prove the equivalence of (A′) and (D) we note (letting πi :
Cn → C be the projection to the ith coordinate)

πi(f−k(∂SHBr)) = f−ki (πi(∂SHBr)).

Using [4], Theorem 16.1, we handle (E) in a similar fashion:

µfk(z) := µf1
k (z1)⊗ · · · ⊗ µfnk (zn).

3. Torus maps. In dimension one it is well known that the Julia sets
of mappings of the form

(3) fc : z 7→ z2 + c

with |c| small are Jordan curves (see [2], 1.6, 9.9, and [4], Th. 8.1) and exhibit
dynamical behaviour similar to σ1 : z 7→ z2. It is easy to see that this holds if
|c| < 1/4. We want to obtain a similar result concerning strict polynomials
f : C2 → C2 with respect to σ2. We are interested in sharp results, i.e.
we do not just want to establish the existence of some tiny epsilon-ball in
parameter space where f exhibits similar behaviour, but would like to obtain
a “large” set in the sense that one might actually “see” the results using
numerical approximation.

We proceed in several steps. First we show that the dynamics of f induces
a repeller (∂K)∗ ⊂ ∂K(f) which is homeomorphic to the torus S1×S1. The
Shilov boundary of K(f) is contained in J(f) (this is part of (B)). But
∂SHK(f) is also contained in (∂K)∗. Hence, in the next step we show the
equality of (∂K)∗ and ∂SHK(f). We then prove that the sequence (fn) is
weakly normal on ∂K(f)\(∂K)∗. As ∂SHK(f) is the support of the measure
µK induced by the Green current (which has maximal entropy) we have the
equivalence of (A), (B), (D), (E). Finally, we show that there are no repelling
periodic points outside G1xy but that they are dense in J(f), which gives
equivalence to (C).

First let us assure the reader that we are not dealing with empty “phan-
tom sets” J(f).

Theorem 3.1. For a strict polynomial f : Cn → Cn the Julia set J(f)
contains the Shilov boundary ∂SHK(f) of K(f).

P r o o f. Let z∗ ∈ ∂K(f) \ J(f). Hence, there exists an open set V and
complex analytic sets {Cx} such that {fk} restricted to V ∩ Cx is normal.
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Now we fix an open set U 3 z∗ with U b V and assume the existence of
a peak function ϕU for U . By the maximum principle for complex spaces
with boundary (see [10], p. 110) ϕU restricted to U ∩ Cx for x ∈ U takes its
maximal modulus in ∂U ∩ Cx, hence z∗ 6∈ ∂SHK(f) and thus

∂SHK(f) ⊆ J(f).

Corollary 3.2. For a strict polynomial f : Cn → Cn the Julia set J(f)
is not empty.

Consider an arbitrary strict polynomial f : C2 → C2 of (algebraic)
degree 2. It is given by a complex polynomial vector of the form

(4) f :
(
x

y

)
7→
(

ax2 + bxy + cy2 + dx+ ey + f

Ay2 +Bxy + Cx2 +Dy + Ex+ F

)
.

Strictness of f only depends on [f ], namely f : C2 → C2 is strict if and only
if [f ] induces an endomorphism of P1 of the same algebraic degree. In the
special case (4) this means that the one-dimensional rational map

f̃ : z 7→ az2 + bz + c

A+Bz + Cz2

has mapping degree 2 (cf. [22], 1.§4). This is easily checked by calculating
the Sylvester determinant (cf. [20], p. 38)

(5) S(f) := (aA− cC)2 − (aB − bC)(Ab−Bc).
If S(f) 6= 0 then f is strict of degree 2.

We can apply linear mappings from GL(2,C) and translations in C2 as
conjugation mappings to obtain normal forms of strict polynomials f : C2 →
C2. Evidently, in our case, the coefficients of [f ] are only affected by conju-
gation with members of GL(2,C). If we interpret this in the projective space
P1 these maps correspond exactly to the holomorphic Möbius transforms on
the Riemann sphere. Let us recall that they operate threefold transitive on
P1 ([16], p. 65). We will make use of this in order to obtain a suitable normal
form.

If f is strict of degree 2 the Riemann–Hurwitz theorem ([6], p. 128)
gives us the existence of exactly 2 different critical values λ1 and λ2 (and
also 2 critical points c1, c2) of f̃ . Because of the threefold transitivity of the
Möbius group on P1 we can move the critical points of f̃ to 0 and ∞ (then
the critical values become c/A, a/C, resp.) by conjugation with a suitable
Möbius map. Translation back to C2 and [f ] tells us that we can always
find a GL(2,C)-mapping such that conjugation of [f ] with this map gives
another homogeneous map [f ]∗ such that the planes C·(0, 1) (∼= “0”), C·(1, 0)
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(∼= “∞”) are the only inverse images of their image planes C·(c, A), C·(a,C)
resp.

λ1 and λ2 are exactly those parameter values (∈ C) for which f̃(z) = λ
has a double root. This is equivalent to (if one λi is ∞, we conjugate with
z 7→ 1/z)

(6) (a− λC)(c− λA) = (b− λB)2.

For our normal form we want to achieve that the critical points are 0
and ∞, hence the critical values are c/A and a/C. Together with (6) this
implies

(7) Ab− cB = 0, aB − Cb = 0.

Strictness of f and the form of S(f) (see (5)) show that in this case

0 6= S(f) = (aA− cC)2,

hence (a,C) and (c, A) are linearly independent and (7) can only be valid if
b = B = 0. This shows that a strict polynomial of degree 2 in C2 is conjugate
to a map of the form

(8) f :
(
x

y

)
7→
(

ax2 + cy2 + dx+ ey + f

Ay2 + Cx2 +Dy + Ex+ F

)
.

We want to consider maps similar to the standard torus map σ2, hence
let us assume that aA 6= 0 in (8). Further conjugation by translation yields
our final normal form

(9) f :
(
x

y

)
7→
(

x2 + cy2 + ey + f

y2 + Cx2 + Ex+ F

)
.

We use the abbreviations

k(y) := cy2 + ey + f, l(x) := Cx2 + Ex+ F.

k(y) and l(y) correspond to the constant c in (3). Of course it would be
useless to demand that they are bounded for all x and y. This would imply
that k and l are constants and f a product mapping. We could simply apply
Theorem 2.6. Since we know that {BRf ⊂ F∞, it is sufficient to control k
and l on BRf .

We recall the definition of a torus map (cf. the introduction).

Definition 3.3 (torus map). A quadratic strict polynomial f : C2 → C2

given by (9) is called a torus map if, for some ε > 0, we have

‖k(y)‖B
1/2+
√

1/2−ε

‖l(x)‖B
1/2+
√

1/2−ε



 ≤ 1/4− ε.

Remark 3.4. Throughout this paper we require that the quantity ε is, in
addition, bounded from below by ε2 > 37/150 (this is due to the evaluation
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of (32) and (33) where we use the original map rather than iterates of higher
degree in Theorem 3.15). This bound can easily be improved by using more
detailed estimates.

We shall later see that in this case 1/2 +
√

1/2− ε plays the role of Rf .
We define some useful abbreviations:

κ := 1/4− ε, % := 1/2 +
√
ε, %′ := 1/2−√ε,

r := 1/2 +
√

1/2− ε.
Note that

%′2 = %′ − κ, %2 = %− κ, r2 = r + κ,

κ = %%′, 1 = %+ %′.

The Bernstein inequality implies, for x, y ∈ C, that

|k(y)| ≤ κ(max{1, |y|/r})2, |l(x)| ≤ κ(max{1, |x|/r})2.

From the Cauchy inequality we deduce

|f |, |F | ≤ κ,(10)

|e|, |E| ≤ κ/r,(11)

|c|, |C| ≤ κ/r2.(12)

We distinguish between three regions in C2:

G0 := {(x, y) ∈ C2 : |x|, |y| < %},
G∞ := {(x, y) ∈ C2 : max{|x|, |y|} > r},
G1 := {(x, y) ∈ C2 : % ≤ max{|x|, |y|} ≤ r}.

G0 is mapped to itself as, for |x|, |y| < %, one calculates that |x2 + k(y)| and
|y2 + l(x)| are bounded by %. We deduce that the family {fk|G0} of iterates
of f restricted to G0 is normal, hence

G0 ⊆ F (f).

Similar calculations show that G∞ is also mapped to itself and that the
family {fk|G∞} converges to infinity. We obtain the inclusion

J(f) ⊆ ∂K(f) ⊆ G1.

Now we divide the remaining set G1 into the following sets:

G1xy := {(x, y) ∈ C2 : % ≤ |x|, |y| ≤ r},
G1x := {(x, y) ∈ C2 : % ≤ |x| ≤ r, |y| < %},
G1y := {(x, y) ∈ C2 : |x| < %, % ≤ |y| ≤ r}.
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From the above we deduce that f maps points from G1x to G1x, G0, or G∞.
Points of G1y are mapped into G1y, G0, or G∞. Clearly,

(13) f−1(G1xy) ⊆ G1xy

and

f−1(G1x) ⊆ G1x ∪̇ G1xy, f−1(G1y) ⊆ G1y ∪̇ G1xy.

ρ ρ

ρ

ρ

r

r´

´

G

G

G

G

G

1xy1y

1x
0

|x|

|y|

1

1/2

1

1/2

οο

Fig. 1. Sketch (Reinhardt diagram) of the regions G∗

The critical points of f (where f does not have full rank) are given by
the zeros of the Jacobi determinant. Namely, a critical point (x, y) satisfies
the equations

(2(1− cC)y − Ce)x = cEy,(14)

(2(1− cC)x− cE)y = Cex.(15)

This immediately yields the following lemma.

Lemma 3.5. The critical points and their forward images are bounded
away from G1xy.

P r o o f. Elementary calculations.

Corollary 3.6. In G1xy all inverse branches f−k∗ |G1xy : G1xy → G1xy

of fk are well-defined.

An analogue to (13) still holds if we replace G1xy by an open neigh-
bourhood G̃1xy which is the product of two ring domains whose inner (resp.
outer) radius is slightly smaller than % (resp. slightly greater than r). Intro-
ducing the hyperbolic metric on G̃1xy (cf. [18]) we see that (in this metric)
Df−1 must be strictly contracting on the compact set G1xy. We deduce that
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there exists Θ > 0 such that on G1xy, for some λ < 1,

(16) ‖Df−k‖ ≤ Θλk,
since, on G1xy, the Euclidean metric is equivalent to the hyperbolic metric.
This means that Df−k is contracting with factor Θλk, and Dfk is expanding
by at least 1/(Θλk) on G1xy.

From f−1(BRf ) ⊆ BRf we derive that

K(f) = lim
k→∞

f−k(BRf ).

Moreover, we directly see that

(∂K)∗ := lim
k→∞

f−k(G1xy)

is a completely invariant set and a repeller under iteration of f . Furthermore,
it is easy to see that, for any point z∗ ∈ G1xy, we have

lim
k→∞

f−k(z∗) = (∂K)∗.

This implies that

(∂K)∗ = lim
k→∞

f−k(∂SHBRf ).

We want to investigate the topological structure of (∂K)∗ and the dy-
namics of f on (∂K)∗. We define a family of maps parametrised by t ∈ [0, 1]
by setting

ft(z) := (1− t)σ2(z) + tf(z).

From the above considerations it follows that for each of these maps we
can find a repeller (∂K)∗t which is contained in G1xy. Expanding repellers
are structurally stable and the conjugacies near the identity depend contin-
uously on the parameter. It follows that there exist homeomorphisms πt,
continuously depending on t, such that the following diagram is commuta-
tive:

(17)

S1 × S1 S1 × S1

(∂K)∗t (∂K)∗t

πt

²²

σ2 //

πt

²²
ft //

We have shown the following theorem:

Theorem 3.7. There exists an isotopy from the identity map on S1×S1

to π1 : S1×S1 → (∂K)∗ in G1xy. Moreover , ((∂K)∗, f) is a mixing repeller.

P r o o f. The isotopy can be established via the maps πt. The mixing
property then follows from the mixing property of (S1 × S1, σ2).

We now compare (∂K)∗ with the Shilov boundary of K.
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Lemma 3.8. Let Ki, i ∈ N, be a sequence of nonempty compact polyno-
mially convex sets in Cn such that Ki+1 ⊆ Ki. Let

K∞ := lim
i→∞

Ki =
∞⋂

i=1

Ki.

Then
∂SHK∞ ⊆ lim

i→∞
∂SHKi.

P r o o f. Let z∗ ∈ ∂SHK∞. Hence for η > 0 and 1/2 > δ > 0 there exists
a function ϑη,z∗ ∈ A such that

sup
z∈K∞

|ϑη,z∗(z)| = sup
z∈Bη/2(z∗)∩K∞

|ϑη,z∗(z)| = 1,

sup
z∈{Bη/2(z∗)∩K∞

|ϑη,z∗(z)| < δ/4.

We choose a holomorphic map ϑ0
η,z∗ ∈ A0 defined on some closed neigh-

bourhood Bι(K∞) for which

sup
z∈K∞

|ϑη,z∗(z)− ϑ0
η,z∗(z)| < δ/4.

ϑ0
η,z∗ is still a peak function for Bη/2(z∗), since

sup
z∈Bη/2(z∗)∩K∞

|ϑ0
η,z∗(z)| ≥ 1− δ/4,

sup
z∈{Bη/2(z∗)∩K∞

|ϑ0
η,z∗(z)| < δ/4 + δ/4.

By equicontinuity of ϑ0
η,z∗ on Bι(K∞) we deduce that there exists τ > 0

such that, for z ∈ Bτ (K∞), we have

sup
z∈Bτ (K∞)\Bη(z∗)

|ϑ0
η,z∗(z)| < 3δ/4,(18)

sup
z∈Bη(z∗)∩K∞

|ϑ0
η,z∗(z)| > 1− δ/2.(19)

Since K∞ = limi→∞Ki we can find an index i∗ such that, for i ≥ i∗, Ki

is contained in Bτ (K∞). Then the function ϑ0
η,z∗ restricted to Ki (where

i ≥ i∗) must take its maximal modulus in ∂SHKi. From (18) and (19) we
deduce that ∂SHKi ∩Bη(z∗) 6= ∅, hence

∂SHK∞ ⊆ lim
i→∞

∂SHKi.

Corollary 3.9. The Shilov boundary of K(f), which is contained in
J(f) by Theorem 3.1, is contained in the limit of the inverse images of the
Shilov boundary of BRf :

(20) ∂SHK(f) ⊆ (∂K)∗ = lim
k→∞

f−k(∂SHBRf ).
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P r o o f (cf. Theorem 2.4). The sets f−k(BRf ) are Weil analytic polyhe-
dra defined by

ϕk,1(x, y) :=
1
Rf

π1 ◦ fk(x, y), ϕk,2(x, y) :=
1
Rf

π2 ◦ fk(x, y),

hence

∂SHf
−k(BRf ) = f−k(∂SHBRf ).

Now set Ki := f−i(BRf ) in Lemma 3.8.

We shall prove that in (20) we actually get equality of ∂SHK(f) and
(∂K)∗.

Lemma 3.10. For two disjoint compact disks D,E ⊆ B there exists a
holomorphic function ϕ : B→ B such that for given 1/2 > % > 0,

inf
z∈E
|ϕ(z)| ≥ 1− %,(21)

sup
z∈D
|ϕ(z)| ≤ %.(22)

P r o o f. Without loss of generality we can assume that

D = Bσ(s), E = Bτ (t)

with s, t ∈ [0, 1], s < t, and σ, τ > 0, such that D,E ⊂ B and D ∩ E = ∅.
For some η, ϑ > 0,

E ⊆ Bη(1), D ∩Bη+ϑ(1) = ∅.
We realize ϕ as a mapping of the following form: For δ, κ > 0 we define

ϕδ,κ : z 7→
(

1 + δ − z
δ

)−κ
.

In order to obtain (21) and (22) it is sufficient to choose δ and κ such that

(23)
(

1 +
η

δ

)−κ
≥ −%

and (
1 +

η + ϑ

δ

)−κ
≤ %.

We deduce that

(24)
η + ϑ
−κ√%− 1

≤ δ ≤ η
−κ√1− %− 1

,

hence we have to choose κ (depending on η, ϑ, %) such that

η + ϑ

ϑ
≤

−κ√%− 1
−κ√1− %− 1

.
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As for 0 < % < 1/2,

lim
κ↘0

−κ√%− 1
−κ√1− %− 1

=∞,

we can find such a κ and can also choose a δ which satisfies (24).

Corollary 3.11. For a finite set of pairwise disjoint compact nonempty
bi-disks Bi = Di × Ei, i = 0, . . . , r, in B× B and any constant 0 < σ < 1/2
there exists a holomorphic function ϕ : B× B→ B such that

inf
z∈B0

|ϕ(z)| ≥ 1− σ, sup
z∈Bi
i=1,...,r

|ϕ(z)| ≤ σ.

P r o o f. Define ϕ(z) as the product of functions ψi(x, y), where ψi(x, y)
:= ϕi(x) if D0 ∩Di = ∅, otherwise ψi(x, y) := ϕi(y).

Remark 3.12. The generalisation to the case of higher-dimensional poly-
disks in Bn, n > 2, is evident. Furthermore, it is obvious that one can replace
B× B by BRf .

Theorem 3.13. For z∗ ∈ ∂SHK, the whole backward orbit {f−ki (z∗)}
of z∗ is contained in ∂SHK (where we index the 4k different kth inverse
branches by integers i).

P r o o f. Fix one inverse branch f−k0 of fk. For U 3 f−k0 (z∗) we find an
open set V 3 z∗ such that f−k0 (V ) ⊆ U and, for all inverse branches, the
images f−ki (V ) are contained in disjoint bi-disks Di × Ei ⊆ BRf . For V we
have a peak function ϕV . For the Di × Ei ⊆ BRf we can construct ϕ as in
Corollary 3.11. Then

ΦU : z 7→ ϕ(z) · ϕV ◦ fk(z)

is a peak function for U .

As ∂SHK(f) 6= ∅ there exists at least one point z∗ ∈ ∂SHK(f) =
∂SHK(f) ∩ (∂K)∗. Since its backward images are dense in (∂K)∗, we have
shown

Theorem 3.14. The Shilov boundary of K(f) equals the set of limit
points of (f−k(∂SHBRf ))k∈N:

∂SHK(f) = (∂K)∗.

In order to determine J(f) completely it remains to show that ∂K(f) \
(∂K)∗ ⊂ F (f). Note that, for z ∈ G1xy, either z ∈ (∂K)∗ or fk(z) eventually
leaves G1xy (and stays outside according to (13)). We know that G0∪G∞ ⊆
F (f). Thus we are left with z ∈ G1x∪G1y or z ∈ G1xy, which are eventually
mapped to G1x ∪G1y and whose forward orbits stay in this set.
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In our treatment of this case z∗ ∈ G1y, G1x, resp., we apply [12], pp. 271
ff., in the special case of a torus map. In order to do so we need some
additional notation.

For some η > 0 let

e = (w, x, y) ∈ Bη(0, 0, 0) ⊆ C3.

(We will use Bη(0, 0) for balls in C2, Bη(0) in C1, etc.) Assume that we are
given a sequence of holomorphic maps

Tn : Bη(0, 0, 0)→ C3,

with

T0(e) = e, Tn(e) :=




Un(w)
Anx+ Fn(e)
Bny +Gn(e)


 ,

where the complex constants An, Bn satisfy the relations

|An| ≤ α, |B−1
n | ≤ 1/β,

with α < 1 and β > 1, hence in particular Bn 6= 0 for all n ≥ 1. Furthermore,
let

Un(0) = 0, Fn(0, 0, 0) = 0, Gn(0, 0, 0) = 0,

and assume that, for all wa, wb ∈ Bη(0),

(25) |Un(wa)− Un(wb)| ≤ |wa − wb|;
finally, for some 0 < δ < 1/10 with

0 < α < 1− 2δ < 1 + 5δ < β,

and for all ea, eb ∈ Bη(0, 0, 0), the relations

(26)
|Fn(ea)− Fn(eb)|
|Gn(ea)−Gn(eb)|

}
≤ δ2‖ea − eb‖

shall hold. We obtain a second sequence of maps by setting

Sn := Tn ◦ . . . ◦ T1.

We define its stability set D with respect to Bη(0, 0, 0) as

(27) D :=
∞⋂
n=1

Dn,

where Dn denotes the set where Sn is actually defined.
Then the following theorem holds.

Theorem 3.15 ([12]). Under the above assumptions there exists a holo-
morphic map

y0 : Bη(0, 0)→ Bη(0)
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such that

(28) D = {(w, x, y) : y = y0(w, x) on Bη(0, 0)}.
If we set

e0 := (w0, x0, y0(w0, x0))

for (w0, x0) ∈ Bη(0, 0), and

ek := Sk(e0) = (wk(x0, w0), xk(x0, w0), yk(w0, x0)),

then for k ≥ 0,

ek = (0, 0, 0)

holds if and only if w0 = x0 = 0. Furthermore, for another pair (w0, x0) ∈
Bη(0, 0) we get

(29) |yk(w0, x0)− yk(w0, x0)|
≤ (1− 2δ)(δ|w0 − w0|+ |xk(w0, x0)− xk(w0, x0)|),

and

(30) |xk(w0, x0)− xk(w0, x0)| ≤ δ|w0 − w0|+ (α+ 2δ2)k|x0 − x0|.
Moreover , y = y0(w, x) is “invariant” on Bη(0, 0), i.e.

(31) yk(w0, x0) ≡ y0(wk(w0, x0), xk(w0, x0)).

Evidently, D is a possible choice for C0 if we want to show weak normality
of the family {Sn} at (0, 0, 0).

We shall show that the iterates of a torus map around a point in G1x or
G1y can be embedded in a family of mappings Sn in C3 such that the above
conditions are satisfied.

We define

%∗ := 1
2 − 1

2

√
ε;

then

G∗1y := {(x, y) : % ≤ |y| ≤ r, |x| < %∗} ⊂ G1y,

and analogously G∗1x ⊂ G1x. Since %′ < %∗ < %, z ∈ G1y is eventually
mapped into G∗1y and stays there or enters G0 ∪G∞, and analogously for y
replaced by x.

Assume that for a z∗ = (x∗0, y
∗
0) and all n ∈ N,

(x∗n, y
∗
n) := fn(x∗0, y

∗
0) ∈ G∗1y.

Define a sequence of polynomial maps Tn on Bη(0, 0, 0) according to 3.15:

T0(w, x, y) := (0, x∗0, y
∗
0) + (w, x, y),

Tn+1(w, x, y) := (w, f((x∗n, y
∗
n) + (x, y))− (x∗n+1, y

∗
n+1)).
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For n ≥ 1, these maps have the form

Tn(x, y) =



w
Anx+ Fn(x, y)
Bny +Gn(x, y)




where An = 2x∗n, Bn = 2y∗n, and

Fn(x, y) = (e+ 2cy∗n)y + x2 + cy2,

Gn(x, y) = (E + 2Cx∗n)x+ y2 + Cx2.

We can choose α := 2%∗ and β := 2%. For ea = (wa, xa, ya), eb = (wb, xb, yb)
∈ Bη(0, 0, 0) we obtain the estimates

(32) |Fn(ea)− Fn(eb)| ≤ (κ/r + 2κ/r + 2η + 2κη/r2)‖ea − eb‖,
and

(33) |Gn(ea)−Gn(eb)| ≤ (κ/r + 2κ%∗/r2 + 2η + 2κη/r2)‖ea − eb‖.
If we choose ε large enough, say ε > ε2, and η small, we see that, for all
ea, eb in Bη(0, 0, 0) and n ∈ N∗,

|Fn(ea)− Fn(eb)|
|Gn(ea)−Gn(eb)|

}
< δ2‖ea − eb‖

where we can choose δ such that 0 < δ < min{1/10, 2
√
ε/5}. Then, for all

n ∈ N∗,
|An| < 1− 2δ,(34)

|Bn| > 1 + 5δ.(35)

Hence, we can apply Theorem 3.15. We have constructed Tn such that

Sn(w, x, y) = (w, fn(z∗ + z)− fn(z∗)),

hence the stability set D (dependent on z∗) yields Cz∗ , hence z∗ ∈ F (f). We
have shown that (∂K)∗ = J(f). The following proposition holds.

Proposition 3.16. For a torus map, (A), (B), and (D) are equivalent
definitions for the Julia set.

We are left with (C) and (E). We shall start with (E).
The argument given in [15] for the construction of the Green function

GK applies. We see that

GK(f(z)) = 2GK(z).

If we define the measure µK as (ddCGK)2, then we get

µK ◦ f = 22µK .

It is obvious that µK is f -invariant and has entropy 2 log(2). By Gromov’s
result [11] this is equal to the topological entropy of f . We conclude that
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µK has maximal entropy. Since we already know that the Shilov boundary
and the Julia set are equal, we have shown that J(f) is the support of a
measure of maximal entropy for f .

Remark 3.17. We note that the map π1 from (17) can be used to trans-
port the (normalised) Lebesgue measure on S1 × S1 to J(f) and thereby
obtain an invariant measure (by virtue of (17)) which has maximal entropy.
It equals µK by uniqueness of the measure of maximal entropy for mixing
repellers.

Use of (17) and the fact that repelling periodic points of σ2 are dense in
S1 × S1 shows that the repelling periodic points of f are dense in J(f). We
derive that

J(f) ⊆ {z : z is a repelling periodic point of f}.
Clearly any periodic point in G0 must be attracting and G∞ contains ∞
as the only attracting periodic point. The equivalence of (C) to the other
definitions of J(f) follows if we can show that there are no repelling periodic
points in G1x and G1y. But in the case of a fixed point z∗ of fk in one of
these sets we can lift the map fk : D → D restricted to the stability set
D of z∗ to a self-map of the unit disk: f̃ : B → B with fixed point 0. The
derivative of f̃ at 0 has modulus at most 1 according to the lemma of Pick
([19], p. 194). This contradicts ‖(D(fk))−1‖ < 1 for z∗. We have shown the
equivalence of (C) to the other definitions of J(f) for a torus map.
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