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All solenoids of piecewise
smooth maps are period doubling

by

Llúıs A l s e d à (Barcelona), Vı́ctor J i m é n e z L ó p e z (Murcia) and
L’ubomı́r S n o h a (Banská Bystrica)

Abstract. We show that piecewise smooth maps with a finite number of pieces of
monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period
doubling solenoids. The proof is based on the fact that if p1 < . . . < pn is a periodic orbit
of a continuous map f then there is a union set {q1, . . . , qn−1} of some periodic orbits of
f such that pi < qi < pi+1 for any i.

1. Introduction. Solenoids are important in one-dimensional discrete
dynamical systems because they play a key role in the description of the
asymptotic behaviour of a large class of maps from the family C(I) of con-
tinuous maps from a real compact interval I into itself. Namely, if f ∈ C(I)
is piecewise strictly monotone and smooth enough then there is a resid-
ual set R such that for any x ∈ R the set of limit points of the sequence
(fn(x))∞n=0 is either a periodic orbit, a finite union of closed intervals or a
solenoid. Regarding this, the reader may for example wish to check [12], [10],
to which we also refer for the basic background and terminology. (To ease a
first reading of the Introduction, all definitions related to solenoids and the
description of their relevant properties are postponed until the beginning
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of Section 3.) In this paper we deal with the question of what structure a
solenoid of a piecewise smooth map can have.

In the particular case of piecewise linear maps this problem was previ-
ously considered in [5]. There it is proved that piecewise linear maps have no
period doubling solenoids. In order to get this result a well known property
of this type of solenoids is used. More precisely, period doubling solenoids
generate a sequence (Pn)∞n=0 of periodic orbits of period 2n with the fol-
lowing geometrical feature. For each n ≥ 0 let Pn : a1 < . . . < a2n and⋃n−1
k=0 Pk : b1 < . . . < b2n−1. Then ai < bi < ai+1 for any i = 1, . . . , 2n − 1.

Thus, in trying to show the nonexistence of larger classes of solenoids for
piecewise linear maps, the question arises whether for any periodic orbit P
of a continuous map there exist some other periodic orbits such that their
points and the points of P interlace as above. We answer this question in
the affirmative:

Theorem A. Let f ∈ C(I) and let P : p1 < . . . < pn be a periodic orbit
of f with period n ≥ 2. Then there is a set Q : q1 < . . . < qn−1 such that
f(Q) = Q and pi < qi < pi+1 for any i = 1, . . . , n− 1.

Remark 1. Notice that f(Q) = Q implies that Q is the union of some
periodic orbits of f .

Remark 2. Theorem A will follow as an easy consequence of the fact
that Markov graphs of periodic orbits of f always have pairwise disjoint
cycles such that every vertex of the graph belongs to one of them (cf. the
Proposition in Section 2). This could be considered as a step towards a
better graph-theoretical description of Markov graphs of periodic orbits.

Using Theorem A and some ideas from [5] we will be able to extend
the above-mentioned result from [5] to show the nonexistence of a larger
class of weakly bounded solenoids for piecewise linear maps (here “weakly
bounded” means that the solenoid admits a decreasing covering by periodic
intervals whose corresponding periods kn satisfy lim infn→∞ kn+1/kn <∞;
see Section 3 for a precise definition).

Theorem B. If f ∈ C(I) is piecewise linear , then it has no weakly
bounded solenoids.

After we had proved Theorems A and B (November 1994) we found a
recent paper by M. Martens and C. Tresser [9] where they succeed in proving
that piecewise linear maps have no solenoids. They follow a similar reasoning
to ours and also prove Theorem A.

It turns out that combining the ideas from Theorem B with additional
tools developed in [9] it is possible to prove a surprising fact (which is not
mentioned in [9]) concerning the nature of solenoids of piecewise smooth
maps (with a finite number of pieces of monotonicity) whose derivative is
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Lipschitz continuous and nowhere vanishing (the precise definition will be
given in Section 3). It is known that there exist examples of such maps
having period doubling solenoids and, moreover, with the corresponding
smooth pieces in the class C∞ (see [5]). In connection with this, examples
by Bobok and Kuchta [3] of an expanding countably piecewise linear map
with a period doubling solenoid and by Misiurewicz [11] of a countably
piecewise linear map with a period doubling solenoid of positive Lebesgue
measure (compare with Lemma 5 in Section 3) are also worth noticing.

The solenoid in the example from [5] turns out to be of the only possible
type, since we prove:

Theorem C. Let f ∈ C(I) be a piecewise smooth map with nowhere
vanishing Lipschitz continuous derivative. Then any solenoid of f must be
period doubling.

Since piecewise linear maps belong to the above class, Theorem C implies
that piecewise linear maps can have only period doubling solenoids. But by
Theorem B (or by [5]) they have no period doubling solenoids. In other
words, the main result of [9] is now an immediate corollary of Theorems C
and B:

Corollary D. If f ∈ C(I) is piecewise linear , then it has no solenoids.

In [6] Kolyada proved that if f ∈ C(I) is such that for some c ∈ I,
f(x) = (a1x+ b1)/(c1x+ d1) for x ≤ c and f(x) = (a2x+ b2)/(c2x+ d2)
for x ≥ c with aidi − bici 6= 0 for i = 1, 2, then it has no period doubling
solenoids. Denote the set of all such maps by K2(I) (the index 2 indicates
that these maps consist of two pieces). Since K2(I) is included in the class
of maps considered in Theorem C, from Kolyada’s result we get:

Corollary E. If f ∈ K2(I), then it has no solenoids.

We conjecture that this result can be extended to similar maps with an
arbitrary (finite) number of pieces of monotonicity.

Remark 3. Notice that Theorem C implies, in particular, that for any
positive integer l the family of l-modal maps from Lp(I) cannot be full.
After we had written a first version of this paper we learned about the
recent paper [4] by R. Galeeva and S. van Strien where it is shown that
somewhat different but related families of piecewise smooth maps cannot be
full either.

2. Proof of Theorem A. A powerful tool to handle problems related
to the combinatorial structure of periodic orbits is that of Markov graphs
(see [1] for more details). Recall that if V is a nonempty finite set and
E ⊂ V × V we call G = (V,E) a directed graph. Let f ∈ C(I) and let P
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be a set a1 < . . . < an of points from I with n ≥ 2. If V = {[ai, ai+1] :
i = 1, . . . , n − 1} and we define ([ai, ai+1], [aj , aj+1]) ∈ E if and only if
f([ai, ai+1]) ⊃ [aj , aj+1], then the corresponding directed graph G = (V,E)
is called the Markov f-graph of P .

A directed graph G = (V,E) is said to have a 1-difactor if there is a
bijection Φ : V → V such that (x, Φ(x)) ∈ E for any x ∈ V . Clearly, G has
a 1-difactor if and only if there exists a family of pairwise disjoint cycles in
G such that every vertex of G belongs to one of the cycles.

We are going to show that Markov f -graphs of periodic orbits have a
1-difactor. This can be immediately shown by proving a stronger statement.
In what follows, a finite set P ⊂ I is said to be a strongly invariant set (of
f) if f(P ) = P .

Proposition. Let f ∈ C(I) and let P ⊂ I be a strongly invariant set
with CardP ≥ 2. Then the Markov f-graph of P has a 1-difactor.

P r o o f. Let (V,E) be the Markov f -graph of P . In order to show that
(V,E) has a 1-difactor it suffices to check, according to the Marriage Lemma
(see e.g. Corollary 1.1.4 of [7]), that for any A ⊂ V the set of points y ∈ V
for which there exists x ∈ A such that (x, y) ∈ E has cardinality greater
than or equal to the cardinality of A.

For simplicity assume P = {1, . . . , n}. Define Ii = [i, i+ 1] for i = 1, . . . ,
n − 1. The union of the elements of A is a union of finitely many pairwise
disjoint intervals with endpoints in P . Consider one of these, [i, i + j]. Its
image contains If(m) for each m = i, i+ 1, . . . , i+ j (except maybe one for
which f(m) is the largest), that is, j of the intervals Ii. Since f is a bijection
on P , for another interval [i′, i′ + j′] the corresponding intervals If(m′) are
different. Therefore the total number of intervals Ir in the image is at least
as large as the cardinality of A, exactly what we wanted to prove.

We are now ready to prove Theorem A.

Proof of Theorem A. Put Ii = [pi, pi+1], i = 1, . . . , n− 1. Let

Φ : {I1, . . . , In−1} → {I1, . . . , In−1}
be the bijection from the proof of the Proposition. Let σ : {1, . . . , n− 1} →
{1, . . . , n − 1} be defined by σ(i) = j if Φ(Ii) = Ij . Then we can decom-
pose {1, . . . , n− 1} into pairwise disjoint sets N1, . . . , Nk with the following
property. Set nm = CardNm, m = 1, . . . , k. Then σ(Nm) = Nm and, for
any i ∈ Nm, σnm(i) = i while σj(i) 6= i if 0 < j < nm (of course, σj denotes
the jth iterate of σ). Fix an im ∈ Nm for any m. By Corollary 1.2.8 of [1]
there is xm ∈ Iim such that fnm(xm) = xm and f j(xm) ∈ Iσj(im) for any
j = 0, 1, . . . , nm − 1. Since nm ≤ n − 1 we have f j(xm) /∈ P for any j and
so f j(xm) 6= f i(xm) for i, j ∈ {0, 1, . . . , nm − 1} with i 6= j. Hence, xm is a
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periodic point of f of period nm. Let Qm be the periodic orbit containing
xm. Then Q =

⋃k
m=1Qm is the strongly invariant set of f we were looking

for.

Remark 4. Theorem A does not necessarily hold if P is a strongly
invariant set of f . To see this consider the map f : [0, 1]→ [0, 1] defined by
f(x) = x2 and P = {0, 1}. Then P is a strongly invariant set of f but (0, 1)
does not contain any periodic points of f .

3. Proofs of Theorems B and C. Let us start with some notations
and definitions.

If A ⊂ I then ConvA denotes the convex hull of A. Also, if x, y ∈ I,
we shall write [x; y] to denote Conv{x, y}. If P is finite and we write P =
{a1, . . . , an} then we always assume that a1 < . . . < an.

In what follows, D(I) will denote the set of piecewise smooth maps from
I into itself whose derivatives do not vanish. More exactly, f ∈ D(I) if
there are points min I = a0 < a1 < . . . < an = max I such that the
restriction fi of f to [ai, ai+1] is C1 and f ′i(x) 6= 0 for any x ∈ [ai, ai+1],
i = 0, 1, . . . , n − 1 (f ′(ai) and f ′(ai+1) mean the corresponding one-sided
derivatives). We always assume that the cardinality of {a0, a1, . . . , an} is
the minimal possible satisfying the above properties and we denote such a
set by K(f). In particular, f ′(a) exists for no a ∈ K(f). The set of maps
from D(I) for which additionally every fi is linear (resp. every f ′i is Lipschitz
continuous) will be denoted by L(I) (resp. Lp(I)). We emphasize that in the
Introduction maps from L(I) and Lp(I) were called piecewise linear maps
and piecewise smooth maps with nowhere vanishing Lipschitz continuous
derivative, respectively.

Let f ∈ C(I) and let J be a subinterval of I. If J contains no asymp-
totically periodic points and fn(J) ∩ fk(J) = ∅ for any n > k ≥ 0 then
it is called a wandering interval of f . The dynamics of maps from C(I)
may be substantially complicated due to the presence of wandering inter-
vals but, fortunately, for a large class of “natural” maps (including all maps
from Lp(I)—cf. [8], Theorem A′, or [10], pp. 285–286) wandering intervals
cannot exist.

Let us next define the notion of a solenoid. Let f ∈ C(I). We say that
a sequence (Ii)k−1

i=0 of closed subintervals of I is periodic of period k for f
if the intervals Ii have pairwise disjoint interiors, f(Ii) ⊂ Ii+1 for any i =
0, 1, . . . , k − 2 and f(Ik−1) ⊂ I0. Sometimes we identify this sequence with
the set of its terms and so we write Ii ∈ (Ii)k−1

i=0 for any i = 0, 1, . . . , k − 1.
We say that A ⊂ I is a solenoid of f if there exist a strictly increasing
sequence (kn)∞n=1 of positive integers and periodic sequences Cn = (Ini )kn−1

i=0

of period kn of closed intervals such that
⋃kn−1
i=0 Ini ⊃

⋃kn+1−1
i=0 In+1

i for any
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n and A =
⋂∞
n=1

⋃kn−1
i=0 Ini . The sequence (Cn)∞n=1 will be called a covering

of A of type (kn)∞n=1.
It is not difficult to show that for any J ∈ Cn+1 there is K ∈ Cn such

that J ⊂ K. Moreover, kn divides kn+1 for any n and each interval from
Cn contains exactly kn+1/kn intervals from Cn+1. If a solenoid A admits a
covering of type (kn)∞n=1 with lim infn→∞ kn+1/kn < ∞ then we say that
A is a weakly bounded solenoid of f . If in particular it admits a covering of
type (kn)∞n=1 with kn+1/kn = 2 for any n large enough then we call A a
period doubling solenoid. In the opposite case we say that A is non-period
doubling .

Depending on the nature of f , solenoids may have some additional prop-
erties, which are next described in progressively more restrictive settings.
After this we shall be able to prove Theorem B.

First of all it is easy to show that if f ∈ C(I) and A is a solenoid of f
then

(1) f(A) ⊂ A
and

(2) A does not contain any asymptotically periodic point of f .

Assume additionally that f ∈ D(I). Then we say that a covering (Cn)∞n=1
of A is strict if K(f) ∩ ⋃J∈C1 J = K(f) ∩ A and the endpoints of every
interval from any Cn belong to A. From (2) we deduce in particular that

(3) if the covering is strict then the intervals from Cn are pairwise disjoint
for any n.

Notice also that if J ∈ Cn and J1, . . . , Jl are the intervals from Cn+1 included
in J then

(4) J = Conv(J1 ∪ . . . ∪ Jl) provided the covering is strict.

Observe further that each solenoid A of f ∈ D(I) admits a strict cov-
ering. In fact, if (Cn)∞n=1 is an arbitrary covering of A with Cn = (Ini )kn−1

i=0

then there exists n0 large enough such that K(f)∩⋃kn0−1
i=0 In0

i = K(f)∩A.
Then it is easy to see that ((Conv(A ∩ Ini ))kn−1

i=0 )∞n=n0
is a strict covering of

A (use (1)). Also, notice that if (Cn)∞n=1 and (Dm)∞m=1 are strict coverings
of A with Cn = (Ini )kn−1

i=0 and Dm = (Jmj )lm−1
j=0 then kn < lm (resp. kn = lm)

implies
⋃kn−1
i=0 Ini ⊃

⋃lm−1
j=0 Jmj (resp.

⋃kn−1
i=0 Ini =

⋃lm−1
j=0 Jmj ).

Assume now that a map f ∈ D(I) has no wandering intervals (recall
that this is for example the case if f ∈ Lp(I)). If (Cn)∞n=1 is a covering of a
solenoid A, it is easy to show (see [5]) that the lengths of the intervals from
Cn tend uniformly to 0 as n tends to ∞. This fact, together with the last
comment from the above paragraph, clearly implies that for any solenoid A
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of f there exists a unique maximal strict covering (Bn)∞n=1 of A such that
each of the intervals from Bn contains at most one point from K(f) (here
“maximal” means that if (Dm)∞m=1 is another strict covering of A with the
same property then for any m there is n(m) such that Dm = Bn(m)). We call
this covering the basic covering of A and its type the type of A. Notice that,
with this terminology, A will be weakly bounded (resp. period doubling) if
and only if the type (kn)∞n=1 of A satisfies lim infn→∞ kn+1/kn < ∞ (resp.
kn+1/kn = 2 for any n large enough).

Of course, when defining the basic covering of a solenoid A differen-
tiability is not necessary, and then the construction also works for piece-
wise strictly monotone maps with a finite number of pieces of monotonicity
(upon replacing K(f) by the set of turning points of f). We have just chosen
the more restrictive setting of D(I) to simplify the notation (notice that if
f ∈ D(I) then K(f) may be larger than the set of turning points of f).

Let (Bn)∞n=1 be the basic covering of A. Set Bn = (Ini )kn−1
i=0 and Bn =⋃kn−1

i=0 Ini . By (3) and the fact that fkn+1(In+1
0 ) ⊂ In+1

0 , there is a periodic
orbit Pn of period kn+1 having exactly one point in each of the intervals In+1

i .
Then we can find a strongly invariant set Qn with CardQn = kn+1 − 1 and
satisfying the condition from Theorem A with respect to Pn. Observe that
if x ∈ Qn∩Bn the orbit of x is also contained in Bn. This means that Rn =
Qn ∩Bn is a strongly invariant set. On the other hand, CardQn = kn+1− 1
implies that Qn∩Bn+1 = ∅. Thus CardRn = kn+1−kn and if J is one of the
kn+1−kn (connected) components of Bn\Bn+1, then Card(Rn∩J) = 1 (see
(4)). Finally, notice that since the covering is basic, K(f) ∩B1 = K(f) ∩A
and then f ′(x) exists for any x ∈ Rn.

Now it is the time to use the specific features of piecewise linear maps.
Assume additionally f ∈ L(I) and write δn =

∏
x∈Rn |f ′(x)|. Then

(5) δn > 1.

To prove this, let x ∈ Rn and suppose that the period of x is l. It is
sufficient to show that |(f l)′(x)| > 1. Suppose |(f l)′(x)| ≤ 1 and let r be
such that x ∈ Inr . Let g be the restriction of f l to the interval Inr . Since kn
divides l and the restriction h of fkn to Inr is not monotone, g = hl/kn cannot
be linear. Let K ⊂ Inr be the maximal closed interval containing x on which
g is linear. Then at least one of the endpoints of K is an asymptotically
periodic point of g and so an asymptotically periodic point of f . Let e be
such an endpoint of K. We may assume that e is not an endpoint of Inr since
otherwise the other endpoint e′ of K is also asymptotically periodic for g
and e′ cannot be an endpoint of Inr (because K 6= Inr ). Then g′(e) does not
exist. This means that fm(e) ∈ K(f) for some m ∈ {0, 1, . . . , l − 1}. But
then fm(e) ∈ Bn ∩K(f) and so fm(e) ∈ A. Since fm(e) is asymptotically
periodic we get a contradiction by (2). This proves (5).
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Another important property of the sets Rn is the following. Let G be
an arbitrary set containing exactly one point from each interval from Bn+1

and such that G ∩ K(f) = ∅. Since each interval from B1 can contain at
most one point from K(f), clearly there exists a (not necessarily unique) set
H ⊂ G containing exactly one point from each interval from B1 such that
if we write

G \H = {a1, . . . , akn+1−k1},
n⋃
r=1

Rr = {b1, . . . , bkn+1−k1},

and Ii = [ai; bi] for i = 1, . . . , kn+1 − k1, then

Ii ∩ Ij = ∅ for any 1 ≤ i < j ≤ kn+1 − k1,(6)
kn+1−k1⋃

i=1

Ii ⊂ B1 \K(f).(7)

(At this moment we do not need (6) but we shall use it in the proof of
Theorem C.) Note that, since f is piecewise linear, (7) implies that f ′(ai) =
f ′(bi) for every i = 1, . . . , kn+1 − k1.

We are now ready to prove Theorem B.

Proof of Theorem B. Suppose that A is a weakly bounded solenoid of
f . Since f belongs to L(I) it has no wandering intervals and, hence, A has
a basic covering (Bn)∞n=1. Let (kn)∞n=1 be the type of (Bn)∞n=1. Since A is
weakly bounded and the covering is basic we see that there exist l0 ∈ N and
a strictly increasing sequence (nj)∞j=1 such that knj+1/knj = l0 for any j.
We claim that there is δ > 1 such that

(8) δnj ≥ δ for any j.

To prove this, let L be the (finite) set of all possible values of |f ′| (where
it is defined) and define M = {∏k1(l0−1)

m=1 %m : %m ∈ L for any m}, also a
finite set. Notice that Rnj intersects each interval from Bnj in exactly l0− 1
points. Therefore, we can decompose Rnj in l0 − 1 pairwise disjoint finite
sets G1, . . . , Gl0−1 such that each of the sets Gi has exactly one point in
each interval from Bnj . Then for each s ∈ {1, . . . , l0 − 1} there exists a set
Hs ⊂ Gs containing exactly one point in each interval from B1 such that, if
we write

Gs \Hs = {as1, . . . , asknj−k1
},

nj−1⋃
r=1

Rr = {b1, . . . , bknj−k1},

then f ′(asi ) = f ′(bi) for any i (here we are using property (7) applied to Gs,
Hs and nj instead of G, H and n+ 1 for each s = 1, . . . , l0 − 1). Therefore,
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∏

x∈Gs\Hs
|f ′(x)| =

knj−k1∏

i=1

|f ′(asi )| =
nj−1∏
n=1

δn

for each s. Consequently,

δnj =
∏

x∈Rnj
|f ′(x)| =

( ∏

x∈⋃l0−1
s=1 Hs

|f ′(x)|
)( ∏

x∈⋃l0−1
s=1 Gs\Hs

|f ′(x)|
)

= νj

( nj−1∏
n=1

δn

)l0−1

for some νj ∈M . Since the set {νj}∞j=1 is finite, we can find t such that for
any j > t there is j′ ≤ t with νj = νj′ . Then, by (5), for any j > t we have

δnj = νj

(nj−1∏
n=1

δn

)l0−1
> νj

(nj′−1∏
n=1

δn

)l0−1
= νj′

(nj′−1∏
n=1

δn

)l0−1
= δnj′ .

Thus (8) holds for δ = min1≤j≤t δnj .
Similarly, define N = {∏k1

m=1 %m : %m ∈ L for any m} and take J ∈
Bn+1 and x ∈ J such that {f j(x)}kn+1−1

j=0 does not intersect K(f). By using
(7) as above we see that there is % ∈ N (depending on x) such that

(9) |(fkn+1)′(x)| = %

n∏
r=1

δr

(here we take the set {f j(x)}kn+1−1
j=0 for G). On the other hand, since each

of the intervals from B1 contains at most one point from K(f), clearly there
exists a positive integer u depending neither on n nor on J such that if
g is the restriction of fkn+1 to J then CardK(g) < u for any J ∈ Bn+1.
In other words, |g′| ≤ u whenever it is defined. But if n tends to infinity
then from (5), (8) and (9) we deduce that |g′| tends uniformly to infinity; a
contradiction.

The proof of Theorem C follows after a sequence of lemmas. But first we
need to reformulate (5)–(7) in our new situation. Recall that if f ∈ Lp(I)
then it has no wandering intervals. So, for a given solenoid A of f we can
construct the strongly invariant sets Rn as above (we maintain the same
notation). The problem now is that if x ∈ Rn is periodic of period l then it
is not necessarily true that |(f l)′(x)| > 1 or even that |(f l)′(x)| ≥ 1. Then
we construct two sets Un and Vn with the same cardinality as Rn (although
not necessarily strongly invariant) as follows.

Fix a point in each of the periodic orbits included in Rn. Let x be one of
these points, say of period l. Now two possibilities can occur. If |(f l)′(x)| ≥ 1
we include {f j(x)}l−1

j=0 both in Un and Vn. Otherwise, let K be the maximal
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open interval containing x with the property limm→∞ |f lm(y)−f lm(x)| = 0
for any y ∈ K (the so-called immediate basin of attraction of x). Because of
(2), neither K nor any of its iterates intersects Bn \ Bn+1. So, f l(K) = K
and f l is monotone on K. If y < z are the endpoints of K then we have either
(i) f l(y) = y, f l(z) = z and |(f l)′(y)| ≥ 1, or (ii) f l(y) = z, f l(z) = y and
|(f2l)′(y)| ≥ 1. Now we take {f j(y)}l−1

j=0 ⊂ Un, {f j(y)}l−1
j=0 ⊂ Vn if (i) holds,

and {f j(y)}l−1
j=0 ⊂ Un, {f j(y)}2l−1

j=l ⊂ Vn if (ii) holds. So we have CardUn =
CardVn = CardRn = kn+1 − kn and Card(Un ∩ J) = Card(Vn ∩ J) = 1 for
any component J of Bn \Bn+1. Write now

δn =
√ ∏

x∈Un
|f ′(x)| ·

∏

x′∈Vn
|f ′(x′)|.

Notice that if f is piecewise linear then Un = Vn = Rn and δn is the number
we defined above.

We clearly have

(5b) δn ≥ 1.

With regard to (6) and (7), if G and H are defined as above and we set
n⋃
r=1

Ur = {c1, . . . , ckn+1−k1},
n⋃
r=1

Vr = {d1, . . . , dkn+1−k1},

Li = [ai; ci] and Mi = [ai; di] for i = 1, . . . , kn+1 − k1, then similarly we get

Li ∩ Lj = ∅, Mi ∩Mj = ∅ for any 1 ≤ i < j ≤ kn+1 − k1,(6b)
kn+1−k1⋃

i=1

(Li ∪Mi) ⊂ B1 \K(f).(7b)

In what follows λ will denote the one-dimensional Lebesgue measure. A
family {Ij}mj=1 of subintervals of I is said to have multiplicity k if each point
from I is contained in at most k intervals from the family. The proof of the
first lemma is trivial and therefore omitted.

Lemma 1. Let {Ij}mj=1 be a family of subintervals of I with multiplicity
k. Then

∑m
j=1 λ(Ij) ≤ kλ(

⋃m
j=1 Ij).

Lemma 2. Let f ∈ C(I) and let p be a periodic point of f of period n.
Let 1 ≤ l ≤ n and let J be a subinterval of I containing p. Then {f j(J)}l−1

j=0

has multiplicity at most 2 Card(Orbf (p) ∩ f l(J)).

P r o o f. Let m be the multiplicity of {f j(J)}l−1
j=0 and fix a point x be-

longing to m intervals from the family, say f j1(J), . . . , f jm(J). If P is the
set of points from Orbf (p) contained in the union of these m intervals
then CardP ≥ m. Let a, b denote the endpoints of ConvP . We can as-
sume that [a;x] contains at least m/2 points from P . On the other hand,
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the point a belongs to one of the intervals from the family, say f ji(J).
Therefore, Card(P ∩ f ji(J)) ≥ m/2. So, since P ⊂ Orbf (p) we also get
Card(Orbf (p) ∩ f l(J)) ≥ Card(f l−ji(P ) ∩ f l(J)) ≥ m/2 and the lemma
follows.

If f ∈ Lp(I) then log |f ′| can clearly be extended to a (not necessarily
continuous) map h from I into the real line with minimal bounded varia-
tion. The total variation of this map h will be denoted by V (f). Also, in
what follows we fix a constant α(f) > 0 (depending only on f) such that
|log |f ′(x)|− log |f ′(y)|| ≤ α(f)|x−y| for any x, y ∈ I with [x; y]∩K(f) = ∅.

Lemma 3. Let f ∈ Lp(I), J be a subinterval of I, l ∈ N, k be the
multiplicity of {f j(J)}l−1

j=0 and let x, y ∈ J be such that f j(x), f j(y) ∈
I \K(f) for any j = 0, 1, . . . , l − 1. Then

|(f l)′(x)|
|(f l)′(y)| ≤ exp

(
kα(f)λ

(l−1⋃

j=0

f j(J)
)

+ kV (f) CardK(f)
)
.

Moreover , if f j(J) ∩K(f) = ∅ for any j = 0, 1, . . . , l − 1 then

|(f l)′(x)|
|(f l)′(y)| ≤ exp

(
kα(f)λ

(l−1⋃

j=0

f j(J)
))
.

P r o o f. Let u, v ∈ I \K(f). If [u; v] ∩K(f) = ∅ we have |log |f ′(u)| −
log |f ′(v)|| ≤ α(f)|v − u| while if [u; v] ∩ K(f) 6= ∅ then |log |f ′(u)| −
log |f ′(v)|| ≤ V (f). Further, since {f j(J)}l−1

j=0 has multiplicity k, there are at
most kCardK(f) intervals from the family {f j(J)}l−1

j=0 intersecting K(f).
Also notice that

|(f l)′(x)|
|(f l)′(y)| ≤ exp

( l−1∑

j=0

|log |f ′(f j(x))| − log |f ′(f j(y))||
)
.

From this and Lemma 1, Lemma 3 follows easily.

Although the following lemma is just a direct consequence of Lemma 3,
it is convenient to state it separately.

In what follows we use the following notation. For f ∈ Lp(I) and k ∈ N
define

Q(k, f) = (CardK(f) + 1)kCardK(f).

Lemma 4. Let f ∈ Lp(I), J be a subinterval of I, l ∈ N, k be the
multiplicity of {f j(J)}l−1

j=0, and let X,Y ⊂ J be measurable sets of positive
measure. Then

λ(f l(X))/λ(X)
λ(f l(Y ))/λ(Y )

≤ Q(k, f) exp
(
kα(f)λ

(l−1⋃

j=0

f j(J)
)

+ kV (f) CardK(f)
)
.
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P r o o f. For j = 0, 1, . . . , l − 1 denote by gj the restriction of f to the
interval f j(J). Further, let G0 be the identity map on J and for j = 1, . . . ,
l − 1 denote by Gj = gj−1 ◦ . . . ◦ g1 ◦ g0 the restriction of f j to J . Since
{f j(J)}l−1

j=0 has multiplicity k, there are at most kCardK(f) intervals from
{f j(J)}l−1

j=0 intersecting K(f). This means that there is s ≤ kCardK(f)
such that for some 0 ≤ j(1) < . . . < j(s) ≤ l−1, the maps gj(i), i = 1, . . . , s,
are not monotone and all the other maps gj are monotone.

So, if P = {a0, a1, . . . , an} is the set consisting of the endpoints of J and
those points x ∈ J whose finite trajectories (f j(x))l−1

j=0 hit K(f), we have

P = {min J,maxJ} ∪
s⋃

i=1

G−1
j(i)(K(f) ∩ f j(i)(J)).

Since f is piecewise monotone with CardK(f) + 1 pieces, all the above
implies that

n+ 1 = CardP

≤ 2 + CardK(f) + (CardK(f) + 1) · CardK(f)

+ (CardK(f) + 1)2 · CardK(f)

+ . . .+ (CardK(f) + 1)s−1 · CardK(f)

= 1 + (CardK(f) + 1)s ≤ 1 +Q(k, f).

Define Ii = [ai−1, ai] and put Xi = X ∩ Ii, Yi = Y ∩ Ii, i = 1, . . . , n.
To simplify the notation we assume that all the sets Xi, Yi have positive
measure. As will be obvious this is not restrictive. Let r and s be such that

λ(f l(Xr))
λ(Xr)

= max
1≤i≤n

λ(f l(Xi))
λ(Xi)

,
λ(f l(Ys))
λ(Ys)

= min
1≤i≤n

λ(f l(Yi))
λ(Yi)

,

and fix points x, y ∈ J \ P with the properties

|(f l)′(x)| ≥ λ(f l(Xr))
λ(Xr)

, |(f l)′(y)| ≤ λ(f l(Ys))
λ(Ys)

.

Then
λ(f l(X))
λ(X)

≤
∑n
i=1 λ(f l(Xi))∑n
i=1 λ(Xi)

≤ λ(f l(Xr))
λ(Xr)

≤ |(f l)′(x)|,

λ(f l(Y ))
λ(Y )

≥ 1
n

∑n
i=1 λ(f l(Yi))∑n
i=1 λ(Yi)

≥ 1
n

λ(f l(Ys))
λ(Ys)

≥ |(f
l)′(y)|
n

.

By Lemma 3, the lemma follows.

In what follows we say that a sequence (βn)∞n=1 is a tail of a sequence
(αn)∞n=1 if there is a nonnegative k such that βn = αn+k for every n. If k is
positive then the tail is said to be nontrivial.

Lemma 5. Let f ∈ Lp(I) and A be a solenoid of f . Then λ(A) = 0.
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P r o o f. The proof follows mutatis mutandis the one from [2]. There it is
proved that solenoids of C∞ maps with nonflat critical points have measure
zero. The only difference is that we have to use Lemmas 3 and 4 instead of
Lemmas 1a, 1b and 2 of [2]. For completeness we give here a shorter proof
(still following the essential ideas from [2]).

Let (Bn)∞n=1 be the basic covering of A. Fix an interval I ′ = [a, b] with
I ⊂ (a, b) and let g ∈ C(I ′) be defined by the following properties:

(i) g coincides with f in the intervals from B1;
(ii) g is linear on the maximal intervals lying between consecutive inter-

vals from B1 (and on the intervals connecting respectively a and the first
interval from B1 and b and the last interval from B1);

(iii) g(a) = a, g(b) = b.

Notice that the definition of B1 implies that g cannot have constant linear
pieces and so g ∈ Lp(I ′). Of course A is also a solenoid of g. Further,
K(g) ⊂ A. Notice that (Bn)∞n=1 is now a strict covering of A with respect
to g but not necessarily its basic covering. In fact, it may happen that an
endpoint of an interval from B1 belongs to K(g) \ K(f). Then the basic
covering of A with respect to g is a tail of (Bn)∞n=1. If such an endpoint
does not exist then still (Bn)∞n=1 may not be the basic covering of A with
respect to g since it may happen that some gaps between the intervals from
B1 contain points from K(f) but do not contain any points from K(g). But
then it may happen (it depends on which gaps have that property) that
(Bn)∞n=1 is a nontrivial tail of the basic covering of A with respect to g. In
either case there is a tail of (Bn)∞n=1 which is simultaneously a tail of the
basic covering of A with respect to g. Let (Cn)∞n=1 with Cn = (Ini )kn−1

i=0 be
such a covering of A. For any n and i ∈ {0, 1, . . . , kn − 1}, let Jni denote
the maximal interval containing Ini such that gkn−i(Jni ) ⊂ In0 . It is not
restrictive to assume that there is a (relative) extremum c of g such that
g(c) ∈ In0 for any n. Then

(10) c ∈ Jnkn−1 for any n.

Write Dn = (Jni )kn−1
i=0 , Dn =

⋃kn−1
i=0 Jni . We emphasize that (Dn)∞n=1

need not be a covering of A because Dn+1 ⊂ Dn does not necessarily hold.
If Jni contains an extremum of g then g(Jni ) may not be equal to Jni+1 but
the inclusion g(Jni ) ⊂ Jni+1 still holds for any i (here Jnkn = Jn0 ) and the
intervals from Dn are pairwise disjoint (also gr(J1) ∩ gr(J2) = ∅ whenever
J1, J2 ∈ Dn, J1 6= J2 and r ≥ 0). This and K(g) ⊂ A imply that Ini and Jni
must contain the same points from K(g) (at most one of them) for any i.
Moreover, Dn ⊂ Int I ′ by property (iii) of g. Thus

(11) if Jni contains an extremum of g then its two endpoints have the
same image,



134 L. Alsedà et al.

while

(12) if Jni does not contain any extrema of g then g(Jni ) = Jni+1.

Define

µ = Q(1, f) exp(α(f)λ(I ′) + V (g) CardK(g)).

Since µ > 2,

σ = 1− 1
µ

(
1

µ+ 1
− 1

4µ2

)
+

1
4µ2 < 1.

Because of A ⊂ Dn for any n, to prove the lemma it suffices to show that
for any n there is l such that λ(Dl) < σλ(Dn).

Since g has no wandering intervals, the lengths of the intervals from Dn
tend uniformly to 0 as n tends to∞. Thus, for fixed n, choose l large enough
so that

(13) sup
0≤j≤kl−1

λ(J lj) <
1

4µ2 inf
0≤i≤kn−1

λ(Jni ).

For any J ∈ Dn, let XJ (resp. YJ) denote the union of all the intervals
from Dl intersecting J (resp. included in J). Since both endpoints of J
are eventually mapped into the same point (use (11) and (12)), it is not
possible that two intervals from Dl intersect J and not be included in J .
Therefore either XJ = YJ or XJ \ YJ is an interval from Dl. If J, J ′ ∈ Dn
are different, it is clear that XJ ∩ XJ ′ = ∅. Thus, it only remains to show
that λ(XJ ) < σλ(J) for any J ∈ Dn.

Two possibilities can occur. First assume that J contains an extremum d
of g and let K ∈ Dl be the interval containing d. By (11) we clearly get K ⊂
J . Moreover, there exists a set ZJ ⊂ J disjoint from YJ \K and satisfying
g(ZJ) = g(YJ \K). By Lemma 4 (clearly, {gj(J)}0j=0 has multiplicity 1) we
get λ(YJ \ K) ≤ µλ(ZJ), which together with λ(YJ \ K) + λ(ZJ) < λ(J)
gives

λ(YJ \K) <
(

1− 1
µ+ 1

)
λ(J).

From this and (13) (use also µ > 2),

λ(YJ) = λ(YJ \K) + λ(K) <
(

1− 1
µ+ 1

+
1

4µ2

)
λ(J),

λ(XJ) = λ(XJ \ YJ) + λ(YJ) <
(

1− 1
µ+ 1

+
1

2µ2

)
λ(J) < σλ(J).

Suppose now that J does not contain any extrema of g. Let k be minimal
such that gk(J) = J ′ ∈ Dn contains an extremum of g (by (10)–(12) such a
k exists). Observe that gk(J \YJ) = J ′ \YJ ′ by (12) applied to the intervals
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from Dl. Moreover, {gj(J)}k−1
j=0 has multiplicity 1. Then by Lemma 4,

1− λ(YJ )/λ(J)
1− λ(YJ′)/λ(J ′)

=
λ(J \ YJ)/λ(J)
λ(J ′ \ YJ′)/λ(J ′)

=
λ(J ′)/λ(J)

λ(J ′ \ YJ′)/λ(J \ YJ)
≥ 1
µ
.

On the other hand, we have already shown that
λ(YJ′)
λ(J ′)

< 1− 1
µ+ 1

+
1

4µ2 .

Thus

λ(YJ) <
(

1− 1
µ

(
1

µ+ 1
− 1

4µ2

))
λ(J).

This and (13) imply

λ(XJ) = λ(XJ \ YJ) + λ(YJ) <
1

4µ2λ(J) + λ(YJ) < σλ(J)

as we wanted to show.

The following lemma was proved in [9] in the particular case of piecewise
linear maps (Expansion-Lemma 3.1). Our argument combines the main ideas
from Martens and Tresser’s proof with the tools developed earlier.

Lemma 6. Let f ∈ Lp(I) and let A be a non-period doubling solenoid of
f of type (kn)∞n=1. Then there is δ > 1 which does not depend on n such
that , for n large enough, we have δn ≥ δ whenever kn+1/kn > 2.

P r o o f. Let (Bn)∞n=1 be the basic covering of A. Suppose that the state-
ment of the lemma is not true. Then there is m large enough with km+1/km
> 2 so that β and ε defined by δm = expβ and λ(

⋃
J∈Bm J) = 2ε are

sufficiently small in order that

(14) Q(12, f) exp
(
24α(f)ε+ 12V (f) CardK(f)

)
<

1
exp(25α(f)ε+ β)− 1

(use Lemma 5 and (5b)).
Let J denote the family of the km+1 − km components of the set( ⋃

J∈Bm
J
) ∖ ( ⋃

J′∈Bm+1

J ′
)
.

Fix K1 ∈ J and take x ∈ Um ∩ K1 (recall that Um and Vm were defined
right after the proof of Theorem B). Let l or 2l be the period of x depend-
ing on whether x ∈ Vm or not. Obviously f l(K1) ⊃ K1. We claim that
f l(K1) also includes some interval from J different from K1. Suppose that
this is not the case and let J1, J2 denote the intervals from Bm+1 adja-
cent to K1. Since l < km+1 we see that f l(J1) 6= J1. Then we must have
f l(J1) = J2, f l(J2) = J1 and km+1 = 2l. Further, Conv(f j(J1) ∪ f j(J2))
includes no intervals from Bm+1 apart from f j(J1), f j(J2), j = 0, 1, . . . , l−1.
Since the intervals from J do no intersect K(f), in particular we get
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f(Conv(f j(J1)∪f j(J2))) = Conv(f j+1(J1)∪f j+1(J2)) for any j. Moreover,
the intervals Conv(f j(J1)∪f j(J2)) are pairwise disjoint for j = 0, 1, . . . , l−1.
Hence (Conv(f j(J1) ∪ f j(J2)))l−1

j=0 is a periodic sequence of closed intervals
of period l containing

⋃
J∈Bm+1 J and contained in

⋃
J∈Bm J . Since l < km+1

and l > km (here we use the fact that km+1/km > 2 and km+1 = 2l) we
obtain a contradiction with the fact that (Bn)∞n=1 is the basic covering of A.

Let Kj
1 ∈ J denote the interval containing {f j(x) : j = 0, 1, . . . , l − 1}.

Since f is monotone on Kj
1 and f(Kj

1) ⊃ Kj+1
1 for any j (here Kl

1 = K1),
there is an interval T1 ⊂ K1 containing x and such that f l(T1) = K1.
Construct now a minimal interval K1 ⊃ T ⊃ T1 with the property that f l(T )
includes an interval K2 ∈ J different from K1. By the above claim, such a T
exists. Choose also T2 ⊂ T with f l(T2) = K2. We can additionally assume
that K1 is an interval of minimal length from J . In particular λ(K1) ≤
λ(K2). Now we consider two cases:

First consider the case when x /∈ Vm. The minimality of T implies that
f l(T ) intersects at most 3 intervals from J and then contains at most 6
points from Orbf (x). Hence, {f j(T )}l−1

j=0 has multiplicity at most 12 by
Lemma 2.

Put x′ = f l(x). Since the intervals {f j([x;x′])}l−1
j=0 are pairwise disjoint

and do not intersect K(f), by Lemma 3, |(f l)′(x)|/|(f l)′(x′)| ≤ exp(2α(f)ε).
On the other hand, |(f l)′(x)| · |(f l)′(x′)| = |(f2l)′(x)| ≤ exp(2β). Then

(15) |(f l)′(x)| ≤ exp(α(f)ε+ β).

Notice that f l(T1) = K1 does not intersect any interval from Bm+1 and so,
for each j = 0, 1, . . . , l−1, f j(T1) does not intersect any interval from Bm+1.
We also have x ∈ T1. Then by Lemma 3 and (15),

|(f l)′(y)| ≤ exp(25α(f)ε+ β)

for any y ∈ T1. In particular,

(16)
λ(f l(T1))
λ(T1)

≤ exp(25α(f)ε+ β).

Recall that λ(K1) ≤ λ(K2) and obviously T1 ∩ T2 = ∅. Then

(17)
λ(f l(T2))
λ(T2)

≥ λ(K1)
λ(K1)− λ(T1)

≥ exp(25α(f)ε+ β)
exp(25α(f)ε+ β)− 1

.

From Lemma 4 and (14), (16) and (17) we get a contradiction.
The case x ∈ Vm is analogous. The only difference is that now {f j(T )}l−1

j=0

has multiplicity at most 6 and we have directly |(f l)′(x)| ≤ expβ. The
lemma is proved.

Proof of Theorem C. Suppose that f has a non-period doubling solenoid
A with basic covering (Bn)∞n=1 and of type (kn)∞n=1. Put γ =

∑
J∈B1 λ(J)



Solenoids of piecewise smooth maps 137

and fix ε > 0 small enough such that

(18) |f ′(x)| > ε

for any x ∈ I for which f ′ exists.
Let J ∈ Bn+1 and let x ∈ J be such that G = {f j(x)}kn+1−1

j=0 does not
intersect K(f). Construct H and the intervals Li = [ai; ci], Mi = [ai; di] as
in (6b) and (7b). Observe that by (6b),

kn+1−k1∑

i=1

λ(Li) < γ,

kn+1−k1∑

i=1

λ(Mi) < γ

and by (7b),

|log |f ′(ai)| − log |f ′(ci)|| ≤ α(f)λ(Li),

|log |f ′(ai)| − log |f ′(di)|| ≤ α(f)λ(Mi)

for any i. Thus

(19)
kn+1−k1∏

i=1

|f ′(ai)| > exp(−α(f)γ)
kn+1−k1∏

i=1

|f ′(ci)|

and similarly

(20)
kn+1−k1∏

i=1

|f ′(ai)| > exp(−α(f)γ)
kn+1−k1∏

i=1

|f ′(di)|.

From (18)–(20),

|(fkn+1)′(x)| > exp(−α(f)γ)εk1

n∏
r=1

δr.

From this and Lemma 6 we obtain a contradiction similar to the one from
the proof of Theorem B.
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