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Hamiltonian systems with linear potential
and elastic constraints

by

Maciej P. W o j t k o w s k i (Tucson, Ariz.)

Abstract. We consider a class of Hamiltonian systems with linear potential, elastic
constraints and arbitrary number of degrees of freedom. We establish sufficient conditions
for complete hyperbolicity of the system.

0. Introduction. We study a class of Hamiltonian systems with linear
potential and arbitrary number of degrees of freedom. The Hamiltonian is
given by

H =
1
2

n∑

i,j=1

kijξiξj +
n∑

l=1

clηl,

where (η, ξ) ∈ Rn×Rn are “positions” and “momenta”, and K = {kij} is a
constant symmetric positive definite matrix giving the kinetic energy. The
equations of motions are

d2ηi
dt2

= −
n∑

j=1

kijcj = const.

We close the system and couple different degrees of freedom by restricting
it to the positive cone

η1 ≥ 0, . . . , ηn ≥ 0.

When one of the η coordinates vanishes the velocity is changed instanta-
neously by the rules of elastic collisions, i.e., the component of the velocity
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parallel to the face of the cone is preserved and the component orthogonal
to the face is reversed. Orthogonality is taken with respect to the scalar
product defined by the kinetic energy.

With these elastic constraints the system is closed provided that all the
coefficients c1, . . . , cn are positive. The restriction of this system to a level
set of the Hamiltonian (i.e., we fix the total energy) has a finite Liouville
measure which is preserved by the dynamics. There are singular trajectories
in the system (hitting the lower dimensional faces of the cone or having zero
velocity on a face of the cone) which are defined for finite time only but they
form a subset of zero measure. Dynamics is well defined almost everywhere.
Moreover, the derivative of the flow is also defined almost everywhere and
Lyapunov exponents are well defined for our system (cf. [O], [R]).

Main Theorem. If all the off-diagonal entries of the positive definite
matrix K−1 are negative then the Hamiltonian system with elastic con-
straints restricted to one energy level is completely hyperbolic, i.e., all Lya-
punov exponents but one are nonzero almost everywhere,

By the structural theory of hyperbolic systems with singularities devel-
oped by Katok and Strelcyn [K-S] we can conclude that our system has at
most countably many ergodic components. The mixing properties of the flow
are as usual not readily accessible. But if we consider the natural Poincaré
section map (from a face of the positive cone to another face) we can apply
the results of Chernov and Hasskel [Ch-H] and Ornstein and Weiss [O-W] to
get the Bernoulli property on ergodic components. We are unable to make
rigorous claims about ergodicity because the singularities of the system are
not properly aligned (except for n = 2), which does not allow the imple-
mentation of the Sinai–Chernov methods. This point is discussed in detail
in [L-W]. At the same time there is little doubt that the system is actually
ergodic.

There are concrete systems of interacting particles that fall into the
category described in the Main Theorem. One such system is a variation
of the system of parallel sheets interacting by gravitational forces, studied
recently by Reidl and Miller [R-M].

Let us consider the system of n+1 point particles in a line with positions
q0, q1, . . . , qn and masses m0, . . . ,mn. Their interaction is defined by a linear
translation invariant potential U(q) =

∑n
i=1 ci(qi− q0). The Hamiltonian of

the system is

(0.1) H =
n∑

i=0

p2
i

2mi
+

n∑

i=1

ci(qi − q0).

We introduce the elastic constraints

(0.2) q1 − q0 ≥ 0, q2 − q0 ≥ 0, . . . , qn − q0 ≥ 0,
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i.e., the particles go through each other freely except for the q0-particle
which collides elastically with every other particle.

A convenient interpretation of the system is that of a horizontal floor
of finite mass m0 and n particles of masses m1, . . . ,mn. The floor and the
particles can move only in the vertical direction and their positions are q0

and q1, . . . , qn, respectively. There is a constant force of attraction between
any of the particles and the floor. Moreover, the particles collide elastically
with the floor and there are no collisions between the particles (they move
along different parallel lines perpendicular to the floor). Hence the particles
“communicate” with each other only through collisions with the floor, which
is a rather weak interaction.

Introducing symplectic coordinates (η, ξ),

(0.3)

η0 = m0q0 +m1q1 + . . .+mnqn,

ηi = qi − q0,

p0 = m0ξ0 − ξ1 − . . .− ξn,
pi = miξ0 + ξi, i = 1, . . . , n,

and setting the total momentum and the center of mass at zero, η0 = 0,
ξ0 = 0, we obtain the Hamiltonian

H =
(ξ1 + . . .+ ξn)2

2m0
+

n∑

i=1

ξ2
i

2mi
+

n∑

i=1

ciηi.

This system satisfies the assumptions of the Main Theorem and hence it is
completely hyperbolic. Note that no conditions on the masses are required.

We can introduce additional interactions between particles by stacking
groups of them on vertical lines. The particles on the same vertical line
will collide elastically with each other and only the bottom particle collides
with the floor. Mathematically this corresponds to adding more constraints
to (0.2). We establish that such systems are also completely hyperbolic if
the masses satisfy certain inequalities. We must assume though that the
accelerations of all the particles in one stack are equal, they can be different
for different stacks.

As we add more constraints our conditions on the masses which guar-
antee complete hyperbolicity become more stringent. This seems somewhat
paradoxical: as the interactions of the particles become richer the ergodicity
of the system (equipartition of energy) is more likely to fail.

This behavior becomes more intuitive when we modify the original sys-
tem of noninteracting particles falling to the floor by splitting each mass
into two or more masses that are stacked on one vertical line. In the orig-
inal system the particles have to freely “share” their energy with the floor
and hence with other particles. In the modified system the stack of particles
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acts as “internal” degrees of freedom which may store energy for extended
periods of time. One would expect that the energy transfer between stacks
is less vigorous than in the case when all the masses in one stack are glued
into one particle.

The extremal case is that of one stack, i.e., where we introduce the
constraints
(0.4) q0 ≤ q1 ≤ . . . ≤ qn
and ci = αmi, i = 1, . . . , n. If m1 = . . . = mn then the resulting system
is a factor of the system with the constraints (0.2) and in particular it is
completely hyperbolic. In general, complete hyperbolicity occurs when the
masses satisfy special inequalities. More precisely, if the sequence

ai =
m0 +m1 + . . .+mi−1

mi
+ i, i = 1, . . . , n,

satisfies a1 < a2 ≤ . . . ≤ an, then the system is completely hyperbolic.
These conditions are substantial and not merely technical since the system
is completely integrable if for some constant a > n,

mi

m0
=

a

(a− i)(a− i+ 1)
, i = 1, . . . , n.

Let us end this introduction with the outline of the content of the paper.
In Section 1 we review the notion of flows with collisions ([W1]), a mixture
of differential equations and discrete time dynamical systems (mappings).
We define hyperbolicity (complete and partial) for flows with collisions and
formulate the criterion of hyperbolicity from [W3].

In Section 2 we study the geometry of simplicial cones, which we call
wedges. We introduce a special class of wedges, called simple, and discuss
their geometric invariants. As a byproduct we obtain a dual characterization
of positive definite tridiagonal matrices which is of independent interest.

In Section 3 we introduce a Hamiltonian system with linear potential
and elastic constraints which we call a PW system (Particle in a Wedge). It
is defined by a wedge and an acceleration direction (from the dual wedge).
A point particle is confined to the wedge and accelerated in the chosen
direction (falling down). We establish that the system of falling particles
in a line (PFL system), introduced and studied in [W1], is equivalent to a
PW system in a simple wedge with acceleration parallel to the first (or last)
generator of the wedge. We recast the conditions of partial hyperbolicity
from [W1] in terms of the geometry of the simple wedge. In a recent paper
Simányi [S] showed that these conditions guarantee complete hyperbolicity.

In Section 4 we give a new edition of the results of [W1], on monotonicity
of PFL and PW systems, in a more geometric language appropriate for the
present work. The new formulations are necessary for the proof of the Main
Theorem.
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In Section 5 we consider two special classes of Hamiltonian systems, the
system (0.1) with the constraints (0.4) and another class. Both classes reduce
straightforwardly to PW systems in simple wedges. We apply the criteria of
complete hyperbolicity and complete integrability and get in particular the
result formulated above.

In Section 6 we introduce wide wedges and we prove the Main Theorem.
In Section 7 we study the system (0.1) with arbitrary “stacking rules”

added to the constraints (0.2). We derive conditions on the masses which
guarantee complete hyperbolicity of the system, in terms of the graph of
constraints.

Section 8 contains remarks and open problems.

1. Hamiltonian flows with collisions. A flow with collisions is a con-
catenation of a flow defined by a vector field on a manifold and mappings
defined on submanifolds (collision manifolds) of codimension one. Trajecto-
ries of a flow with collisions follow the trajectories of the flow until they reach
one of the collision manifolds where they are glued with another trajectory
by the collision map. A more precise description of this simple concept is
somewhat lengthy. We will do it for Hamiltonian flows only. A more detailed
discussion can be found in [W1] and [W3].

Let (N,ω) be a smooth 2n-dimensional symplectic manifold with sym-
plectic form ω and H be a smooth function on N . We denote by ∇H the
Hamiltonian vector field defined by the Hamiltonian function H. Let fur-
ther M be a 2n-dimensional closed submanifold of N with piecewise smooth
boundary ∂M . For simplicity we assume that ∇H does not vanish in M . Let
Nh = {x ∈ N | H(x) = h} be a smooth level set of the Hamiltonian. The
Hamiltonian vector field ∇H is tangent to Nh. We do not require that M is
compact, but we do assume that the restricted level sets of the Hamiltonian,
M ∩Nh, are compact for all values of h.

In the boundary we distinguish the regular part, ∂Mr, consisting of points
which do not belong to more than one smooth piece and where the vec-
tor field ∇H is transversal to ∂M . The remaining part of the boundary
is called singular. We assume that the singular part of the boundary has
zero Lebesgue measure in ∂M . The regular part of the boundary is further
divided into ∂M−, the “outgoing” part, where ∇H points outside of the
domain M , and ∂M+, the “incoming” part, where ∇H points inside of M .

We assume that a mapping Φ : ∂M− → ∂M+, the collision mapping , is
given and that it preserves the Hamiltonian, H ◦ Φ = H. Any codimension
one submanifold of Nh transversal to ∇H inherits a canonical symplectic
structure, the restriction of the symplectic form ω. Hence ∂Mr ∩ Nh has
a symplectic structure and we require that the collision map restricted to
∂M− ∩Nh preserves this symplectic structure. The Liouville measure (the
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symplectic volume element) defined by the symplectic structure is thus pre-
served.

In such a setup we define the Hamiltonian flow with collisions

Ψ t : M →M, t ∈ R,
by describing the trajectories of the flow. So Ψ t(x), t ≥ 0, coincides with
the trajectory of the original Hamiltonian flow (defined by ∇H) until we get
to the boundary of M at time tc(x), the collision time. If Ψ tc(x) belongs to
the singular part of the boundary then the flow is not defined for t > tc (the
trajectory “dies” there). Otherwise the trajectory is continued at the point
Φ(Ψ tc(x)) until the next collision time, i.e.,

Ψ tc+t(x) = Ψ tΦΨ tc(x).

This flow with collisions may be badly discontinuous but thanks to the
preservation of the Liouville measures by the Hamiltonian flow and the
collision map, the flow Ψ t is a well defined measurable flow in the sense of
Ergodic Theory (cf. [C-F-S]). Let ν = νh denote the Liouville measure on the
level set Nh ∩M of the Hamiltonian. By the compactness assumption νh is
finite for all smooth level sets Nh. We can now study the ergodic properties
of the flow Ψ t restricted to one level set.

The derivative DΨ t is also well defined almost everywhere in M and
for all t, except the collision times. This allows the definition of Lyapunov
exponents for our Hamiltonian flow with collisions, under the integrability
assumption ([O], [R]) \

Nh

ln+ ‖DΨ1‖ dνh <∞.

In general, the Lyapunov exponents are defined almost everywhere and they
depend on a trajectory of the flow. Due to the Hamiltonian character of the
flow, two of the 2n Lyapunov exponents are automatically zero, and the
other come in pairs of opposite numbers. Hence there is an equal number of
positive and negative Lyapunov exponents.

Definition 1.1. A Hamiltonian flow with collisions is called (nonuni-
formly) partially hyperbolic if some of its Lyapunov exponents are nonzero
almost everywhere, and it is called (nonuniformly) completely hyperbolic if
all but two of its Lyapunov exponents are nonzero almost everywhere.

Definition 1.2. A Hamiltonian flow with collisions is called completely
integrable if there are n functions F1, . . . , Fn in involution, with linearly
independent differentials almost everywhere, which are first integrals for
both the flow and the collision map, i.e., dFi(∇H) = 0 and Fi ◦Φ = Fi, i =
1, . . . , n.
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As usual, completely integrable Hamiltonian flows with collisions have
only zero Lyapunov exponents.

We will outline here a criterion for nonvanishing of Lyapunov exponents.
Complete exposition can be found in [W3]. Note that we introduce some
modifications in the formulations, to facilitate the applications of this crite-
rion in the present paper.

We choose two transversal subbundles, L1(x) and L2(x), x ∈ M , of
Lagrangian subspaces in the tangent bundle of M . We allow these bundles
to be discontinuous and defined almost everywhere. The only requirement
is their measurability.

An ordered pair of transversal Lagrangian subspaces, L1 and L2, defines
a quadratic form Q by the formula

Q(v) = ω(v1, v2), where v = v1 + v2, vi ∈ Li, i = 1, 2.

Further we define the sector C between L1 and L2 by C = {v | Q(v) ≥ 0}.
We assume that ∇H belongs to L2 at almost all points (we could as

well assume that it belongs to L1). This assumption is very important for
the Hamiltonian formalism, it allows us to project the quadratic form Q
onto the factor of the tangent space to the level set of the Hamiltonian by
the one-dimensional subspace spanned by ∇H. This factor space plays the
role of the “transversal section” of the flow restricted to a smooth level set.
Note that in general we do not have an invariant codimension one subspace
transversal to the flow.

Definition 1.3. The Hamiltonian flow with collisions, Ψ t, is called
monotone (with respect to the bundle of sectors C(x), x ∈M), if for almost
all points in M ,

Q(DΨ tv) ≥ Q(v),

for all vectors v tangent to a smooth level set of the Hamiltonian, M ∩Nh,
and all t ≥ 0 for which the derivative is well defined.

The monotonicity of the flow does not imply nonvanishing of any Lya-
punov exponents. Actually completely integrable Hamiltonian flows are typ-
ically monotone with respect to some bundle of sectors. To obtain hyper-
bolicity one needs to examine what happens to the “sides” L1 and L2 of the
sector C. Let L̃1 = L1∩{v | dH(v) = 0} be the intersection with the tangent
space to the level set of the Hamiltonian (note that L2 is always tangent to
the level set because we assume that ∇H ∈ L2 and hence the dimension of
L̃1 is always n − 1). In a monotone system there are two possibilities for a
vector from L̃1 (or from L2): either it enters the interior of the sector C at
some time t > 0 or it forever stays in L̃1 (or in L2).

For a monotone flow we define the L1-exceptional subspace E1(x) ⊂
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L̃1(x) as

(1.1) E1(x) = L̃1(x) ∩
⋂

t≥0

DΨ−tL̃1(Ψ tx),

i.e., E1(x) is the subspace of vectors from L̃1(x) which do not ever enter
the sector C. Similarly we define the L2-exceptional subspace E2(x). The
L2-exceptional subspace always contains the Hamiltonian vector field ∇H.
We call a point x ∈ M L1-exceptional if dim E1(x) ≥ 1, and L2-exceptional
if dim E2(x) ≥ 2.

The following theorem is essentially proven in [W3].

Theorem 1.4. If the Hamiltonian flow with collisions is monotone and
the sets of L1-exceptional points and L2-exceptional points have measure
zero then the flow is completely hyperbolic.

A criterion for partial hyperbolicity is given by the following (cf. [W3])

Theorem 1.5. If the Hamiltonian flow with collisions is monotone then
it is also partially hyperbolic, provided one of the following conditions is
satisfied :

(1) the set of L1-exceptional points has measure zero and dim E2(x) ≤
n− 1 for almost all x ∈M ,

(2) the set of L2-exceptional points has measure zero and dim E1(x) ≤
n− 2 for almost all x ∈M .

2. Simple wedges. Consider the n-dimensional euclidean space E. We
define a k-dimensional wedge, k ≤ n, to be a convex cone in E generated by
k linearly independent rays. Hence we have a k-dimensional wedge W ⊂ E
if there is a linearly independent set of k vectors, {e1, . . . , ek}, such that

W = {e ∈ E | e = λ1e1 + . . .+ λkek, λi ≥ 0, i = 1, . . . , k}.
We call the vectors {e1, . . . , ek} the generators of the wedge and we denote
the wedge generated by them W (e1, . . . , ek). The generators are uniquely
defined up to positive scalar factors.

We denote by S(e1, . . . , ek) ⊂ E the linear subspace spanned by the
linearly independent vectors {e1, . . . , ek}.

The dual space E∗ can be naturally identified with E. Thus the cone W ∗

dual to the n-dimensional wedge W is itself an n-dimensional wedge in E.
Let {e1, . . . , en} be an ordered basis in E and {f1, . . . , fn} be the dual

basis, i.e., 〈fi, ej〉 = δji , the Kronecker delta. Clearly we have

(W (e1, . . . , en))∗ = W (f1, . . . , fn).

Proposition 2.1. The following properties of an ordered basis {e1, . . .
. . . , en} of unit vectors and its dual basis {f1, . . . , fn} are equivalent :
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(1) The orthogonal projection of el onto S(el+1, . . . , en) is parallel to
el+1, for l = 1, . . . , n− 1.

(2) 〈ei, ej〉 =
∏j−1
s=i 〈es, es+1〉 for all 1 ≤ i ≤ j − 1 ≤ n− 1.

(3) With the convention that e0 = en+1 = 0 we have

fi = bi−1ei−1 + aiei + biei+1, i = 1, . . . , n,

where the coefficients are given by

ai =
1− 〈ei−1, ei〉2〈ei, ei+1〉2

(1− 〈ei−1, ei〉2)(1− 〈ei, ei+1〉2)
, bi =

−〈ei, ei+1〉
1− 〈ei, ei+1〉2 .

(4) 〈fi, fj〉 = 0 for all 1 ≤ i, j ≤ n, |i− j| ≥ 2.

P r o o f. (1)⇔(2). Observe that since {e1, . . . , en} are unit vectors, (1)
can be reformulated as 〈ei, ej〉 = 〈ei, ei+1〉〈ei+1, ej〉 for i = 1, . . . , k − 1 and
j = i + 2, . . . , k. We get (2) by induction on the distance between i and j.
Clearly the converse is also true.

(2)⇒(3) and (4). In general for dual bases e1, . . . , en and f1, . . . , fn we
have

fi =
n∑

j=1

〈fi, fj〉ej ,

and the Gramm matrix {〈fi, fj〉} is the inverse of {〈ei, ej〉}. One can check
straightforwardly that the tridiagonal matrix of coefficients from (3) is the
inverse of the matrix of coefficients from (2), which proves that (2) implies
(3) and (4).

(4)⇒(1). Let Pl denote the orthogonal projection onto S(el+1, . . . , en).
We prove (1) by induction on l. We have 〈f1, f1〉e1 = f1 − 〈f1, f2〉e2, which
implies that 〈f1, f1〉P1e1 = −〈f1, f2〉e2. Given that Pl−1el−1 = rlel we apply
the projection Pl−1 to both sides of

fl = 〈fl−1, fl〉el−1 + 〈fl, fl〉el + 〈fl, fl+1〉el+1.

We get
Pl−1fl = (〈fl−1, fl〉rl + 〈fl, fl〉)el + 〈fl, fl+1〉el+1.

The coefficient of el cannot be zero since otherwise Pl−1fl = 〈fl, fl+1〉el+1,
which contradicts the orthogonality of fl and el+1. Hence we can write
Pl−1fl = slel + 〈fl, fl+1〉el+1 with sl 6= 0. Applying Pl to both sides of the
last equation we obtain slPlel = −〈fl, fl+1〉el+1.

We now introduce a special type of wedge.

Definition 2.2. A k-dimensional wedge W ⊂ E is called simple if
its generators {e1, . . . , ek} can be ordered in such a way that for any i =
1, . . . , k − 1, the orthogonal projection of ei onto the (k − i)-dimensional
subspace S(ei+1, . . . , ek) is a positive multiple of ei+1. The ordering of the
generators for which this property holds is called distinguished .
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From Proposition 2.1 we obtain immediately

Proposition 2.3. Let {e1, . . . , ek} be a set of linearly independent unit
vectors. The wedge W (e1, . . . , ek) is simple and the ordering of the genera-
tors is distinguished if and only if

(1) 〈ei, ei+1〉 > 0 for i = 1, . . . , n− 1 and
(2) 〈ei, ej〉 =

∏j−1
l=i 〈el, el+1〉 for all 1 ≤ i ≤ j − 1 ≤ k − 1.

Corollary 2.4. Any face of a simple wedge is a simple wedge. A simple
wedge has exactly two distinguished orderings, one is the reversal of the
other.

P r o o f. It follows from Proposition 2.3 that any face of a simple wedge
is simple and that the reversal of a distinguished ordering is distinguished.

It remains to show that there are no other distinguished orderings. This
follows immediately from the following observation. Suppose {e1, . . . , ek} are
unit generators of a simple wedge in a distinguished order. Then 〈e1, ek〉 <
〈ei, ej〉 for any 1 ≤ i < j ≤ k, (i, j) 6= (1, k).

A dual characterization of a simple wedge is given by

Proposition 2.5. Let W (e1, . . . , en) be a wedge in an n-dimensional
Euclidean space E and {f1, . . . , fn} be the dual basis. W (e1, . . . , en) is a
simple wedge and the order of the generators is distinguished if and only if

(1) 〈fi, fi+1〉 < 0 for i = 1, . . . , n− 1 and
(2) 〈fi, fj〉 = 0 for all 1 ≤ i, j ≤ n, |i− j| ≥ 2.

P r o o f. Assuming without loss of generality that {e1, . . . , en} are unit
vectors, we deduce from Proposition 2.1(3) that

〈fi, fi+1〉 =
−〈ei, ei+1〉

1− 〈ei, ei+1〉2 for i = 1, . . . , n− 1.

Hence indeed (1) is equivalent to the property (1) of Proposition 2.3.

The geometry of a k-dimensional simple wedge is completely determined
by the angles 0 < αi < π/2, i = 1, . . . , k − 1, that the vectors ei make with
ei+1 (or equivalently with the subspace S(ei+1, . . . , ek)). Assuming that the
generators {e1, . . . , ek} are unit vectors we have

(2.1) cosαi = 〈ei, ei+1〉, i = 1, . . . , k − 1.

We choose to characterize the geometry of a simple wedge by another set of
angles, 0 < βi < π/2, i = 1, . . . , k − 1, where βi is the angle between two
(k− i)-dimensional faces, S(ei+1, ei+2, , . . . , ek) and S(ei, ei+2, ei+3, . . . , ek),
of the simple (k − i + 1)-dimensional wedge W (ei, ei+1, . . . , ek). In partic-
ular, the angle β1 and the angle between f1 and f2 (from the dual basis
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{f1, . . . , fk}) add up to π. Hence we get, using Proposition 2.1(3),

cosβ1 =
cosα1 sinα2√

1− cos2 α1 cos2 α2
.

It follows immediately that for any i = 1, . . . , k − 2, we also get

cosβi =
cosαi sinαi+1√

1− cos2 αi cos2 αi+1
.

This can be transformed into

(2.2) tanβi =
tanαi

sinαi+1
, i = 1, . . . , k − 2.

We also have obviously βk−1 = αk−1. Hence indeed the information con-
tained in the set of β-angles determines the simple wedge completely (up to
isometry).

3. Particle falling in a wedge (PW system) and the system of
falling particles in a line (PFL system). Given an n-dimensional wedge
W in an n-dimensional Euclidean space E and a vector a ∈ intW ∗, we con-
sider the system of a point particle falling in W with constant acceleration
−a and bouncing off elastically from the (n − 1)-dimensional faces of the
wedge W (a PW system). In an elastic collision with a face the velocity
vector is instantaneously changed: the component orthogonal to the face is
reversed and the component parallel to the face is preserved.

The condition that the acceleration vector is in the interior of the dual
cone is equivalent to the system being closed (finite) under the energy con-
straint. One can change the acceleration vector by rescaling time, so that
in studying the dynamical properties of such a system only the direction of
the acceleration matters.

A PW system is in a natural way a Hamiltonian flow with collisions.
If we choose the generators of an n-dimensional wedge W as a basis in E,
we can identify E with Rn with coordinates (η1, . . . , ηn). The wedge W
becomes the positive cone W = {(η1, . . . , ηn) ∈ Rn | ηi ≥ 0, i = 1, . . . , n}.
Let the scalar product be defined in these coordinates by a positive definite
matrix L. Proposition 2.5 immediately yields

Proposition 3.1. The wedge W is simple if and only if the matrix K =
L−1 is tridiagonal with negative entries below and above the diagonal.

The PW system in the wedge W with acceleration vector a ∈ intW ∗ has
the Hamiltonian

(3.2) H = 1
2 〈Kξ, ξ〉+ 〈c, η〉,

where 〈·, ·〉 denotes the arithmetic scalar product in Rn, ξ ∈ Rn is the
momentum of the particle and c ∈ Rn is a vector with all entries positive, so
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that the acceleration vector a = Kc is in the interior of the dual wedge. This
representation of the wedge and the PW system will be referred to later on
as the standard representation of the PW system.

Consider the system of n point particles (or rods) in a line with positions
0 ≤ q1 ≤ . . . ≤ qn and masses m1, . . . ,mn, falling with constant acceleration
(equal to 1) towards the floor (at 0). The particles collide elastically with
each other and the floor. This system of falling particles in a line will be
referred to as a PFL system.

Hence between collisions the motion of the particles is governed by the
Hamiltonian

H =
n∑

i=1

(
p2
i

2mi
+miqi

)
.

The configuration space of the system, W = {q ∈ Rn | 0 ≤ q1 ≤ . . . ≤
qn}, with scalar product determined by the kinetic energy is a simple n-
dimensional wedge. To see this we introduce symplectic coordinates (x, v)
in which the scalar product (and the kinetic energy) have the standard form,

(3.3) xi =
√
mi qi, vi =

pi√
mi

, i = 1, . . . , n.

In these coordinates the Hamiltonian of the system changes to

H =
n∑

i=1

(
v2
i

2
+
√
mi xi

)

and we can consider x and v as vectors in the same standard Euclidean
space Rn. The elastic collisions of the particles are translated into elastic
reflections in the faces of the wedge. In these coordinates the wedge W is
generated by the unit vectors {e1, . . . , en},√

Mi ei = (0, . . . , 0,
√
mi, . . . ,

√
mn),

where Mi = mi + . . .+mn, i = 1, . . . , n. We see that for 1 ≤ i < j ≤ n,

〈ei, ej〉 =
√
Mj/

√
Mi,

which immediately yields the properties (1) and (2) of Proposition 2.3. Fur-
ther using (2.1) and (2.2) we get for this simple wedge

(3.4) cos2 αi =
Mi+1

Mi
, sin2 αi =

mi

Mi
, tan2 βi =

mi

mi+1
.

It follows from (3.4) that every simple wedge can appear as the config-
uration space of a PFL system with appropriate masses, depending on the
geometry of the wedge. (Note that the formulas (3.4) provide clear justifi-
cation for the introduction of the β-angles in the geometric description of a
simple wedge.) The acceleration vector for a PFL system has the direction
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of the first generator of the simple wedge, more precisely the acceleration
vector is

√
M1 e1.

We arrived at the important conclusion that a PW system in a simple
n-dimensional wedge with acceleration along the first (or the last) generator
of the wedge is equivalent to a PFL system with appropriate masses of the
n particles.

Finally, we introduce yet another system of symplectic coordinates (η, ξ)
for the PFL system in which the configuration wedge becomes the positive
cone (standard representation). Let

η1 = q1, ηi+1 = qi+1 − qi,
pi = ξi − ξi+1, pn = ξn, i = 1, . . . , n− 1.

The Hamiltonian of the system becomes

H =
n−1∑

i=1

(ξi − ξi+1)2

2mi
+

ξ2
n

2mn
+

n∑

i=1

Miηi.

We get a tridiagonal matrix with negative off-diagonal entries in the kinetic
energy, as required by Proposition 3.1.

4. Monotonicity of PFL systems. We now recall the results about
the monotonicity and hyperbolicity of PFL systems. These systems were
introduced and studied in [W1], where the reader can find more details.
When the masses of the particles are equal the system is completely inte-
grable. Indeed, if we allow the particles to pass through each other then the
n individual energies of the particles are preserved and provide us with n
independent integrals in involution. In the case of elastic collisions of the
particles we need to use symmetric functions of the n individual energies
as first integrals in involution. It was established in [W1] that if the masses
are nonincreasing, m1 ≥ . . . ≥ mn, and are not all equal then the sys-
tem is partially hyperbolic. In a recent paper Simányi [S] showed that if
m1 > m2 ≥ . . . ≥ mn then the system is completely hyperbolic.

We will give here a detailed and modified proof that PFL systems are
monotone under the above condition, which will be the basis for the proof
of our Main Theorem.

In the phase space of a PFL system we introduce the Euclidean coordi-
nates (x, v) given by (3.3). We choose two bundles of Lagrangian subspaces
L1 and L2,

L1 = {dv1 = . . . = dvn = 0}, L2 =
{
dxi = − vi√

mi
dvi, i = 1, . . . , n

}
.

The Hamiltonian vector field ∇H belongs to L2. The quadratic form Q is
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given by

Q =
n∑

i=1

dxidvi +
n∑

i=1

vi√
mi

dv2
i .

Theorem 4.1. If m1 ≥ . . . ≥ mn, then the PFL system is monotone
(with respect to the bundle of sectors between L1 and L2).

Between collisions the form Q is constant. Indeed, we have

d

dt
xi = vi,

d

dt
dxi = dvi,

d

dt
vi = −√mi,

d

dt
dvi = 0, i = 1, . . . , n,

which yields dQ/dt = 0.
The effect of a collision between different particles on the form Q will be

obtained with the help of the following important construction which will
play a crucial role in the future. We represent our system as a PW system in
a simple n-dimensional wedge W , with geometry determined by the masses
(cf. (3.4)), and with acceleration vector parallel to the first generator. A
collision of two particles becomes a collision with an (n−1)-dimensional face
of the wedge, containing the first generator. Consider the wedge W̃ obtained
by reflection in the face. Instead of reflecting the velocity in the face we can
allow the particle to pass through the face to the reflected wedge W̃ . Note
that the acceleration vector stays the same (since it lies in the face). What
changes is the quadratic form, it experiences a jump discontinuity. Let Q̃ be
the quadratic form associated with the PW system in the reflected wedge
W̃ . We want to examine the difference of Q and Q̃ at the common face.
Actually, if we identify all the tangent spaces to the common phase space of
the two PW systems (in W and W̃ ) the forms become functions of tangent
vectors from that common space that depend only on velocities (but not on
positions).

For the purpose of future applications we will consider a generalization
of this construction, namely we will not assume that the two wedges are
symmetric, but only that they share a common (n− 1)-dimensional face.

Consider two simple n-dimensional wedges W = W (e1, . . . , en) and W̃ =
W (ẽ1, . . . , ẽn) (we tacitly assume that the generators are always written in
a chosen distinguished order). Assume that the two wedges have isometric
(n−1)-dimensional faces, obtained when we drop el+1 and ẽl+1, respectively,
from the list of generators. We choose to glue the two wedges together along
the isometric faces, i.e., we assume that ei = ẽi for i 6= l + 1, and that the
two wedges are on opposite sides of the hyperplane containing the isometric
faces. Further we consider the PW systems in these wedges with common
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acceleration vector parallel to the first generator e1 = ẽ1. In each of the
wedges the PW system is equivalent to a PFL system with appropriate
masses of the particles, (m1, . . . ,mn) and (m̃1, . . . , m̃n) respectively.

Lemma 4.2. We have

mi = m̃i for all i 6= l, l + 1,

ml +ml+1 = m̃l + m̃l+1.

P r o o f. Since the two systems have acceleration vectors of the same
length it follows that M1 = m1 + . . . + mn = M̃1 = m̃1 + . . . + m̃n. Our
claim now follows from the formulas (3.4) for the α-angles in a simple wedge,
since the isometry of the faces implies αi = α̃i for i 6= l, l + 1.

We introduce the standard Euclidean coordinates, (3.3), x ∈ Rn and
x̃ ∈ Rn in W and W̃ respectively, associated with the PFL systems. The
common face of the two wedges is described by

xl/sinβl = xl+1/cosβl and x̃l/sin β̃l = x̃l+1/cos β̃l

in the respective coordinate systems. These coordinate systems in the con-
figuration space give rise to the respective coordinates in the phase spaces,
(x, v) in W × Rn and (x̃, ṽ) in W̃ × Rn. The tangent spaces of these phase
spaces are naturally identified because the wedges are contained in the same
Euclidean space.

The two coordinate systems are connected by the following “gluing”
transformation:

(4.2)

x̃i = xi for all i 6= l, l + 1,

x̃l = − cosΘxl + sinΘxl+1,

x̃l+1 = sinΘxl + cosΘxl+1,

where Θ = βl + β̃l is defined by the β-angles of the respective wedges, i.e.,

tan2 βl = ml/ml+1, tan2 β̃l = m̃l/m̃l+1.

Consider the quadratic forms Q and Q̃ associated with the respective
PFL systems. These quadratic forms depend on velocities (but not on posi-
tions), and the space of velocities of the two models is the same Euclidean
space. Hence we can compare the two quadratic forms as functions on the
space of velocities cross the tangent to the phase space.

Proposition 4.3. For the velocities of trajectories leaving W and enter-
ing W̃ we have

Q̃ ≥ Q if and only if βl + β̃l ≥ π/2.
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More precisely , we have

Q̃−Q =
1√

ml +ml+1
· 2 sin(2(βl + β̃l))

sin 2βl sin 2β̃l
× (− cosβl vl + sinβl vl+1)(− cosβl dvl + sinβl dvl+1)2.

Corollary 4.4. Q = Q̃ if and only if βl + β̃l = π/2.

P r o o f. Let us examine the quadratic form

Q =
n∑

i=1

dxidvi +
n∑

i=1

vi√
mi

dv2
i .

The first sum is invariant under any coordinate changes which respect the
distinction between positions and velocities. In the second sum only two
terms are affected by the gluing transformation. Hence we obtain

Q̃−Q =
l+1∑

i=l

ṽi√
mi

dṽ2
i −

l+1∑

i=l

vi√
mi

dv2
i .

Our claim now follows by straightforward calculations. To make them more
transparent we introduce yet other coordinate systems in the planes (vl, vl+1)
and (ṽl, ṽl+1),

z1 = sinβl vl + cosβl vl+1,

z2 = − cosβl vl + sinβl vl+1,

and parallel formulas for (z̃1, z̃2). We have
l+1∑

i=l

vi√
mi

dv2
i =

1√
ml +ml+1

(z1dz
2
1 + 2z2dz1dz2 + (z1 − 2 cot 2βl z2)dz2

2)

and the gluing map (4.2) is given by

z̃1 = z1, z̃2 = −z2.

Now we get immediately

Q̃−Q =
2√

ml +ml+1
(cot 2β̃l + cot 2βl)z2dz

2
2 .

It remains to observe that the crossing from W to W̃ corresponds to
z2 < 0.

It follows from Proposition 4.3 that in a PW system in a simple wedge
with acceleration along the first generator the value of the Q-form does
not decrease in a collision with any face containing the acceleration vector
provided that

βi ≥ π/4, i = 1, . . . , n− 1.
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Equivalently, in a PFL system the Q-form does not decrease in a collision
between two particles if only m1 ≥ . . . ≥ mn, and this condition is necessary.

Let us further examine the change in the Q-form if in the time interval
[0, t] we have collision with the floor of the first particle at time tc, 0 < tc < t
(and no other collisions). It is clear that the calculation reduces to the
variables (x1, v1) alone. Let x = x1(0), v = v1(0), x̂ = x1(t), v̂ = v1(t), a =√
m1 and vc = v1(t−c ) < 0. We have

x̂ = −(t− tc)vc − 1
2a(t− tc)2, v̂ = −vc − a(t− tc),

where

atc = v +
√
v2 + 2ax, vc = −

√
v2 + 2ax.

So (x̂, v̂) depends on (x, v) smoothly (unless (x, v) = (0, 0)) and we can cal-
culate the derivative. We get dv̂ = dv− 2

vc
(vdv+adx). From the preservation

of the energy in a collision we conclude that v̂dv̂ + adx̂ = vdv + adx. Now
the difference of the quadratic forms at time t and at time 0 is

(v̂dv̂ + adx̂)
dv̂

a
− (vdv + adx)

dv

a
= − 2

avc
(vdv + adx)2 ≥ 0.

We conclude that in a collision with the floor the derivative of the Hamilto-
nian flow is monotone (the Q-form does not decrease). Note that no further
conditions on the masses (on the β-angles in the PW system) are neces-
sary to assure the monotonicity in a collision of the first particle with the
floor (collision with the face which does not contain the acceleration vector).
Theorem 4.1 is proven.

Let us now examine the L1- and L2-exceptional subspaces, and L1- and
L2-exceptional points. First we inspect what happens to tangent vectors
from the two Lagrangian subspaces in a collision with the floor. Using the
formulas developed above we find that for a vector from L1 either dx1 6= 0
and then the vector enters the interior of the sector C = {Q > 0}, or dx1 = 0
and then dx̂1 = 0 and the vector stays in L1, and under the identification
of the tangent spaces the vector does not change.

For a vector from L2 we have dv̂1 = dv1 and the vector stays in L2. If we
use (dv1, . . . , dvn) as coordinates in L2 these Lagrangian subspaces become
naturally identified and we conclude that in a collision with the floor a vector
from L2 stays in L2 and is not changed at all.

By Proposition 4.3 in a collision of an lth particle with the (l+1)st lighter
particle (ml > ml+1) a vector from L2 either enters the interior of the sector
C or dvl/

√
ml = dvl+1/

√
ml+1 and the v-components of the vector are not

changed. (In the language of the PW system this last condition means that
the velocity component of the vector is parallel to the face of the wedge
in which the particle is reflected.) As a result, for vectors from L2 we get
one equation for each nondegenerate collision of two particles. Since also no
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collision with the floor can change the v-components of a vector from L2,
it follows immediately that if the masses of the particles decrease (strictly)
every vector in L2 enters eventually the interior of the sector C except when
dvi/
√
mi are all equal for i = 1, . . . , n. This last condition means that the

vector is parallel to the Hamiltonian vector field. It shows that if the masses
decrease there are no L2-exceptional trajectories of the flow (among regular
trajectories).

None of the vectors from L1 ∩ {dH = 0} can enter the interior of the
sector as a result of a collision of two particles. They stay in L1 but they are
changed by the appropriate reflection in a face of the wedge. Only a collision
with the floor can push vectors from L1 into the interior of the sector C. It
happens if dx1 6= 0 immediately before the collision. Hence in principle there
may be L1-exceptional trajectories on which the collisions between particles
always “prepare” some vectors before each collision with the floor so that
dx1 = 0.

In a recent paper Simányi [S] showed that the set of L1-exceptional
trajectories is at most a countable union of codimension 1 submanifolds.

Theorem 4.5 (Simányi [S]). If m1 > m2 ≥ . . . ≥ mn, then the PFL
system is completely hyperbolic.

5. Special examples

Capped system of particles. Let us explore the consequences of the prop-
erty that a simple wedge has two distinguished orderings of generators. A
PFL system is equivalent to a PW system with acceleration vector parallel
to the first generator. Let us modify the PFL system so that the wedge
stays the same but the acceleration becomes parallel to the last generator.
This is accomplished by changing the potential energy and the resulting
Hamiltonian is

H =
n∑

i=1

p2
i

2mi
+mnqn.

As before the configuration space is {q ∈ Rn | 0 ≤ q1 ≤ . . . ≤ qn} and the
particles collide with each other and the floor. We will call it the capped
system of particles in a line. The new feature is that between collisions the
particles move uniformly (with constant velocity) except for the last particle
which is accelerated down (it falls down). It is this last particle (“the cap”)
that keeps the system closed, i.e., the energy surface {H = const} is compact
and it carries a finite Liouville measure.

The capped system of particles is equivalent to another PFL system
with different masses. We will calculate these masses (or equivalently the β-
angles) to establish conditions under which the capped system is completely
hyperbolic or completely integrable. Note that the β-angles are complete
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Euclidean invariants of a simple wedge with a chosen distinguished ordering
of the generators, and they do change when we change the distinguished
ordering and the last generator becomes the first.

Theorem 5.1. The capped system of particles in a line is completely
integrable if

mk =
n

k(k + 1)
mn for k = 1, . . . , n− 1,

and completely hyperbolic if

m1

M1
≥ 1

2
and

mi

Mi
≥ mi−1

Mi−1

(
1 +

mi−1

Mi−1

)−1

for i = 2, . . . , n− 2

and
mn−1

Mn−1
>
mn−2

Mn−2

(
1 +

mn−2

Mn−2

)−1

.

P r o o f. We need to calculate the α- and β-angles for the reversed or-
dering of the generators of the simple wedge. Denote these angles for the
reversed ordering by α̂k and β̂k, k = 1, . . . , n − 1, respectively. From (2.1),
(2.2) and (3.4) we obtain for k = 1, . . . , n− 1,

cos2 α̂k = cos2 αn−k =
Mn−k+1

Mn−k
, sin2 α̂k =

mn−k
Mn−k

,

tan2 β̂n−1 = tan2 α̂n−1 =
m1

M2
,

and for k = 1, . . . , n− 2,

tan2 β̂k =
tan2 α̂k

sin2 α̂k+1
=

mn−kMn−k−1

mn−k−1Mn−k+1
.

Introducing Xi = M1/Mi for i = 1, . . . , n and setting X0 = 0 we can rewrite
this as

tan2 β̂n−i =
Xi+1 −Xi

Xi −Xi−1
, i = 1, . . . , n− 1.

By the results of Section 4, the condition of complete integrability is that
tan2 β̂k = 1 for k = 1, . . . , n− 1. It is equivalent to the linearity condition

Xi+1 −Xi = Xi −Xi−1, i = 1, . . . , n− 1.

Since X1−X0 = 1 we obtain Xi = i. The claim about complete integrability
follows. We can apply Theorem 4.5 if tan2 β̂k ≥ 1 for k = 1, . . . , n− 1, and
tan2 β̂1 > 1. This gives us the convexity condition

Xi+1−Xi ≥ Xi−Xi−1, i = 1, . . . , n− 1, Xn−Xn−1 > Xn−1−Xn−2,

which translates into the conditions in the theorem.

System of attracting particles in a line. Consider a system of n+ 1 point
particles in a line with positions q0 ≤ q1 ≤ . . . ≤ qn and masses m0, . . . ,mn.
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They collide elastically with each other and their interaction is defined by a
linear translation invariant potential

∑n
i=1mi(qi−q0). Thus the Hamiltonian

of the system is

H =
n∑

i=0

p2
i

2mi
+

n∑

i=1

mi(qi − q0).

The total momentum is preserved in this system. Setting the total momen-
tum to zero and fixing the center of mass m0q0 +m1q1 + . . .+mnqn = 0 we
obtain a PW system in a simple wedge with acceleration parallel to the first
generator (hence our system is also equivalent to a PFL system). Indeed,
introducing symplectic coordinates (η, ξ),

η0 = m0q0 +m1q1 + . . .+mnqn,

ηi = qi − qi−1, i = 1, . . . , n,

p0 = m0ξ0 − ξ1,
pi = miξ0 + ξi − ξi+1, i = 1, . . . , n− 1,

pn = mnξ0 + ξn,

and setting the total momentum and the center of mass to zero, η0 = 0,
ξ0 = 0, we obtain the Hamiltonian

H =
ξ2
1

2m0
+
n−1∑

i=1

(ξi − ξi+1)2

2mi
+

ξ2
n

2mn
+

n∑

i=1

Miηi,

where Mi = mi + . . . + mn for i = 0, 1, . . . , n. By Proposition 3.1 the
wedge W = {η1 ≥ 0, . . . , ηn ≥ 0} is simple. It can also be checked that the
acceleration is parallel to the first generator. (Acceleration parallel to the
last generator corresponds to the potential

∑n−1
i=0 mi(qn− qi), which gives a

symmetric system where the special role is played by qn rather than q0.)

Theorem 5.2. The system of attracting particles is completely integrable
if for some a > n,

mi

m0
=

a

(a− i)(a− i+ 1)
, i = 1, . . . , n,

and it is completely hyperbolic if the sequence

ai =
m0 +m1 + . . .+mi−1

mi
+ i, i = 1, . . . , n,

satisfies a1 < a2 ≤ a3 ≤ . . . ≤ an.

P r o o f. The n-dimensional wedge W = {η1 ≥ 0, . . . , ηn ≥ 0} has in the
original coordinates the unit generators ei = (e0

i , e
1
i , . . . , e

n
i , ), i = 1, . . . , n,
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where

√
M0 e

k
i =





−
√

Mi

M0 −Mi
if k < i,

√
M0 −Mi

Mi
if k ≥ i.

The acceleration vector is parallel to e1 and for 1 ≤ i < j ≤ n we get

〈ei, ej〉 =

√
M0 −Mi

Mi

√
Mj

M0 −Mj

(which implies immediately by Proposition 2.3 that the wedge is indeed
simple). We calculate further that the β-angles are given by

tan2 βi =
mi

m0 +m1 + . . .+mi−1

(
m0 +m1 + . . .+mi

mi+1
+ 1
)

for i = 1, . . . , n− 1. If we introduce

Xi =
m0 +m1 + . . .+mi−1

mi
+ i, i = 1, . . . , n,

then the condition for complete integrability is

Xi+1 = Xi, i = 1, . . . , n− 1,

and the condition for complete hyperbolicity is

Xi+1 ≥ Xi, i = 2, . . . , n− 1, X2 > X1.

This leads to the conditions in the theorem.

For example, in the case of equal masses m1 = . . . = mn, we have
complete hyperbolicity of the system. Note that we can rewrite the potential
energy as

n∑

i=1

Mi(qi − qi−1),

i.e., we can interpret the interaction of the particles as the attraction of
nearest neighbors, but then the force of attraction decays for particles further
to the right.

6. Wide wedges and the Main Theorem. Let W = W (g1, . . . , gk)
be a k-dimensional wedge in a Euclidean n-dimensional space E.

Definition 6.1. A k-dimensional wedge W = W (g1, . . . , gk) is called
wide if the angles between the generators exceed π/2, i.e., 〈gi, gj〉 < 0 for
any 1 ≤ i < j ≤ k.

Clearly every face of a wide wedge is a wide wedge of lower dimension.
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Proposition 6.2. If an n-dimensional wedge W is wide then the dual
wedge W ∗ is contained in W and the inclusion is strict , in the sense that
the only point in the intersection of the boundaries of W and W ∗ is 0.

P r o o f. This proof was communicated to us by Michał Rams. Consider
a wide wedge W = W (g1, . . . , gn) and let {f1, . . . , fn} be the generators of
the dual wedge W ∗ which also form a basis dual to the basis {g1, . . . , gn}.
We have

fi =
n∑

j=1

〈fi, fj〉gj

for i = 1, . . . , n. It is sufficient to show that all the coeffcients in these
expansions are positive. Assume that this is not the case and for say f1 the
set I = {j | 〈f1, fj〉 ≤ 0} is nonempty. We define

f+
1 =

∑

j 6∈I
〈f1, fj〉gj , f−1 = −

∑

k∈I
〈f1, fk〉gk,

so that f1 = f+
1 − f−1 . Since f−1 belongs to W we get

(6.1) 0 ≤ 〈f1, f
−
1 〉 = 〈f+

1 , f
−
1 〉 − 〈f−1 , f−1 〉.

But since the wedge W is wide we also have

(6.2) 〈f+
1 , f

−
1 〉 = −

∑

j 6∈I

∑

k∈I
〈f1, fj〉〈f1, fk〉〈gj , gk〉 ≤ 0.

Comparing (6.1) and (6.2) we conclude that f−1 = 0 and f1 = f+
1 . Finally,

consider one of the vectors gk missing from the expansion of f1, i.e., k ∈ I
or 〈f1, fk〉 = 0. We get

0 ≤ 〈f1, gk〉 =
∑

j 6∈I
〈f1, fj〉〈gj , gk〉,

which is contradictory since all the terms in the last sum are negative.

Corollary 6.3. If the n-dimensional wedge W (g1, . . . , gn) is wide then
the angle between any two of its codimension 1 faces exceeds π/2.

Corollary 6.4. If W (g1, . . . , gn) is wide and {f1, . . . , fn} is the basis
dual to {g1, . . . , gn} then 〈fi, fj〉 > 0 for any 1 ≤ i, j ≤ n.

Note that the converse of Proposition 6.2 (or of any of the two corollaries)
does not hold for n ≥ 3.

Proposition 6.5. If a wedge is wide, then the orthogonal projection of
the interior of the dual wedge onto any of its faces is contained in the interior
of that face.

In particular, the orthogonal projections onto any face of the wedge of
any vector from the interior of the dual wedge are nonzero.
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P r o o f. Let {g1, . . . , gn} be generators of the wedge and let {f1, . . . , fn}
be the dual basis (and hence also the generators of the dual wedge). The
orthogonal projections of f1, . . . , fk onto the subspace S(g1, . . . , gk) form
the basis dual to {g1, . . . , gk} in this subspace. It follows that the orthogonal
projection of the dual wedge onto a face is the dual wedge of that face. Since
all the faces are also wide, by Proposition 6.2 this projection is contained in
the face and the inclusion is strict.

We can now formulate and prove our

Main Theorem 6.6. The PW system in a wide wedge with arbitrary
acceleration vector from the interior of the dual wedge is completely hyper-
bolic.

In the standard representation, W = {(η1, . . . , ηn) ∈ Rn | ηi ≥ 0, i =
1, . . . , n} and the scalar product in the η coordinates is defined by a positive
definite matrix L = {lij}. The assumption that W is wide translates into
lij < 0 for i 6= j. By Corollary 6.4 it follows that the inverse matrix K = L−1

has all entries positive. The Hamiltonian of the system is

H = 1
2 〈Kξ, ξ〉+ 〈c, η〉,

where 〈·, ·〉 denotes the arithmetic scalar product in Rn, ξ ∈ Rn is the
momentum of the particle and c ∈ Rn is a vector with all entries positive, so
that the acceleration vector equal to Kc is in the interior of the dual wedge.
Now the Main Theorem can be reformulated as the Main Theorem from the
Introduction.

Proof of the Main Theorem. Let the wide wedge be W = W (g1, . . . , gn).
We will divide it into n! simple wedges. For that purpose let us note that a
simple wedge is uniquely defined by the choice of a first generator e1 and a
flag of subspaces

S1 ⊃ . . . ⊃ Sn
such that e1 is not orthogonal to any of the subspaces. Indeed, given such
a flag we define ek as the orthogonal projection of e1 onto Sk. Clearly the
wedge W (e1, . . . , en) is simple. Conversely, for a simple wedge W (e1, . . . , en)
we obtain the flag of subspaces by considering Sk = S(ek, . . . , en), k =
1, . . . , n.

The first generator of all our simple wedges will be the acceleration
vector. We define a simple wedge Wσ, for any permutation σ of {1, . . . , n},
by the flag

Sk = S(gσ(k), gσ(k+1) . . . , gσ(n)), k = 1, . . . , n.

By Proposition 6.5 the acceleration vector is not orthogonal to any of the
faces of the wide wedge, so that these n! flags define indeed simple wedges
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and moreover ⋃
σ

Wσ = W (g1, . . . , gn),

and the interiors of these simple wedges are mutually disjoint. The intersec-
tion of all these wedges is the ray spanned by their first generator e1 (the
acceleration vector).

Consider two adjacent wedges, Wσ0 and Wσ1 , i.e., two wedges which have
a common (n−1)-dimensional face. Without loss of generality we can assume
that σ0 is the identity permutation. Then by necessity σ1 is a transposition
of two consecutive indices, say l and l + 1. Consider the β-angles for Wσ0

and Wσ1 , β1, . . . , βn−1 and β̃1, . . . , β̃n−1, respectively.

Lemma 6.7. For the two adjacent wedges, βl + β̃l > π/2.

P r o o f. The two adjacent wedges have the same first l generators, e1, . . .
. . . , el, and the same last n− l− 1 generators, el+2, . . . , en. Let el+1, ẽl+1 be
the two different generators for the wedges Wσ0 and Wσ1 , respectively.

The angles βl and β̃l are equal to the angles between codimension 1 sub-
spaces of Sl = S(gl, gl+1, . . . , gn): βl is the angle between S(el, gl+2, . . . , gn)
and S(el+1, gl+2, . . . , gn) = S(gl+1, gl+2, . . . , gn), while β̃l is the angle be-
tween S(el, gl+2, . . . , gn) and S(ẽl+1, gl+2, . . . , gn) = S(gl, gl+2, . . . , gn).
Since these three subspaces of Sl have in common the codimension 2 sub-
space S(gl+2, . . . , gn) we conclude that βl + β̃l is the angle between two
subspaces of Sl, S(gl+1, gl+2, . . . , gn) and S(gl, gl+2, . . . , gn). Observing that
these are two faces of the wide wedge W (gl, gl+1, . . . , gn) we obtain the
lemma from Corollary 6.3.

In each of the simple wedges we introduce the form Q furnished by the
canonical isomorphism with a PFL system. We obtain a piecewise continuous
Q-form in the tangent bundle of the phase space of our system. This form is
defined by two Lagrangian bundles, L1 and L2. Note that L1 is continuous
(with the natural identification of the tangent spaces to the phase space
W × Rn it is actually constant) while L2 experiences jump discontinuities
when we cross from one simple wedge to another (cf. Corollary 4.4).

By Proposition 4.3 and Lemma 6.7 our system is Q-monotone. To apply
Theorem 1.4 it remains to examine L1- and L2-exceptional trajectories.

Consider Euclidean coordinates (x, v) ∈ Rn × Rn in which the kinetic
energy has the standard form 〈v, v〉/2, where x ∈ Rn represents the position
of the particle in the wedge W and v ∈ Rn represents its velocity. In these
coordinates L1 = {dv1 = . . . = dvn = 0} and the Q-form is

Q =
n∑

k=1

dxkdvk +
n∑

i,j=1

zijdvidvj ,
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where the symmetric matrix {zij} depends on the simple wedge Wσ in which
x is located and the velocity v. Vectors from L1 are not changed by the
derivative of the flow unless there is a collision with one of the faces of
the wide wedge. This collision considered in the corresponding PFL system
becomes a collision with the floor. The effect of such a collision on vectors
from L̃1 = L1∩{dH = 0} was discussed in Section 4. In our present language
the conclusion is the following. Either a vector from L̃1 is parallel to the face
of the wedge where the collision is occurring and then it is not changed by
the derivative of the flow, or it is transversal to the face and then it enters
the interior of the sector C = {Q ≥ 0} as a result of the collision. Hence
the only vectors from L̃1 which do not ever enter the interior of C are the
vectors parallel to all the faces with which the particle collides in the future.
There are no vectors parallel to all the (n−1)-dimensional faces of the wide
wedge. It follows that the only L1-exceptional trajectories could be those
for which the particle does not collide in the future with one (or several) of
the faces.

Claim 1. There are no nondegenerate trajectories avoiding future colli-
sions with one of the faces.

A degenerate trajectory is one which hits two faces simultaneously or has
velocity with zero orthogonal component to the face at the time of collision,
i.e., it is a trajectory for which there is no natural continuation of the dy-
namics. To prove the claim note that, if the avoided face is W (g2, . . . , gn),
then the component of the velocity in the direction of g1 is preserved at all
other collisions, since all the faces with which our orbit collides are parallel
to g1. Between collisions we have

d

dt
〈v, g1〉 = −〈a, g1〉 < 0

because the acceleration vector a is taken from the interior of the dual cone.
We obtain the contradiction that on our orbit 〈v, g1〉 goes to −∞. Hence
there are no such orbits. (Note that we did not need to use Simányi’s method
[S] and we have established more. It is quite plausible that also in the case
of a simple wedge there are no L1-exceptional orbits. It is indeed so in the
case obtained from the symmetric wide wedge, when every pair of adjacent
simple wedges, Wσ1 and Wσ2 , is symmetric with respect to the common
face, cf. Section 8.)

It remains to show that there are only few L2-exceptional trajectories. We
identify all the L2 subspaces with the tangent velocity space by the natural
projection. Further the tangent velocity space can be naturally identified
with the tangent configuration space. Hence we can use (dη1, . . . , dηn) as
coordinates in the subspaces L2.
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With this identification vectors from L2 are not changed in a collision
with the faces of the wide wedge. Neither they are changed between colli-
sions. But when the trajectory crosses from one simple wedge to an adjacent
one a tangent vector from L2 is likely to get into the interior of the sector C
because L2 experiences a jump discontinuity. Again the results of Section 4
(Proposition 4.3) can be translated into our current language as the follow-
ing alternative. When the trajectory crosses transversally from one simple
wedge to another, a vector from L2 either enters immediately the interior
of the sector C or it is parallel to the common face.

The trajectories with velocities which are not transversal to the common
face at the time of crossing can be dropped from consideration, they form
a set of zero measure in the phase space. Let us also call such trajectories
degenerate. We are going to prove

Claim 2. There are no nondegenerate L2-exceptional trajectories.

We need to prove that along any nondegenerate trajectory the intersec-
tion of all subspaces of codimension 1 containing the faces of the wedges that
the trajectory crosses is equal to the one-dimensional subspace spanned by
the acceleration vector. The task of tracing these subspaces along a given
trajectory is made cumbersome by the fact that they depend in general on
the geometry of the wide wedge. We avoid this difficulty by focusing on
very special common faces, which in particular lie in subspaces that do not
depend on the geometry of the wedge.

As observed earlier, for a pair of adjacent simple wedges, Wσ1 and Wσ2 ,
the permutation σ2σ

−1
1 is a transposition of two consecutive indices. We

consider only those pairs of adjacent simple wedges for which this transpo-
sition is the transposition of 1 and 2. It is not hard to see that the common
face of such a pair must be contained in the subspace of the form

S(a, gσ1(3), gσ1(4) . . . , gσ1(n)).

This subspace is given by the equation
ηk
ak

=
ηl
al
,

where σ1(1) = k and σ1(2) = l. Hence the crossing of such a common face
forces the corresponding relation on the L2-exceptional subspace:

(6.3)
dηk
ak

=
dηl
al
.

It remains to show that the relations (6.3) along every nondegenerate tra-
jectory suffice to force

dη1

a1
=
dη2

a2
= . . . =

dηn
an

.
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This follows readily from Claim 1. Indeed, according to Claim 1, any trajec-
tory will collide with the face W (g2, . . . , gn) and then after some time it will
collide with every other face of the wide wedge. Hence, for any s = 2, . . . , n,
the trajectory must go from a simple wedge Wσ1 to Wσ2 , where σ1(1) = 1
and σ2(1) = s (needless to say, these simple wedges are not adjacent in gen-
eral). Let us trace the crossings from one simple wedge to the adjacent one,
on the way from Wσ1 to Wσ2 , by the transpositions required to get from
σ1 to σ2. Among these transpositions we must have enough transpositions
of the first two indices to change 1 into s. Independent of how many times
and when this special transposition occurs, the respective equalities (6.3)
will force

dη1

a1
=
dηs
as

,

which proves Claim 2, and ends the proof of the Main Theorem.

7. Systems of attracting particles with arbitrary constraints.
Consider the system of particles falling to the floor of finite mass described
in the introduction, with Hamiltonian

(7.1) H =
n∑

i=0

p2
i

2mi
+

n∑

i=1

ci(qi − q0)

and elastic constraints

(7.2) q1 − q0 ≥ 0, q2 − q0 ≥ 0, . . . , qn − q0 ≥ 0.

It satisfies the conditions of the Main Theorem. Indeed, by the change of
variables (0.3) and the Hamiltonian reduction η0 = 0, ξ0 = 0, we obtain the
Hamiltonian

(7.3) H =
(ξ1 + . . .+ ξn)2

2m0
+

n∑

i=1

ξ2
i

2mi
+

n∑

i=1

ciηi,

and the system is constrained to the wedge W = {η1 ≥ 0, . . . , ηn ≥ 0}.
It is a straightforward calculation that the inverse of the matrix K giving

the kinetic energy has all off-diagonal elements negative. Hence the wedge
W is wide. We will denote by {g1, . . . , gn} the generators of W . In the case
n = 3 by taking different masses we can obtain all possible wide wedges. For
n ≥ 4 there are many more wide wedges than covered by these Hamiltonians.
Geometrically the special property of the wide wedge can be described in the
following way. The generators of the wedge after appropriate scaling form
an orthocentric simplex, i.e., a simplex in which all the heights intersect at
a unique point (see [Ro]). In such an orthocentric wedge there is a special
ray, perpendicular to the opposite face of the orthocentric simplex. This
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property of a wedge is shared by the dual wedge and the orthocentric ray is
the same for both.

Let us take the special potential function with ci = αmi. The Hamilto-
nian equations become

(7.4)

dηi
dt

=
ξ1 + . . .+ ξn

m0
+

ξi
mi

= ui,

dξi
dt

= − αmi, i = 1, . . . , n.

We have further
d2ηi
dt2

=
dui
dt

= −αm0 +m1 + . . .+mn

m0
= −α M

m0
,

i.e., the accelerations of all η coordinates are equal. Geometrically this means
that the acceleration vector spans the orthocentric ray of the wedge W . The
fact that the wide wedge given by the kinetic energy in (7.3) is orthocentric
and the choice of the acceleration vector along the orthocentric ray lead
to the partition into simple wedges, introduced in the proof of the Main
Theorem, given by

(7.5) Wσ = {η ∈ Rn | 0 ≤ ησ(1) ≤ . . . ≤ ησ(n)}.
Note that in general the partition of a wide wedge into simple wedges is
achieved by slicing the wedge with n!(n− 1)/2 hyperplanes but in our special
case only n(n− 1)/2 hyperplanes ηk = ηl are used.

We now consider a system obtained by adding more constraints of the
form qk ≤ ql to the wide constraints (7.2). These additional constraints
constitute the “stacking rules” as explained in the introduction. They define
a convex polyhedral cone T contained in the wide wedge W . In our list of
constraints some constraints are consequences of others. We can naturally
introduce a minimal set of constraints. Clearly the minimal set of constraints
is in one-to-one correspondence with the faces of the cone T .

A convenient way of describing the minimal set of constraints is by an
oriented graph G with n+ 1 vertices labeled by the masses m0,m1, . . . ,mn.
The graph contains an edge from mk to ml if the constraint qk ≤ ql belongs
to the minimal set of constraints. The resulting graph is connected. We will
refer to m0 as the floor of the graph. Every vertex can be reached by a path
from the floor. We will call such a graph a graph of constraints. In Fig. 1
we give all possible graphs of constraints for 3 particles (up to permutations
of the masses). If the graph of constraints is a tree, the cone T is a wedge
which is in general neither simple nor wide. The leftmost graph corresponds
to a wide wedge, and the rightmost graph to a simple wedge. For 4 particles
there are 16 possible graphs of constraints, out of which 8 graphs define T
which is a wedge.
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Fig. 1. Possible graphs of constraints for 3 particles

The edges starting at the floor of a graph of constraints correspond to
possible collisions of particles with the floor. All the other edges correspond
to possible collisions between two particles.

A graph of constraints defines naturally a partial order of the vertices
(masses) which we denote by ≺.

Fix a graph of constraints G. A vertex ml is a successor of mk if mk ≺ ml,
in particular mk is its own successor. We call a vertex ml an immediate
successor of mk if there is an edge in the graph from mk to ml. If ml is
an immediate successor of mk, then mk is an immediate predecessor of ml.
Only immediate successors of the floor can collide with it.

Let
N (mk) =

∑
mk≺ml

ml

be the total mass of all successors of mk. Let as before M = N (m0) =∑n
l=0ml be the total mass. We define P(mk) = M −N (mk).

Theorem 7.1. The system with Hamiltonian

H =
(ξ1 + . . .+ ξn)2

2m0
+

n∑

i=1

ξ2
i

2mi
+

n∑

i=1

αimiηi,

with αi > 0, i = 1, . . . , n, and a given graph of constraints G is completely
hyperbolic if for every edge in G from mk to ml, k > 0, we have

αk = αl(7.6)
and

ml

mk
< 1 +

mk +ml

P(mk)
.(7.7)

Note that in (7.6) we do not necessarily require that the α-coefficients
are all equal (unless the graph obtained from G by the removal of the floor
and all the edges starting at the floor is connected). The following proof is
greatly simplified if all the α-coefficients are equal and hence the acceleration
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vector has the direction of the orthocentric ray. In the first reading of the
proof it may be helpful to settle for this simplifying assumption.

P r o o f. We follow the proof of the Main Theorem. We split the wide
wedge W into n! simple wedges Wσ indexed by all permutations σ of
{1, . . . , n}. We first prove that the cone T is the union of some of these
simple wedges, i.e.,

(7.8) T =
⋃

Wσ∩ intT 6=∅
Wσ.

If the acceleration vector has the direction of the orthocentric ray then
the partition into simple wedges is given by (7.5). We call a permutation σ
compatible with the graph of constraints G if σ(k) ≤ σ(l) whenever mk ≺ ml.
Clearly the configuration space T of our system is the union of simple wedges
Wσ for all permutations σ compatible with the constraints.

In general the acceleration vector a = (a1, . . . , an) is equal to

ak = −d
2ηk
dt2

=
α1m1 + . . .+ αnmn

m0
+ αk,

and by (7.6) it is parallel to all the faces of T which are not the faces of the
wide wedge W . Moreover, due to the special geometry of the wide wedge
any such face is orthogonal to most of the faces of W . More precisely, the
face of T which corresponds to a collision of mk and ml, k, l > 0 (i.e., the
face defined by the equation ηk = ηl) is orthogonal to all of the faces of W
with the exception of ηk = 0 and ηl = 0.

The proof of (7.8) is now accomplished by induction on the dimension
n. When n = 2 the claim is obvious. (When n = 3 we can convince our-
selves about the validity of (7.8) by straightforward geometric considera-
tions.) Assume that (7.8) holds for n ≤ N,N ≥ 2 and all possible graphs
of constraints. We prove (7.8) for n = N + 1. If mσ(1) is not an immediate
successor of the floor then Wσ is disjoint from the interior of the cone T .
Hence the simple wedges having nonempty intersections with the interior of
T can be split according to σ(1), and mσ(1) must be one of the immediate
successors of the floor. Consider only the simple wedges Wσ with a fixed
allowed value of σ(1), say σ(1) = N + 1. By intersecting T with {ηN+1 = 0}
we obtain a convex cone T̂ corresponding to the graph of constraints Ĝ ob-
tained from G by collapsing the edge from the floor to mN+1. Clearly the
orthogonal projection â of the acceleration vector a onto {ηN+1 = 0} lies in
all the faces of T̂ corresponding to the edges of Ĝ except the edges starting
at the floor (note that there are in general many more edges starting at the
floor in Ĝ). Using the inductive assumption we conclude that the cone T̂ is
the union of some N -dimensional simple wedges defined by the acceleration
vector â. It now follows from the convexity of T that the simple wedges Wσ
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with σ(1) = N + 1 are all contained in T , which proves (7.8).
As in the proof of the Main Theorem, in each of the simple wedges we

introduce the quadratic form Q furnished by the canonical isomorphism with
a PFL system. We are going to prove that with this choice of the quadratic
form (or equivalently of the two fields of Lagrangian subspaces) our system
is monotone. Indeed, the form Q is conserved as long as the trajectory stays
in one simple wedge and as shown in the proof of the Main Theorem it does
not decrease when the orbit crosses to an adjacent simple wedge or collides
with one of the faces of the wide wedge.

It remains to study the conditions of monotonicity when the trajectory
hits a face of T which does not lie in the face of the wide wedge. This
corresponds to a collision of two masses, mk and ml, k, l > 0, and hence also
to an edge of the graph which does not start at the floor. The appropriate
conditions were calculated in Section 4, they are formulated in terms of β-
angles of the simple wedge. The problem is to translate them into conditions
on the masses in our system.

For clarity we first find appropriate β-angles under the assumption that
all the coefficients αi, i = 1, . . . , n, are equal.

Consider the collision of two particles, mk ≺ ml, occurring in the simple
wedge Wσ. We put k = σ(s); then by necessity l = σ(s+1). The condition of
monotonicity in such a collision is, according to the results of Section 4, that
the angle βs in the simple wedge Wσ is not less than π/4. It was established
in the proof of Theorem 5.2 that

tan2 βs =
mk

ml

(
1 +

mk +ml

m0 +mσ(1) + . . .+mσ(s−1)

)
.

This is the angle in S(gσ(s), gσ(s+1), . . . , gσ(n)) between two subspaces of
codimension 1, S(gσ(s+1), . . . , gσ(n)) and {ηk = ηl}.

Hence the condition of monotonicity reads

(7.9)
ml

mk
≤ 1 +

mk +ml

m0 +mσ(1) + . . .+mσ(s−1)
.

This is most restrictive when the denominator on the right hand side is the
largest possible. After a moment’s reflection it becomes apparent that this
denominator does assume the value of P(mk) in one of the simple wedges
of our configuration space and it cannot be greater. This shows that (7.9)
follows from the assumption (7.7).

We conclude that our system is Q-monotone at least in the case of the
special acceleration vector. In the general case we observe that although
the simple wedges are changed when the acceleration vector is changed,
the β-angles that appear above remain the same. Indeed, βs is equal to the
angle in S(gσ(s), gσ(s+1), . . . , gσ(n)) between two subspaces of codimension 1,
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S(gσ(s+1), . . . , gσ(n)) and the intersection of S(gσ(s), gσ(s+1), . . . , gσ(n)) with
the face with which our trajectory collides. This face is given by the equation
ηk = ηl independent of the acceleration vector.

To apply Theorem 1.4 we still need to examine L1- and L2-exceptional
trajectories.

As in the proof of the Main Theorem, we consider the Euclidean coor-
dinates (x, v) ∈ Rn ×Rn in which the kinetic energy has the standard form
〈v, v〉/2, where x ∈ Rn represents position in the wedge W and v ∈ Rn
represents velocity. In these coordinates L1 = {dv1 = . . . = dvn = 0} and
we can identify all of these Lagrangian subspaces with the tangent to the
configuration space. Vectors from L1 are not changed by the derivative of
the flow if there are no collisions with the faces of T in the time interval.
Collisions with the faces of T do change vectors in L1. We need to distin-
guish between the faces of T which lie in the faces of the wide wedge W
(collisions with the floor) and those which do not (collisions between par-
ticles). In a collision with a face of the wide wedge, say {η1 = 0}, a vector
from L1∩{dH = 0} will enter the interior of the sector C unless it is parallel
to the face, i.e., dη1 = 0; in which case the vector will not be changed in the
collision. Furthermore, in a collision between particles no vector from L1 can
be pushed into the interior of the sector, but all of them are changed by the
orthogonal reflection in the face. Thus we have to address the possible pres-
ence of L1-exceptional trajectories on which the collisions between particles
always “prepare” some vectors before each collision with a face {ηi = 0}, so
that dηi = 0. We now apply the method of Simányi [S] to prove

Claim 1. The set of L1-exceptional trajectories is contained in a count-
able union of submanifolds of codimension at least one.

P r o o f. Consider an exceptional trajectory for which there are some
vectors in L1 ∩ {dH = 0} which never enter the interior of the sector. We
denote the subspace of these vectors (the L1-exceptional subspace) by E1 ⊂
L1 ∩{dH = 0}. We will establish that the L1-exceptional subspaces depend
only on the combinatorics of finitely many collisions along the trajectory but
not on the velocities. Indeed, let R1, R2, . . . be the sequence of orthogonal
reflections in the faces of T corresponding to consecutive collisions of the
particles. (In the graph of constraints these collisions are represented by the
edges which do not start at the floor.) Let the consecutive collisions with
the floor of the particles mk1 ,mk2 , . . . , etc., occur exactly after t1, t2, . . . ,
etc., collisions between particles. We have (cf. (1.1))

E1 =
∞⋂

i=1

R−1
1 R−1

2 . . . R−1
ti {dηki = 0}.

Clearly this intersection must be finite, say tN reflections determine E1. As
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a consequence there are at most countably many possible L1-exceptional
subspaces.

We will establish that the vectors in an L1-exceptional subspace satisfy

(7.10) 〈v, dx〉 = v1dx1 + . . .+ vndxn = 0,

i.e., the velocity v must be orthogonal to E1.
Given (7.10) we obtain the claim by observing that for a fixed d-dimen-

sional L1-exceptional subspace the relation (7.10) describes a submanifold of
codimension d in the phase space. We conclude that the set of L1-exceptional
points is contained in a countable union of submanifolds of codimension at
least one.

To show (7.10) we observe that for vectors in L1-exceptional subspaces,
〈v, dx〉 is constant in time. Indeed, it does not change in collisions because
both the velocity v and the tangent vector are changed by the same orthog-
onal reflection. Between collisions we have

d2

dt2
〈v, dx〉 = − d

dt
〈a, dx〉 = 0,

where a = −dv/dt is the acceleration vector. Hence between collisions 〈v, dx〉
could change linearly with constant rate 〈a, dx〉. This rate would not change
in a collision. Hence it must be zero or else |〈v, dx〉| would grow unboundedly,
which is impossible (velocity must be bounded due to energy conservation
and the tangent vector is changed only by orthogonal reflections).

Further we observe that for vectors in an L1-exceptional subspace also
〈x, dx〉 = x1dx1 + . . .+xndxn is not changed in collisions and between colli-
sions it has constant rate of change equal to 〈v, dx〉. We conclude again that
this rate of change has to be zero or else |〈x, dx〉| would grow unboundedly,
which is impossible.

The idea to use (7.10) and its proof belong to Simányi [S].

Finally, let us examine the L2-exceptional subspace along a nondegen-
erate trajectory. As in the proof of the Main Theorem, we use projections
of the L2 subspaces onto the tangent velocity space as a way to identify
all of these spaces. Moreover, the tangent velocity space can be naturally
identified with the tangent configuration space. With this identification, by
the results of Section 4, the action of the derivative of the flow on vectors
from L2 is the following. The vectors stay in L2 and are unchanged except at
crossings from one simple wedge to another or in collisions of particles. At a
crossing from one simple wedge to another a vector from L2 is pushed inside
the sector C except for vectors parallel to the common face of the two simple
wedges, which stay unchanged. Since we assumed the strict inequalities in
(7.7), the corresponding β-angles are always strictly greater than π/4. As a
consequence in a collision of two particles a vector from L2 is pushed inside
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the sector C except for vectors parallel to the corresponding face of T , which
are not changed.

Hence an L2-exceptional subspace consists of vectors which are parallel
to all the faces of the simple wedges which are crossed by the trajectory or
in which the trajectory is reflected, with the exception of the faces of the
wide wedge. By the assumption (7.6) the acceleration vector is parallel to all
these faces. We now prove that there are no other vectors with this property.

Claim 2. For a nondegenerate trajectory the L2-exceptional subspace is
spanned by the acceleration vector.

P r o o f. Since the L2 subspace is identified with the tangent configuration
space we can use (dη1, . . . , dηn) as coordinates. Our goal is to show that
there are enough collisions and crossings on every nondegenerate trajectory
to insure that the intersection of all the faces is spanned by the acceleration
vector. The task of bookkeeping is facilitated by the graph of collisions G. Let
ms1 , . . . ,msr be the r immediate successors of the floor. Since every mass has
to collide with one of its immediate predecessors (but not necessarily with
any of its immediate successors) we conclude that for every mass there is a
chain of collisions which connects it to one of the immediate successors of the
floor. A collision between the particles ml and mp forces the equality dηl =
dηp. Hence for every particle ml there is msj , an immediate successor of the
floor, such that dηl = dηsj must hold for all vectors in the L2-exceptional
subspace.

Further, every immediate successor of the floor must have infinitely many
collisions with the floor. The immediate successor msj can collide with the
floor only in the simple wedge Wσ for which σ(1) = sj .

Consider the permutation σ1 such that σ1(i) = si, i = 1, 2, and Wσ1 ⊂ T ,
and the permutation σ2 differing from σ1 by the transposition of the first
two elements, i.e.,

σ2(1) = s2, σ2(2) = s1, σ2(i) = σ1(i), i 6= 1, 2.

Clearly Wσ2 ⊂ T and the common face of Wσ1 and Wσ2 is (cf. the proof of
Claim 2 in Section 6)

ηs1
as1

=
ηs2
as2

.

The crossing of this common face forces
dηs1
as1

=
dηs2
as2

.

As in the proof of Claim 2 in Section 6 we can conclude that there are
enough of these crossings to force

dηs1
as1

=
dηs2
as2

= . . . =
dηsr
asr

.
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Combining with the equalities above we conclude that the L2-exceptional
subspace contains only vectors parallel to the acceleration.

Our Theorem is proved.

Let us apply Theorem 7.1 to the problem of “splitting and stacking” the
masses described in the introduction. We start with the system (7.1) with
elastic constraints (7.2). This system is completely hyperbolic. Further we
split each of the masses m1, . . . ,mn into two,

mi = (1− κi)mi + κimi for 0 < κi < 1,

and we assume that m0 ≺ (1 − κi)mi ≺ κimi, i = 1, . . . , n, i.e., we have n
stacks with two particles. By Theorem 7.1 this system is completely hyper-
bolic if we assume additionally that for i = 1, . . . , n,

(7.11)
1
κi

+
mi

M
> 2,

where M = m0 +m1 + . . .+mn.

8. Remarks and open problems. 1. In the case n = 2 the Main
Theorem was proven in the Appendix of [W1]. The billiard in a wedge
symmetric with respect to the acceleration direction was studied by Miller
and Lehtihet [L-M], and they discovered numerically the sharp transition
from the mixed behavior to complete hyperbolicity as the angle increases
past 90 degrees.

2. The system (7.1) with constraints (7.2) in the special case of equal
masses m1 = . . . = mn and c1 = . . . = cn reduces to a PFL system.
More precisely, it is a finite extension of the system with elastic constraints
q0 ≤ q1 ≤ . . . ≤ qn, which was determined to be equivalent to a completely
hyperbolic PFL system (Theorem 5.2). Hence in this special case the Main
Theorem follows from [W1] and the work of Simányi [S] (Theorem 4.5).

3. When choosing the bundles of Lagrangian subspaces (the quadratic
form Q) in the proof of the Main Theorem we relied on the canonical isomor-
phism of PW systems in simple wedges with PFL systems. In the general
case we are unable to write down the quadratic form Q explicitly. We can
do it for the system (7.1) if we take the special potential function ci = αmi.
For such a system the quadratic form Q is given in Wσ by

Q =
n∑

i=1

(
dηidξi +

ui
αmi

(dξi)2
)
−
∑

k<l

uσ(k)
mσ(k)mσ(l)

αM

(
dξσ(k)

mσ(k)
− dξσ(l)

mσ(l)

)2

,

where ui are defined in (7.4).
Independently of the isomorphism with a PFL system one can check that

the form Q is constant in the absence of collisions. It is also straightforward
to see that Q is not decreased when the trajectory crosses from one simple
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wedge to another (only one term in the second sum is changed). The mono-
tonicity of reflections in the faces is also not hard to check. Indeed, for the
reflection in the face {η1 = 0} we have

ξ+
1 = − ξ−1 −

2m1

m0 +m1

n∑

i=2

ξi, ξ+
k = ξ−k ,

u+
1 = − u−1 , u+

k = − 2m1

m0 +m1
u−1 + u−k , k = 2, . . . , n.

4. We expect that the Main Theorem remains valid if some of the entries
in L (or K) are zero. When L (or K) is diagonal we get of course a completely
integrable system. We conjecture that if the off-diagonal elements of L are
all equal and positive then elliptic periodic orbits are present, excluding
hyperbolicity of the system. This is suggested by the results of [Ch-W],
where it was established for the PFL system that beyond the completely
integrable case elliptic periodic points appear.

5. It is an interesting question if the “splitting and stacking” of the
masses, with or without violation of the sufficient conditions (7.11), produces
systems with slower mixing.

6. It is of considerable interest to find completely hyperbolic systems
of an arbitrary number of particles with nonlinear potential of interaction.
For PFL systems it was established in [W2] that the system is completely
hyperbolic for the potential function from a large class of convex functions.
Translation of this result into other classes of systems considered in this
paper produces only “unnatural” interactions.

7. The setup in the Main Theorem allows introducing infinite-dimensional
limits of our systems. It remains an open and intriguing question which limit
should be taken and what are its properties.
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