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Bounds for maps of an interval
with one reflecting critical point. I

by

Genadi L e v i n (Jerusalem)

Abstract. We prove real bounds for interval maps with one reflecting critical point.

In this paper we prove real bounds for maps as in the title (1). More
exactly, we will consider the following class of maps.

Let g :
⋃
Ii → I be a map, where I is an open interval around the point

c = 0 and where Ii is a finite collection of disjoint open intervals inside the
interval I for which the following conditions hold:

(i) For every i, the map g : Ii → I is a homeomorphism; moreover, it
is a C3-function which extends to a smooth map on the closure of each Ii,
and the Schwarzian derivative of g, Sg := g′′′/g′ − (3/2)(g′′/g′)2, is defined
and negative for any x 6= 0.

(ii) For every i 6= 0, the map g : Ii → I is a diffeomorphism, while the
map g : I0 → I has a unique critical point (i.e., a zero of g′) at the point
c = 0 ∈ I0, so that g(x) = g(0)+(h(x))l, where l ≥ 3 is an odd number, and
h is a local diffeomorphism, h(0) = 0. We call g : I0 → I the central branch,
and I0 the central interval of g.

(ii) All iterates of the critical point c = 0 under g are in
⋃
Ii (and, hence,

well defined), c is a recurrent point, and the ω-limit set of the critical point
ω(c) is a proper subset of

⋃
Ii, i.e., ω(c) stays away from the end points of

the intervals Ii.

We always assume that g has no attracting or neutral periodic orbits.

Examples. 1. Consider a polynomial P with real coefficients and with
all critical point escaping to infinity and real except for one reflecting critical

1991 Mathematics Subject Classification: 58F03, 58F23.
Research partially supported by the British Council, the Israel Ministry of Science

and Arts, and the London Royal Society.
(1) For complex bounds and applications, see the second part of this paper, [LS1].

[287]



288 G. Levin

point. If we restrict P to an interval of the real axis, it will satisfy conditions
(i)–(iii) (see [LS2] for details).

2. Consider a map

f(z) = λzd
z − d+1

d−1

1− d+1
d−1z

,

where |λ| = 1, and d ≥ 3. Then f restricted to the circle |z| = 1 and written
in the natural coordinate of the circle satisfies conditions (i)–(ii) above (the
Schwarzian is negative), with l = 3 and with d − 1 intervals Ii. Note that
λ = f(1) is the critical value of f on the circle. Choosing λ, we can satisfy
(iii) as well.

Define a sequence of first return maps

gsn : Un → Un−1

inductively as follows. We set s1 = 1, U1 = I0, and U0 = I. If Un−1 is
defined, then gsn : Un → Un−1 is the central branch of the first return map
to Un−1.

Let us call the map gsn : Un → Un−1 central if gsn(c) ∈ Un, and non-
central otherwise. Note that if some gsn : Un → Un−1 is central, then by
pulling back the central domain Un by the map gsn several times, we always
come to a non-central gsm : Um → Um−1, where m > n and where the
function is the same, i.e., sm = sn.

Denote by |U | the length of the interval U .

Theorem 1. There exist a positive number C, which depends on l only ,
and an index N so that , for every n ≥ N , the length of every compo-
nent of Un−1 \ Un is equal to at least C|Un|, whenever the previous map
gsn−1 : Un−1 → Un−2 is non-central. In particular , this holds for a sequence
ni →∞.

Remark 1. The corresponding real bounds for maps with one folding
critical point have been proved by Martens [Ma] (for non-renormalizable
maps) and by Sullivan [S] (in the renormalizable case).

Remark 2. As in the case of a folding critical point [S], [LS2], [LS3], the
real bounds of Theorem 1 are the first step towards proving the complex
bounds [LS1].

Remark 3. As in the case of a folding critical point [MS], the real
bounds of Theorem 1 yield: if ω(c) is minimal, then the map is ergodic
with respect to Lebesgue measure and ω(c) is of measure zero (progress in
this direction for several reflecting critical points has recently been made by
Edson Vargas).

Theorem 1 will be a simple consequence of Propositions 1–4 below.
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We say that, for two intervals U ⊂ V , a component of V \ U is big
compared with U if the length of this component is at least C|U | for some
constant C > 0 which does not depend on U and V (C may depend on l).
We say that U is well inside V if both components of V \U are big compared
with U .

Proposition 1. Assume that gsn : Un → Un−1 is central , while the
previous first return map is non-central. Let m > n be minimal so that
gsm : Um → Um−1 is non-central and sm = sn. Then for the next map, the
interval Um+1 is well inside Um.

Define ci := gi(c).

Proposition 2. Assume that all maps gsn : Un → Un−1 are non-central.
Let , for some n0, the points csn0

and csn0+1 be on opposite sides of c. Then
either Un0+2 is well inside Un0+1, or Un0+3 is well inside Un0+2.

Proposition 3. Assume that all maps gsn : Un → Un−1 are non-central ,
and all points csn are on the same side of c (say , always csn > c). Let , for
some n0, the map gsn0 : Un0 → Un0−1 reverse orientation. Then Un0+4 is
well inside Un0+3.

Proposition 4. Assume that all maps gsn : Un → Un−1 are non-central
and preserve orientation, and all points csn are on the same side of c (say ,
always csn > c). Then, for every n, the interval Un is well inside Un−1.

Our proofs of Propositions 1–3 are based on combinatorial arguments,
the Koebe Principle, and the Interval Adding Procedure (see below). The
proof of Proposition 4 is analytic and uses a very simple geometric condi-
tion, under which the cross-ratio “does not feel” the reflecting critical point
(Proposition 5). It will allow us to pass through the critical point without
decreasing the cross-ratio.

As usual, if J ⊂ T are two intervals and L,R are the components of T \J
then we define C(T, J) to be the cross-ratio of this pair of intervals:

C(T, J) =
|J | · |T |
|L| · |R| .

Cross-ratios play a crucial role in all recent results in real interval dynamics.
Often, it suffices to use some qualitative estimates based on the so-called
Koebe Principle. In our analysis, we shall sometimes need sharper estimates,
which are based on direct use of the cross-ratio. For example, we shall often
use the inequality

|L|/|J | ≥ C−1(T, J).

Note also that J is well inside T if and only if C−1(T, J) is greater than a
positive constant (which does not depend on the intervals).
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If f is a map which is a diffeomorphism of T onto its image and Sf < 0
then (see [MS])

C−1(T, J) ≥ C−1(f(T ), f(J)).

In our case we shall apply this to maps f of the form gn. Since Sg < 0 one
also has Sgn < 0 so the previous inequality applies when we take f = gn

and gn|T is a diffeomorphism. We will use the following amusing extension
of this classical fact:

Proposition 5 (2). Let L be the left component of T \ J , so that if we
write L = (x1, x2), then x1 < 0 < x2, and , moreover , x2 > |x1|. Fix a real
number l > 1, and introduce a map

F (x) =
x

|x| · |x|
l, x 6= 0, F (0) = 0.

Then
C−1(T, J) ≥ C−1(F (T ), F (J)).

P r o o f. First of all, we can assume that x1 = −1, and then x2 = 1 + δ <
x3 < x4, where R = (x3, x4) and δ > 0. To calculate the cross-ratios, we
will use the following well known equality:

ln
1 + C−1(F (T ), F (J))

1 + C−1(T, J)
=
x4\
x3

dy

x2\
x1

U(x, y) dx,

where

U(x, y) =
F ′(x)F ′(y)

(F (x)− F (y))2 −
1

(x− y)2 .

Fix y ∈ (x3, x4), and write the integral over x as a sum of two integrals I1
and I2, where x in I1 varies from −1 to 1, and in I2 from 1 to 1 + δ. Then
I2 < 0, since the function xl, x > 0, has negative Schwarzian derivative. For
the first integral, we have

I1 =
0\
−1

U(x, y) dx+
1\
0

U(x, y) dx =
1\
0

V (x, y) dx,

where

V (x, y) =
l2xl−1yl−1

(xl + yl)2 +
l2xl−1yl−1

(xl − yl)2 −
1

(x+ y)2 −
1

(x− y)2 .

After computing the integral, we obtain

I1 =
2l
y

{
lal−1

1− a2l −
1

1− a2

}
,

(2) This statement was established during the author’s visit to Sebastian van Strien
at Warwick and numerous conversations with him.
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where the parameter a = 1/y ∈ (0, 1). Since the expression in {. . .} is
negative, we are done.

We make use of two principles.

Koebe Principle [MS]. Let T be an interval from a component of the
domain of definition of some iterate gs, and so that T = L ∪ J ∪R, where:
(a) gs|J has a unique critical point at c, and (b) gs|L and gs|R have at most
N critical points. Let K > 0 be so that

|gs(L)|/|gs(J)|, |gs(R)|/|gs(J)| ≥ K.
Then

|L|/|J |, |R|/|J | ≥ C,
where C > 0 depends on K, N , and on the map g. Moreover , given g, there
exists ε > 0 so that if |gi(T )| ≤ ε for i = 0, 1, . . . , s, then the constant C
depends merely on K and N .

For any two intervals U , V , denote by [U, V ] the minimal interval which
contains U and V .

Interval Adding Procedure. Given gsn : Un → Un−1, let t+n be a
maximal interval outside Un and to the right of Un with a common boundary
point with Un, so that gsn |t+n is defined and a diffeomorphism. The interval
t−n is defined in the same way, but to the left of Un.

Let t be either t+n or t−n . Note that one end point of gsn(t) is in ∂Un−1.
If the other end point of gsn(t) is an end point of the range I of the map
g, then we set k = 0 and stop. Otherwise the boundary point of t which is
different from ∂Un is a critical point of gsn : there exists i, 1 ≤ i ≤ sn − 1,
so that c lies at the boundary of the interval gi(t). In this case we will make
an operation called “adding the interval Un−1”:

Since gi(Un) is outside Un−1 and gi(t) has c in its boundary, the interval
gi(t) also contains a boundary point of Un−1. Hence, either i + sn−1 >
sn, or gi+sn−1(t) contains a boundary point of Un−2. Hence, again either
i+sn−1 +sn−2 > sn, or gi+sn−1+sn−2(t) contains a boundary point of Un−3.
We continue this process until we find k ≥ 1 so that

S := i+ sn−1 + . . .+ sn−k+1 < sn,

while

S + sn−k ≥ sn.
Then gS(t) contains a boundary point of Un−k. Let us extend the interval
gS(t) so that it turns into the interval [Un−1, g

S(t)], and call this operation
“adding the interval Un−1”.

The boundary point of t different from ∂Un lies in a component of Um−1\
Um for some m ≤ n. Since the points of ∂Um−1 are nice, there exists a unique
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extension t̂ of t inside Um−1 \ Um so that

gS(t̂ ) = [Un−1, g
S(t)].

Lemma 1. (i) gsn(t̂ ) covers an interval gj(Un−1) for some 1 ≤ j ≤
sn−1 − 1.

(ii) The map gsn |t̂ has at most k critical points.
(iii) Let t̂±n be the intervals corresponding to t±n , and k±n be the cor-

responding numbers. If k±n ≤ N , then |t±n | ≥ C|Un|, where C > 0 only
depends on l and N .

P r o o f. Since gS(t̂ ) contains Un−1 and S+sn−k ≥ sn, the interval gsn(t̂ )
contains some gj(Un−1), where j ≤ sn−k ≤ sn−1 − 1. To prove the second
statement, first note that the map gi|t̂ has no critical points, since gi(t̂\ t) ⊂
Un−1 and i < sn. On the other hand, the interval gi(t̂ ) covers c. Hence,
the map gsn−1 |gi(t̂ ) has one critical point. Since gsn−1(gi(t̂ )) \ gsn−1(gi(t))
is part of Un−2, the map gsn−2 |gi+sn−1(t̂ ) can have at most one critical
point, and so on until gS(t̂ ) (each time at most one critical point can be
added). The iterate of g from the latter interval to the interval gsn(t̂ ) does
not have critical points, by definition of k. The last statement follows from
the previous ones and from the Koebe Principle (here we use the smallest
interval argument).

Remark 4. In what follows, if gsn(t̂±n ) covers more than one interval
gj(Un−1), we shorten t̂±n so that gsn(t̂±n ) covers exactly one interval of this
form.

Let us call the numbers k±n the parameters, or the numbers of steps of
the procedure.

To start with, let us prove the following

Lemma 2. (i) Let gj1(Un) and gj2(Un) be two neighbours of Un from the
collection gj(Un), j = 1, . . . , sn−1. Then Un is well inside [gj1(Un), gj2(Un)].

(ii) Let the map gsn−1 : Un−1 → Un−2 be non-central. Then, at least
for one component K of Un−1 \ Un, the iterate gsn(K) covers gj(Un) for
some 1 ≤ j ≤ sn − 1. If , for example, csn−1 > c, then K is the left (resp.
right) component of Un−1 \ Un depending on whether gsn−1 : Un−1 → Un−2

preserves (resp. reverses) orientation.
(iii) Let the map gsn−1 : Un−1 → Un−2 be non-central. Then one of the

two components of Un−1 \ Un is big compared with Un.

P r o o f. (i) follows from the shortest interval argument and from the
Koebe Principle.

(ii) Let csn−1 > c. Then the end points of gsn−1(K) already lie on oppo-
site sides of the critical point c.



Bounds for maps of an interval 293

(iii) Denote by t the interval around Un which is mapped by gsn onto
[gj1(Un), gj2(Un)]. The map gsn |t has at most 3 critical points, because
[gj1(Un), gj2(Un)] contains precisely 3 critical values of this map. Since
gsn−1 : Un−1 → Un−2 is non-central, by (ii) at least one of the ends of t
(say, the left one) lies inside Un−1 \ Un. Assume now the contrary: every
component of Un−1 \ Un is not big compared with Un. Then, by (i) the in-
terval Un−1 is well inside [gj1(Un), gj2(Un)]. Pulling [gj1(Un), gj2(Un)] back
by gsn to t (so that Un−1 is pulled back to Un) we then conclude that the
left component of Un−1 \ Un is big compared with Un. A contradiction.

Lemma 3. Let the map gsn−1 : Un−1 → Un−2 be non-central , and let t
be an interval around Un such that gsn(t) = [gj1(Un), gj2(Un)] (where, as in
Lemma 2, gj1(Un) and gj2(Un) are two neighbours of Un from the collection
gj(Un), j = 1, . . . , sn−1). Then t ⊂ Un−2. In particular , t±n+1 ⊂ Un−2\Un+1

(see Remark 4).

P r o o f. First, one can assume without loss of generality that csn−1 > c.
Now, the map gsn−1 : Un−1 → Un−2 is non-central, and hence gsn−1(Un)
lies in the right component of Un−2 \ Un−1. It follows immediately that
the right end of t belongs to Un−2. To prove the same for the left end of
t one should consider different combinations of the following possibilities:
gsn−1 : Un−1 → Un−2 preserves or reverses orientation, csn−1 and csn−2 are
on the same side of c, or on the opposite sides:

1) gsn−1 : Un−1 → Un−2 preserves orientation. Then the component K
defined in Lemma 2(ii) is the left component of Un−1 \ Un, and hence the
left end of t is inside K, and we are done in this case.

2) gsn−1 : Un−1 → Un−2 reverses orientation. Consider also the map
gsn−2 : Un−2 → Un−3.

2a) Let sn−2 = sn−1 (i.e., the return to Un−3 is central). Denote by
r(V \U) (resp. l(V \U)) the right (left) component of V \U . Since we are in
case 2, we have gsn−1(r(Un−2 \ Un−1)) = l(Un−3 \ Un−2). But gsn−1(Un) ⊂
r(Un−2 \ Un−1). Hence, g2sn−1(Un) ⊂ l(Un−3 \ Un−2). This is enough, since
gsn takes the end points of Un−2 outside Un−3.

2b) Let sn−2 < sn−1 (i.e., the return to Un−3 is non-central). If csn−2 < c,
then gsn−2(Un) ⊂ l(Un−3 \ Un−2), and because gsn takes the end points of
Un−2 outside Un−3, we are done. Let csn−2 > c. Then gsn−2(Un) ⊂ r(Un−3 \
Un−2). Hence, already gsn−1(l(Un−2 \Un)) covers gsn−2(Un) (we are in case
2). Thus all cases have been considered.

Proof of Proposition 1. The idea of the proof is to use the space around
Un given by the first part of Lemma 2 and pull it back by gsn . Since the
return is central, we again obtain a map from our sequence of the first return
maps.
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First, for the interval t from Lemma 3, we have t ⊂ Un−2. It follows
immediately from this observation and from Lemma 2(i) that Un+1 is well
inside Un−2 (here we use the fact that sn+1 = sn). Consider now two cases:

1. m − n ≥ 2. Then we can pull Un+1 back by the same central branch
one more time and find that Un+2 (and hence Um) is well inside Un−1. Since
gsn : Um → Um−1 is non-central, the next map, i.e., the first return to Um
will already have a bound which is determined by the space between Um
and Un−1. Therefore, Um+1 will be well inside Um.

2. m − n = 1. We apply in this case the Interval Adding Procedure to
the map gsm+1 : Um+1 → Um. Then either we finish this procedure after
two steps, or we cover a component of Un−2 \ Un+1, which, as we know, is
big compared with Un+1. In both cases, we again conclude that Um is well
inside Un−1. (Note that gsm+1(∂Um) is outside Un−2.) Therefore, Um+1 is
well inside Um.

Proof of Proposition 2. According to Lemma 2, one of the two compo-
nents of Un−1 \ Un is big compared with Un.

One can assume that csn0
< c and csn0+1 > c. Note that the interval

gsn0 (Un0+1) is in Un0−1\Un0 . Therefore, by Lemma 2(i), the left component
of Un0−1 \ Un0+1 is big compared with Un0+1. If we now assume that the
right component of Un0−1 \ Un0 is big (compared with Un0), then we see
that Un0+2 is well inside Un0+1 (we apply the Interval Adding Procedure to
the map from Un0+2 to Un0+1, and either we finish it with k ≤ 2 and then
we “add the interval” or otherwise without adding we cover a component
of Un0−1 \ Un0). Therefore, we should assume that the left component of
Un0−1 \ Un0 is big (compared with Un0). By the same reason, we should
assume that the right component of Un0 \ Un0+1 (which contains csn0+1) is
also big compared with Un0+1 (otherwise Un0+3 would be well inside Un0+2).
But then again Un0+2 is well inside Un0+1.

Proof of Proposition 3. Note that the interval gsn0+1(Un0+2) is in the
right component of Un0 \ Un0+1.

Let us first show that either

• sn0 + sn0+1 < sn0+2 and the interval gsn0+sn0+1(Un0+2) is in the left
component of Un0−1 \ Un0 , or
• Un0+4 is well inside Un0+3.

Namely, consider the Interval Adding Procedure for the map gsn0+2 :
Un0+2 → Un0+1, and let t be one of the two intervals there. Then either
(a) we finish the procedure after two steps, or (b) gi+sn0+1(t) has csn0+1 as
an end point, and contains an end point of Un0 , and, moreover, gsn0+1 is a
diffeomorphism of this interval. In case (b), the interval gsn0+sn0+1(Un0+2)
is to the left of c. Indeed, the map gsn0 takes the right end of Un0 to the left
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end of Un0−1 (we use the fact that gsn0 : Un0 → Un0−1 reverses orientation).
Hence, in case (b), this map takes csn0+1 to the left of c as well. So, at
least part of the interval gsn0+sn0+1(Un0+2) is to the left of c. If the latter
interval covered c then sn0 +sn0+1 = sn0+2 and since all csn are to the right,
gsn0 (gi+sn0+1(t)) would cover c.

Thus, either gsn0+sn0+1(Un0+2) is to the left of c, or the parameter for
each side of the procedure is ≤ 2. In the latter case, we use Lemmas 1 and
3 to conclude that Un0+3 is well inside Un0+1, which implies that Un0+4 is
well inside Un0+3.

Finally, we can assume that gsn0+1(Un0+2) and gsn0+sn0+1(Un0+2) are on
the opposite sides of c (but inside Un0−1). Then we apply the procedure to
the map gsn0+3 : Un0+3 → Un0+2 this time, and either we finish it after 3
steps, or we cover one of these two intervals. Note that gsn0+3(∂Un0+1) is
outside Un0−1. In the case considered, one can assume that t̂±n0+3 ⊂ Un0+1 \
Un0+3. Therefore, in any case, Un0+3 is well inside Un0+1, and then Un0+4

is well inside Un0+3 (the returns are non-central).

In order to prove Proposition 4, we first prove two lemmas. Set Un =
(−ln, rn) and %n = ln/rn, and define

δ+
n =

rn−1 − rn
rn + ln

, δ−n =
ln−1 − ln
rn + ln

.

By the assumption, csn ∈ (rn, rn−1) for any n.
The next lemma is a direct consequence of Proposition 5 from the be-

ginning of the paper.

Lemma 4. Under the conditions of Proposition 4, assume that

(1) rn > ln−1

for all n. Then C−1(Un−1, Un) tends to infinity as n tends to infinity.

P r o o f. Fix n, and look at the map gsn−1 : Un−1 → Un−2. We have

C−1(g(Un−1), g(Un)) ≥ C−1(Un−2, g
sn−1(Un)).

Since the return is non-central,

gsn−1(Un) ⊂ (rn−1, rn−2).

By condition (1), rn−1 > ln−2, so that we can apply Proposition 5:

C−1(Un−2, g
sn−1(Un)) ≥ C−1(g(Un−2), gsn−1+1(Un)).

Now we look at the map gsn−2 : Un−2 → Un−3, and since the return is again
non-central and on the same (right) side, we can continue, up to the level
U0 = I:

C−1(g(Un−1), g(Un)) ≥ C−1(I, gSn(Un)),
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where Sn = sn−1 + . . .+ s1. On the other hand,

|gSn(Un)| → 0

as n → ∞ (because any two intervals gi(Un), gj(Um) are either disjoint or
one contains the other and because no wandering interval exists [MS]), and
this interval is away from the end points of I (condition (iii) of the definition
of the class of maps g). Therefore, C−1(I, gSn(Un))→∞.

Remark 5. We have also proved the following: if condition (1) holds for
all n between some n0 and n1 > n0, then

C−1(g(Un1), g(Un1+1)) ≥ C−1
n0−1,

where C−1
n0−1 is the infimum of the cross-ratios C−1(Un0−1,K) over all those

components K of the first return map to Un0−1 which contain an iterate of
the critical point.

Lemma 5. Under the conditions of Proposition 5, assume that

(2) rm−1(1 + ε) ≤ lm−2

for some m and some small enough ε > 0. Then Um+1 is well inside Um.

P r o o f. For any n, (a), (b), and (c) below hold:
(a) By Lemma 2(i), there exists a positive constant δ0, which depends

only on l, such that each of the two gaps between Un and the end points of
the interval [U ′n, U

′′
n ] is at least δ|Un|, where U ′n, U

′′
n are the neighbours of

Un from the collection gj(Un), j = 1, . . . , sn − 1.
(b) Since the returns are non-central and to the right of 0, the interval

gsn−2(Un−1) lies in (rn−2, rn−3), and gsn((rn, rn−1)) covers (rn−1, rn−3).
Hence, by the Interval Adding Procedure and Lemma 1, there exists an
interval t̂+

n = (rn, xn), where xn ∈ (rn, rn−1), such that gsn |t̂+
n

has at most
one critical point and gsn(t̂+

n ) covers some interval of the form gj(Un−1),
j = 1, . . . , sn−1 − 1. In particular, by (a), |gsn(t̂+

n )| ≥ δ0|Un−1|.
(c) Since the returns are non-central, and to the right of 0, there exists

an interval t̂−n = (−yn,−ln), where −yn ∈ (−ln−1,−ln), such that gsn |t̂−n
has at most one critical point and gsn(t̂−n ) covers some interval of the form
gj(Un), j = 1, . . . , sn−1. In particular, by (a), |gsn(t̂−n )| ≥ δ0|Un|. (Note the
difference between (b) and (c)). Moreover, by the same reason, there exists
an interval t ⊂ t̂−n such that the map gsn : t→ (−ln−2,−ln−1) is one-to-one.

Consider now two cases:

1. δ−m−1 ≥ δ0/10. Then, by (b) and (c) (with n = m), Um is well inside
Um−1, and, hence, Um+1 is well inside Um.

2. δ−m−1 ≤ δ0/10. Then

lm−2 ≤ lm−1 +
δ0
10

(lm−1 + rm−1).
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Together with lm−2 ≥ rm−1(1 + ε), this gives

(3) %m−1 ≥ 10(1 + ε)− δ0
10(1 + ε) + δ0

.

Consider 3 subcases:

2.1. δ−m ≥ δ0/10. Then Um+1 is well inside Um (see case 1).
2.2. δ−m ≤ δ0/10 and δ+

m ≤ 10. Consider the two gaps between Um−1 and
the end points of gsm(t̂−m ∪ Um ∪ t̂+

m). The right gap is at least δ0|Um−1|.
The left gap is at least 9δ0|Um|/10. But

9δ0|Um|/10
|Um−1| =

9δ0/10
1 + (δ−m + δ+

m)
≥ 9δ0/10

1 + δ0/10 + 10
=: δ1 > 0,

and therefore Um is well inside Um−1.
2.3. δ−m ≤ δ0/10 and δ+

m ≥ 10. Then

%m−1 =
lm−1

rm−1
=
lm + δ−m(lm + rm)
rm + δ+

m(lm + rm)
≤ 1 + δ−m

δ+
m

≤ 1
10

(
1 +

δ0
10

)
.

This contradicts (3) if ε and δ0 are small enough (but fixed).
Since all the cases have been considered, the statement is proved.

Proof of Proposition 4. This is a simple application of Lemmas 4–5 above.
Indeed, if the conditions of Lemma 4 are satisfied, we are done. Otherwise,
there are m and ε > 0 small enough so that (2) holds. By Lemma 5, Um+1

is then well inside Um, and therefore each component of the first return
map to Um+1 is well inside Um+1. In particular, the quantity C−1

m+1 which
was defined in the remark after the proof of Lemma 4 is bounded away
from zero by a constant which depends on l only. Now, if (1) holds for
n = m+ 2,m+ 3,m+ 4, then Um+6 is well inside Um+5 by the remark after
the proof of Lemma 4, and we start over again replacing m by m+ 5. If not,
then we apply Lemma 5 to m + 2, m + 3, or m + 4 instead of m − 1, and
start again as well.

Proof of Theorem 1. We repeat the proof of Proposition 4, replacing
Lemma 5 by one of Propositions 1–3 if needed.

Remark 6. Combining the proofs of the paper with some methods of
the recent thesis by O. Kozlovski, one can get rid of the negative Schwarzian
derivative condition to obtain the same real bounds for any C2-map with
one reflecting critical point (see [LS1] for details).
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