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Entropy of Gaussian actions for countable Abelian groups

by

Mariusz L e m a ń c z y k (Toruń)

Abstract. We prove that if a countable Abelian group A satisfies Thouvenot’s conjec-
ture then for any of its Gaussian actions on a standard Borel space the entropy is either
zero or infinity, and moreover, the former case happens iff the spectral measure of the
Gaussian action is singular with respect to Haar measure on the dual of A.

Introduction. In this note we extend a classical result about the entropy
of Gaussian automorphisms (Z-actions) to some weakly mixing Gaussian ac-
tions of countable Abelian groups. The groups we have in mind are those for
which any of their positive entropy actions T has the property that its spec-
trum is Haar countable in the orthocomplement of L2(π(T )), where π(T )
stands for the Pinsker factor of T . We recall that a conjecture—attributed to
J.-P. Thouvenot—says that in fact any positive entropy action of a countable
Abelian group has this property. Some particular cases have been proved
in [4], [6], [7].

The fact that the entropy of a Gaussian automorphism T is zero or
infinity (the latter happens iff the spectral measure of T is not singular with
respect to Lebesgue measure) is commonly attributed to Pinsker, although
it seems that the first “written” proof appears in [15]. De la Rue in [15]
generalizes this classical Pinsker result to Gaussian Zd-actions, d ≥ 1. His
proof, however, does not seem to extend to general countable Abelian group
Gaussian actions.

Here, we use some ideas from [10] and [11] about the existence of common
group factors for some Gaussian automorphisms which allow us to prove the
result formulated in the abstract. In case of Zd-actions, our proof is different
from de la Rue’s.

For a definition and basic properties of entropy of group actions we refer
to [8] (see also [1]). It is also assumed that the reader is familiar with basic
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spectral theory for unitary representations of countable Abelian groups (e.g.
a straightforward extension of the Appendix in [13]).

The author would like to thank Bruno Kamiński for fruitful discussions
on the subject and the referee for a careful reading of the first version of
this note.

1. The entropy of a Gaussian A-action. For a general theory of
Gaussian automorphisms (i.e. of Gaussian Z-actions) we refer to [2]. For its
extension to Gaussian A-actions we refer to [9].

We say that a weakly mixing A-action T = (Ta)a∈A : (X,A, µ) →
(X,A, µ) is a Gaussian A-action if there exists an invariant subspace H ⊂
L2

0,R(X,µ) (the space of real square-integrable functions with zero mean)
such that

(i) the smallest sub-σ-algebra A(H) for which all elements of H are
measurable is A;

(ii) each variable of H is a Gaussian variable;
(iii) H = span{fTa : a ∈ A} for some f ∈ H.

By the spectral measure of a Gaussian action we mean the measure σ on
Â determined by

σ̂(a) =
\
Â

χ(a) dσ(χ) =
\
X

fTaf dµ.

This measure is symmetric (σ(D) = σ(D)) and it is well known that given
a symmetric finite Borel measure σ on Â there is a unique Gaussian A-action
whose spectral measure is σ; it lives on RA and f = X0 corresponds to the
projection onto the “zero coordinate” while Ta is the shift by a. Throughout,
σ is assumed to be continuous (which is equivalent to weak mixing of the
corresponding Gaussian action).

The unitary action of T restricted to H is isomorphic to the unitary rep-
resentation V = (Va)a∈A of A acting on L2(Â, σ) by the formula (Vaf)(χ) =
χ(a)f(χ). It is also classical that given a unitary action (Wa)a∈A there
is a unique way to extend it to a measure-preserving Gaussian A-action
on (X,A, µ) (indeed, given U ∈ U(L2(Â, σ)) on RA consider the process
(UXa)a∈A, note that it is Gaussian and its spectral measure is still σ; define
then S : RA → RA by

Xa(Sx) = (UX0)(Tax),

where x ∈ RA). A similar argument can be used to prove that if σ and
σ′ are equivalent then the corresponding Gaussian actions are isomorphic.
Note finally that the group of unitary actions on L2(Â, σ) endowed with
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strong topology and the group of their (unique) measure-preserving exten-
sions endowed with the weak topology are isomorphic as topological groups
(it is clear that there is a group isomorphism from the latter to the former
which is continuous; its inverse is then continuous by a general open map
theorem).

Assume that T = (Ta)a∈A is a Gaussian A-action given by σ. Denote
by H its Gaussian space. Assume that σ1 is a Borel symmetric measure
absolutely continuous with respect to σ. Put

H1 = {f ∈ H : σf � σ1}.
Then H1 is a closed invariant subspace on which T still has simple spectrum,
hence A(H1) gives rise to a Gaussian factor (whose spectral measure is σ1)
of T .

Let λ denote Haar measure on Â. The key lemma to prove our entropy
result is the following.

Lemma 1. Assume that D,E ⊂ Â are symmetric Borel sets with

λ(E) = λ(D) > 0.

Denote by TD = (TDa )a∈A, TE = (TEa )a∈A the Gaussian A-actions cor-
responding to λ|D and λ|E respectively. Then TD and TE have the same
entropy.

The proof of the lemma will be given in Section 2.
Let T be a Gaussian A-action corresponding to a symmetric finite Borel

measure σ on Â. Write

σ = σ1 + σ2, where σ1 � λ, σ2 ⊥ λ.
To the above decomposition there corresponds a decomposition of the Gaus-
sian space H of T into H1 ⊕H2 which in turn leads to a representation of
T as a direct product

T = T 1 × T 2,

where T i = (Ti,a)a∈A is a Gaussian A-action corresponding to σi, i = 1, 2.
We will now repeat the classical argument (see for example [12] or [15]) that
the entropy of T 2 is zero. Indeed, put

L2(A(H2)) = L2(π(T 2))⊕ F
and suppose that h(T 2) > 0. Since A satisfies Thouvenot’s conjecture, on
F the spectrum of T 2 is Haar. But the spectral type on H2 is σ2, so H2 ⊂
L2(π(T 2)). Therefore A(H2) ⊂ π(T 2) and hence we obtain a contradiction.

Theorem 1. The entropy of a Gaussian A-action T is either zero or
infinity. The former case holds iff σ ⊥ λ.
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P r o o f. All we have to prove is that if σ is symmetric and σ � λ then
the entropy of T is infinite. This is clear if σ = λ (indeed, the variables fTa,
a ∈ A, are independent and have continuous distribution, hence the entropy
is infinite). In view of Lemma 1, we see that the entropy of a Gaussian
A-action corresponding to λ|D depends only on the measure of D. It follows
that the entropy depends monotonically on the measure of D. Assume now
that E ⊂ Â is a symmetric Borel set satisfying λ(E) > 0. Then there exists
a finite Borel partition (E1, . . . , Ek) of Â such that

(i) E1 = E,
(ii) Ei is symmetric,

(iii) λ(Ei) ≤ λ(E), i = 1, . . . , k.

Since +∞ = h(TT) =
∑k
i=1 h(TEi) ≤ kh(TE), the result follows.

Remark 1. (1) The case of a non-ergodic Gaussian A-action can be
reduced to the case of σ discrete. This means, however, that the A-action is
compact and hence its entropy equals zero.

(2) If (Tt)t∈R is a Gaussian flow and σ is its spectral measure (σ is defined
on R) then T := T1 is a Gaussian automorphism whose maximal spectral
type on its Gaussian space (in general, T has a nontrivial multiplicity on the
Gaussian space) equals exp∗(σ) (here exp : R → T, exp(r) = e2πir). Since
h((Tt)) = h(T ) and exp is a nonsingular map, the entropy h((Tt)) equals
zero or infinity; the former case happens iff σ is singular.

(3) It is well known that spectral methods can be applied to a more
general case than the one of an Abelian group, namely to the case of type I
groups. However, in the case of discrete topology a group is of type I iff it has
a normal Abelian subgroup of finite index ([16]). It is also well known that
an action has zero (infinite) entropy iff there exists a cocompact subaction
with zero (infinite) entropy. Therefore (if Thouvenot’s conjecture is true for
any Abelian action) in the case of a Gaussian action of a type I countable
group we still have a dichotomy: the entropy equals zero or infinity.

2. Proof of Lemma 1

2.1. Ergodic theory preliminaries. Let A be a countable Abelian group.
Assume that A acts by measure-preserving maps on a standard probability
Borel space (X,A, µ), i.e. we have T = (Ta)a∈A : (X,A, µ)→ (X,A, µ).

Proposition 1 (Hopf’s equivalence lemma). Assume that T is ergodic
and let D,E ∈ A. If µ(D) = µ(E) > 0 then there exist partitions

D =
⋃

i≥1

Di, E =
⋃

i≥1

Ei and ai ∈ A, i ≥ 1,

such that TaiDi = Ei, i ≥ 1.



Entropy of Gaussian actions 281

P r o o f. Put A = {a1 = 1, a2, . . .} and let

D1 = {x ∈ D : Ta1x ∈ E},
Dn = {x ∈ D \ (D1 ∪ . . . ∪Dn−1) :

Tanx ∈ E \ (Ta1D1 ∪ . . . ∪ Tan−1Dn−1)}, n ≥ 2.

Define F =
⋃
j≥1Dj and suppose that µ(D \ F ) > 0. By ergodicity of T ,

there exist ai ∈ A and F ′ ⊂ D \ F of positive measure such that

TaiF
′ ⊂ E \

⋃

j≥1

TajDj

and this clearly contradicts the definition of Di.

Remark 2. Note that the map between D and E in Hopf’s lemma is
necessarily invertible.

By the centralizer C(T ) we mean the group of all invertible S : (X,A, µ)
→ (X,A, µ) such that STa = TaS, a ∈ A. The centralizer endowed with
the weak topology becomes a Polish group. Assume that P ⊂ C(T ) is a
subgroup. Then put

A(P) = {B ∈ A : SB = B for each S ∈ P}.
Clearly, A(P) is a T -invariant σ-algebra (a factor of T ). If in addition P is
compact then such a factor will be called a group factor.

The proof of the following proposition has been suggested to me by
B. Kamiński.

Proposition 2. If P is compact then the entropies of T and its compact
factor T |A(P) are equal.

P r o o f. According to [18] (Prop. 4.3) and [3], all we need to show is
that the relative entropy of T with respect to its relative distal factor B is
zero. Suppose that this is not the case. Then similarly to [4], by adapting the
methods from [17] we deduce that there is a Bernoulli factor C of T such that
B and C are independent. Then on the one hand we see that B is a relative
distal factor of B ∨ C, the join of the two factors, but on the other hand B
is clearly a relatively weakly mixing factor of B ∨ C, a contradiction.

We will also need the following simple lemma about the existence of
isomorphic factors.

Lemma 2. Assume that T = (Ta)a∈A and T ′ = (T ′a)a∈A are weakly
mixing A-actions defined on the same space (X,A, µ) and let P = (Pa)a∈A
be another A-action on the same space. Assume moreover that

T ′a = TaPa, with Pa ∈ C(T ) for all a ∈ A.
Suppose that the group {Pa : a ∈ A} is relatively compact. Then T and T ′

have a common (isomorphic) nontrivial group factor.
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P r o o f. Let P be the closure of {Pa : a ∈ A} in C(T ). Now P is compact
and clearly A(P) = A({Pa : a ∈ A}). It is obvious that A(P) is both
T - and T ′-invariant. Moreover, the actions of T and T ′ restricted to A(P)
are isomorphic (via the identity map). Finally, the common factor is a group
factor, hence is nontrivial by weak mixing of T .

2.2. Spectral background. Let A be a countable Abelian group with dis-
crete topology. The natural identification of A with its second dual is given
by

(1) a(χ) := χ(a)

for each a ∈ A, χ ∈ Â. Let σ be a Borel finite symmetric (i.e. σ(D) = σ(D)
for each Borel set D ⊂ Â) measure on Â. Then the linear span of the
functions a(·), a ∈ A, is a dense subset of L2(Â, σ). Let V = (Va)a∈A denote
the natural unitary representation of A on L2(Â, σ):

(Vaf)(χ) = a(χ)f(χ) = χ(a)f(χ)

for each f ∈ L2(Â, σ), χ ∈ Â. By the spectral measure of f (with respect
to V ) we mean the measure σf on Â determined (in view of the Bochner–
Herglotz theorem) by

σ̂f [a] =
\
Â

χ(a) dσf (χ) = 〈Vaf, f〉.

Note that V has a simple spectrum, i.e. for some f ∈ L2(Â, σ),

span {Vaf : a ∈ A} = L2(Â, σ)

(indeed, it is enough to take f = 1). Put

Fσ = {g ∈ L2(Â, σ) : |g| = 1 σ-a.e.}, F (r)
σ = {g ∈ Fσ : g(χ) = g(χ)}.

Clearly, both these sets are closed subsets of L2(Â, σ) and therefore with
pointwise multiplication they become Polish groups. Let

C(V ) = {W ∈ U(L2(Â, σ)) : WVa = VaW for all a ∈ A}
denote the centralizer of V . If W ∈ C(V ) then

a(·)W (1)(·) = VaW (1)(·) = WVa(1)(·) = W (a(·)).
Since span{a(·) : a ∈ A} is dense in L2(Â, σ),

(Wf)(χ) = W (1)(χ)f(χ)

for each f ∈ L2(Â, σ). Moreover, sinceW is unitary, |W (1)| = 1 σ-a.e. There-
fore, we can naturally identify C(V ) (with the strong operator topology on
it) with Fσ. Finally, note that under this isomorphism F (r)

σ corresponds to
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C(r)(V ), the subset of C(V ) of those unitary operators that preserve the
(real) subspace L2

(r)(Â, σ) of functions f ∈ L2(Â, σ) with f(χ) = f(χ).

Let j : Â → Â be measurable (j is defined σ-a.e.). Then it gives rise to
another A-action in U(L2(Â, σ)), namely

(2) (W j
af)(χ) := (j ◦ χ)(a)f(χ).

This is indeed an A-action, since jχ ∈ Â. It is also clear that

(3) VbW
j
a = W j

aVb

for all a, b ∈ A, i.e. W j
a ∈ C(V ) (and W j

a corresponds to ja ∈ Fσ, where
ja(χ) = (jχ)(a)). Note also that if (Wa)a∈A is an A-action satisfying (3)
then for each a ∈ A there exists a function ja ∈ Fσ such that the action of
Wa is simply multiplication by ja. Since Wa1a2 = Wa1Wa2 , given χ ∈ Â,

ja1a2(χ) = ja1(χ)ja2(χ)

for all a1, a2 ∈ A and therefore j.(χ) ∈ Â, so we can identify the group of
A-actions satisfying (3) with the group

Gσ = {j : Â→ Â : j is measurable}.
On Gσ we consider the topology given by the metric

d(j, j′) :=
∞∑
n=2

1
2n

( \
Â

|(jχ)(an)− (j′χ)(an)|2 dσ(χ)
)1/2

(i.e. jk
d→ j iff (jk)a → ja in L2(Â, σ) for each a ∈ A), where A = {a1 =

1, a2, . . .}, which corresponds to the strong operator topology of the group
of A-actions. It is also clear that the subgroup of A-actions preserving
L2

(r)(Â, σ) corresponds to

G(r)
σ := {j ∈ Gσ : j(χ) = j(χ) σ-a.e.}.

If the closed subgroup generated by j is compact, then j is called compact .

Lemma 3. Suppose that

P = (P1, P 1, P2, P 2, . . .)

is a symmetric Borel partition of Â. Assume that j ∈ G(r)
σ satisfies

j|Pi = χ (= χ(i))

for i ≥ 1. Then j is compact. Moreover , the subgroup {ja : a ∈ A} is a
relatively compact subgroup of F (r)

σ .

P r o o f. The group of all functions that are constant on each element of
P is isomorphic to ÂcardP , hence is compact. The same argument works for
the second statement since each ja is constant on any atom of P .
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Remark. By the methods of [11] it follows that for each element j which
generates a compact subgroup of Gσ there exists a Borel partition so that j
is constant on each atom of this partition. We will, however, make no use of
this fact.

Two symmetric Borel subsets D,E ⊂ Â (D = D, E = E) are called
σ-compactly equivalent if there exists a σ-a.e. 1-1 map g ∈ G(r)

σ of the form

g(χ) = χj(χ), j ∈ G(r)
σ ,

where j is compact, satisfying g(D) = E.

Proposition 3. Any two symmetric Borel sets of equal positive Haar
measure λ are λ-compactly equivalent.

P r o o f. Fix a countable dense subgroup G of Â. Consider the natural
action of this group (by translations) on (Â, λ). This action is clearly ergodic.
Assume that λ(D) = λ(E) (with D = D, E = E). Represent D = D′ ∪D′,
where D′ ∩D′ = ∅, and do the same with E. By Proposition 1, there exist
partitions

D′ =
⋃

i≥1

Di, E′ =
⋃

i≥1

Ei and {χ1, χ2, . . .} ⊂ G

such that χiDi = Ei, i ≥ 1. Define j ∈ G(r)
λ by

j(χ) =
{
χi if χ ∈ Di, i ≥ 1,
1 if χ 6∈ Â \D.

In view of Lemma 3, j is compact. Moreover, g(χ) := χj(χ) is 1-1 (λ-a.e.),
g(D) = E, so the result follows.

Lemma 4. Let g ∈ G(r)
σ and W = (W g

a )a∈A be the corresponding A-
action. Then the spectral measure of W is equal to g∗σ, the image of σ via g.
If , moreover , g is 1-1 σ-a.e. then W has simple spectrum on L2(Â, σ).

P r o o f. Since\
Â

χ(a) dg∗σ(χ) =
\
Â

(gχ)(a) dσ(χ) = 〈W g
a 1, 1〉,

the first assertion follows. If in addition g is 1-1, then

g : (Â, σ)→ (Â, g∗σ)

is a measure-theoretic isomorphism. Let Ug stand for the corresponding
unitary operator

Ug : L2(Â, g∗σ)→ L2(Â, σ), Ug(f) := f ◦ g.
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All we need to show is that W is isomorphic to (Va)a∈A defined on
L2(Â, g∗σ). This is, however, clear since

UgVa = W g
aUg

for each a ∈ A; the result follows.

Lemma 5. Let λ(D) > 0 and put σ = λ|D. Assume that g(χ) = χj(χ) ∈
G(r)
σ , where j is constant on elements of the Borel partition

P = (P1, P 1, P2, P 2, . . .).

Then g∗σ is a finite measure equivalent to Haar measure concentrated on⋃
g(Pi ∪ P i).
P r o o f. This is merely the fact that Haar measure is invariant under

translations.

Remark 4. In fact, an image of Haar measure (via g above) is an abso-
lutely continuous measure whenever j is compact.

As a corollary of Lemma 3, Lemma 4 (and its proof), Lemma 5 and
Proposition 3, we obtain the following.

Corollary 1. Let D,E ⊂ Â be symmetric Borel sets of positive λ-
measure, λ(D) = λ(E). Put σ = λ|D, η = λ|E. Then there exists an A-
action (Qa)a∈A in U(L2(Â, σ)) such that

(1) {Qa : a ∈ A} is relatively compact in U(L2(Â, σ));
(2) Qb ∈ C((Va)a∈A) for each b ∈ A;
(3) Wa := VaQa, a ∈ A, is an A-action on L2(Â, σ) unitarily equivalent

to the action (Va)a∈A on L2(Â, η).

2.3. Proof of Lemma 1. First we apply Corollary 1 and basic properties
of Gaussian actions (explained in Section 1) to find that there exists an A-
action (Sa)a∈A such that TDa = SaT

E
a , where Sa ∈ C(TE), a ∈ A, and {Sa :

a ∈ A} is relatively compact. Using Lemma 2 we infer that TD and TE have
a common group factor. The result now follows directly from Proposition 2.
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153 (1964), 111–138.
[17] J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décom-
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