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Inverse limit of M-cocycles and applications
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Jan Kwiatkowski (Torun)

Abstract. For any m, 2 < m < oo, we construct an ergodic dynamical system having
spectral multiplicity m and infinite rank. Given » > 1, 0 < b < 1 such that b > 1
we construct a dynamical system (X, B, u,T") with simple spectrum such that »(T) = r,
F*(T) =b, and #C(T)/wcl{T" : n € Z} = oo.

1. Introduction. It was conjectured in [M1] that for any pair (m,r)
of integers or oo, with m < r, there exists an ergodic dynamical system
(X, p, T) with rank r(7T") = r and spectral multiplicity m(7") = m. Partial
solutions of this question were obtained by several authors: [Ch] (the pair
(1,1)), [dJ] (1,2), [M1] (1,7), [GoLe] (2,7), [R1,2] (r,7), [M2] (r,2r), [FeKw]
(p —1,p), p prime, and [Fel] (1, 00), [FeEKwMa] (given m, the set of r such
that m(7T') = m and r(T") = r has density 1). The latest result of this series
[KwLal] says that for any pair (m,r) with 2 < m < r < oo there is an
ergodic automorphism 7" with »(7T") = r and m(T) = m. Thus, together
with [M1], every finite pair (m,r) with m < r is obtainable.

The solution of the (multiplicity, rank) problem will be complete if for
any finite m > 1 and r = oo we can find an ergodic automorphism realizing
(m, 00). The pair (1, c0) is realized by the Gaussian-Kronecker system [dIR].
In this note we construct an ergodic automorphism realizing the pairs (m, o)
for every m > 2.

We denote by C(T') the set of all measure-preserving automorphisms of
(X, B, u) wich commute with 7. We say that a sequence {S,,} C C(T) tends
weakly to S € C(T) if for every A € B,

w(S,AANSA) — 0.
With this topology, C(T') is a Polish group. We denote by wcl{T™ : n €
Z} the weak closure of the set {T™ : n € Z}. The weak closure theorem
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[Kin] says that C(T) = wecl{T™ : n € Z} if r(T) = 1. It turns out that
it is the only relation between rank and the cardinality of the quotient
group C(T)/wcl{T" : n € Z} in the class of ergodic dynamical systems. In
[KwLa2| examples of ergodic automorphisms 7" are constructed such that
r(T) =r >2and #C(T)/wcl{T™ : n € Z} = m > 1, where r, m are given.
We construct an example of an ergodic automorphism 7' such that T' has
simple spectrum, (1) = r, F*(T) = b and #C(T)/wcl{T™ : n € Z} = o0,
where 7, b are given and r > 2, 0 < b < 1, br > 1.

In [KwLal] we used Morse automorphisms over finite abelian groups.
Now, we use the class of inverse limits of Morse automorphisms over com-
pact metric abelian groups. There are positive aspects of examining such
dynamical systems. Any Morse automorphism is a group extension T, of an
adding machine (X,T) defined by a special cocycle ¢ : X — G, where G is
a compact abelian group (the details follow).

The cocycle ¢ is determined by a sequence {b'}, t > 0, of blocks over G.
Each group homomorphism 7 : G — H defines a natural factor T3, where
1) = 7o . The cocycle ¢ is determined by the sequence {7 (b")}, t > 0, of
blocks over H. Now, let G = @(Gt, 7¢) be the inverse limit of finite groups
G with homomorphisms 7y : Gyy1 — Gy, 7 (Gig1) = Gy, t > 0.

Assume that {b°}52, is a sequence of blocks over G and that there are
mappings 7; : Gg — Gsy1 such that 7, 0 7y = id, s > 0. This allows us
to define an inverse limit T;, of Morse automorphisms over G (see 3.2 and
Sections 4 and 5). The spectral multiplicity m(7,,) and the rank r(7,,) of T},
are the limits of m(7T,,,) and r(T,). In Section 4 we construct an example of

a Morse automorphism T, such that m(7,,) is constant while (T, ) — oo.
To compute m(T,,) and r(T,,) we use the same methods as in [GoKwLeLi]
and in [KwLal].

Similarly to [KwLal] the automorphisms we construct here can be ob-

tained within the class of weakly mixing transformations.

2. Preliminaries. Let (X, B, 4, T) be an ergodic dynamical system. We
can look at the associated spectral operator Ur : L3(X, u) — L3(X, ), Urf
= foT, f € LA(X, ), where L3(X, 11) consists of those functions of L?(X, 1)
such that SX fdu = 0. By the spectral multiplicity m(T) of T we mean the
supremum of all essential spectral multiplicities of 7" on L2(X, u). We refer
the reader to [Fe2| for the definition of the rank r(7') and the covering
number F*(T') of T' and for more information on those notions.

Now let T': (X, B, u) — (X, B, ) be the (p;)-adic adding machine, i.e.
P Pes1, Adep1 = pey1/pr = 2 for t >0, po = Ao > 2,

o0
X:{JU:ZQtPt—liOSQtS)\t—L P—1:1}
t=0



Inverse limit of M -cocycles 263

is the group of (p;)-adic integers and Tz = z+1, 1= (1,0,0,...). The space
X has a standard sequence (&) of T-towers. Namely

& = (Dg,Di,...,D} ),

where D = {z € X :qy=... = ¢ = 0}, D; =T/(D§), 5=0,...,p; — 1,
X =y Dt

The tower &1 refines & and the sequence (§;) of partitions converges
to the point partition. Let G be an abelian compact metric group and let
mg be normalized Haar measure of G. A cocycle is a measurable function
¢ : X — G. A cocycle ¢ defines an automorphism Ty, on (X x G, B, u xmg),

To(x,y) = (Tx,g+ (), ze€X, ged,

where B is the product of the o-algebra B and the o-algebra of borelian
subsets of G.
Then T3 (z,y) = (T"z, g + o™ (z)), n=0,£1,..., where

p(z) +o(T2) +...+ (I 1), n=>1,
(1) ™M (@) =40, n=0,
—o(T71z) — ... — (T"x), n < —1.
The dynamical system (X x G, g, puxmg,T,) is called a group extension of
(X, B, u,T).
T, is ergodic iff for every non-trivial v € G (G is the dual group), there

is no measurable solution f : X — S! (the unit complex circle) to the
functional equation

(2) V(p(x)) =

We say that ¢ : X — G is an M-cocycle if for every t > 1, ¢ is constant
on each level D!, i =0,...,p;—2 (except on the top Df,tfl). Such a cocycle

x € X [Pal.

is defined by a sequence a blocks b, bV ... over G. By a block B over G
we mean a finite sequence

B =B[0]...B[k—1],

where k > 1 and B[i] € G, i = 0,...,k — 1. The number k is called the
length of B and denoted by |B|. If C' = C[0]...C[m — 1] is another block
then the concatenation of B and C' is the block

BC = B[0]... B[k — 1]C[0]...C[m — 1].

We can concatenate more than two blocks in the obvious way. If v : G — G
is a continuous group automorphism then we let v(B) be the block

o(B) = v(B|0))...v(B[k — 1)).



264 J. Kwiatkowski

We denote by B(g), g € G, the block
B(g) = (Bl0] +9) ... (B[k = 1] +9)
and by B the block B = (B[1]— B[0])... (Blk — 1] — B[k —2]), k > 2. Now,
we can define the product B x C of B and C' as follows:
B x C = B([C]0]) ... B(Clm — 1)).
Clearly,
|IBx C|=|B||C| and v(B x C)=uv(B) xv(C).

[43 ”

This multiplication operation “x” is associative so it can be extended to
more than two blocks. If |B| = |C| = k then we define

d(B,C) =k '#{0<i < k—1: BJi] # C[i]}.
Now we describe Morse sequences (M-sequences). Let b p(1) . be

finite blocks over G with [b®)| = \;, b)[0] = 0, t > 0. Then we define a
one-sided sequence over G by

w=">b0 xpM x .

Such a sequence w allows one to define an M-cocycle ¢ = ¢, on X as
follows: let

By =00 x ... xb®  ¢t>0.
Then |B;| = p; and |B;| = p; — 1. We finally put
o(x) = Byj] ifzxe D;, j=0,...,p — 2.
Clearly, ¢ is an M-cocycle. It is easy to observe that each M-cocycle can

be obtained as described above. As a consequence of the definition of ¢ and
(1) we get

(3) ¢ (z) = By[j + n] — By[j]

ifr e D;- andj =0,...,p;—n—1. If we examine p*7*) (), 1 < k < A\yq—1,
on the tower &y then (3) implies

(4) PP () = bV [g + k] — b D[]
ifze DG 0<qg< A1 —k—1,5=0,...,p — 1.

3. Spectral analysis of M-cocycles and their inverse limit
3.1. Spectral calculations. It is known that
(5) L*(X x G, pxma) = P L,
WE@

where
Ly={f®y€L*(X xG,uxmg): feL*X,n}
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Moreover, the subspaces L., are U, -invariant and using the same arguments
as in [KwSi] we see that Uz, on L, has simple spectrum.

Let ju, be the spectral measure of Uz, on L,. The subspace L. (e is
the trivial character) is generated by the eigenfunctions of T;, (in fact of
T') corresponding to all p;-roots of unity. An M-cocycle p = ¢, is called
continuous if L. contains all eigenfunctions of T;,, or equivalently if each
measure [iy,7y 7 €, is continuous. We shall use the following criteria to
find whether two measures fi,, jy, 7,7 € CA}, ~v # /', are orthogonal or
equivalent.

ProprosITION 1 ([KwRo], [FeKw]|, [GoKwLeLi]). If v : G — G is a group
automorphism and blocks b© bV .. satisfy

(a) i[ﬂ(b(t) [k, Ao — 1], 0(6)[0, Ap — k¢ — 1]) < o0
t=0

for a sequence (kt)i2y, 0 < ki < Ay, for which
(b) SR
o M ’

then i~ >~ py(~y for all 7y in @, where U is the dual automorphism.

PROPOSITION 2 [GoKwLeLi]. If for given v, € G,

(6) limyey({y y(pl@epe) (:L'D p(dz) andlim, e § v (@) (2)) p(dx) exist
along a subsequence N and are different

then piy, L py whenever Y70 ar/M+1 < oo (note that TPt — 1d in the
weak topology).

Let Hp be a subgroup of G and H = G/H, be the quotient group. Let
m : G — H be the quotient map and let my be Haar measure on H. We
can define a map P = Idx x7 of the dynamical system (X x G, T, u x me)
onto (X X H,Ty, i, X mp), where op(x) = m(p(x)). The systems (X x
H,T, m, 1 x mpg) are called the natural factors of (X x G,T,, u x mg). If
B is a block over G then 7(B) denotes the block over H defined by

m(B) =n(B[0])...7(B[k —1]), k=B
Using the obvious equality 7(B x C) = w(B) x ©(C), it is not hard to see

that if o is the M-cocycle defined by the sequence of blocks b, b . .. over
G then ¢y is the M-cocycle determined by the blocks 7 (b)), w(b(1), ...

It is known that H can be identified with a subgroup of é, namely with
the subgroup of those v € G such that v(Hy) = 1. Let

Log={f®yeL*(X xHuxmy): feL*X,p} ~eH
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Then

(7) L2(XXHHU><mH):@L'y,H
yed

and the unitary operator Ur, ,, on L., g is spectrally isomorphic to the
unitary operator Ur,, on L,. Thus Ur, ,, has simple spectrum on L, y and
its spectral measure is ..

3.2. Inverse limit of M-cocycles. Let (X,B,u,T) and (X, Bs, s, Ts),
s =0,1,..., be dynamical systems. We say that (X, B, u,T) is an inverse
limit of (X, Bs, ps, Ts) if there exist homomorphisms Vy : (X, B, u,T) —
(Xs, B, 15, Ts) such that V. 1(B,) C Vsjrll (Bs+1) and the o-algebras
V. 1(Bs) generate B. For each s > 0 we have a homomorphism Wy : (X1,
Bs—i—l»ﬂs—i—st—i—l) - (XsygsaﬂsaTs) and Wy o Vi = V,. We write T' =
lim 7. It follows from the definition of the spectral multiplicity, rank and
covering number that m(7T) = limm(Ty), r(T) = limr(Ts), F*(T) =
lim F*(Ts) and moreover m(Ts) < m(Tsy1), r(Ts) < r(Ts41), F*(Ts) >
F*(Tysn).

It is clear that T is ergodic (weakly mixing, mixing) iff so is Ty for every
s > 0. Consider an ergodic dynamical system (X, B, u,T) and sequences
(Gs)2,, of metric compact abelian groups and group homomorphisms 7 :
Gs+1 — G with m(Gs41) = G,. The sequence (G, 7s),s > 0, defines the
inverse limit G = @(Gs,ﬂs) and the homomorphisms s : G — G, such
that mg01)511 = 1. Note that G is a metric compact abelian group. Assume
that ¢ : X — G4 are cocycles such that 75 o ;11 = @s. The cocycles ¢y
define a unique cocycle ¢ : X — G satisfying ¢s0p = ¢5. Then Ty, = lim T, .

Now, let (X, B, 1, T') be a (p;)-adic adding machine, p; = Ag ... Ay, t > 0.
We describe special inverse limits of group extensions T, determined by M-
cocycles. To do this assume additionally that we have one-to-one measurable
mappings 75 : G5 — Gy such that 5 075 =id, s > 0. Set Hy = 75(G).

Let H, be the set of all sequences {g;}2, € G such that g is an ar-
bitrary element of Gs and gs11 = 7s(9s), gst2 = Ts+17s(gs) and so on,
Gs—1 = Ts—1(gs)s---,90 = T © ... 0 ms_1(gs). Given blocks b®), t > 0, over
Gy, we can treat them as blocks over G if we identify the members of b(*)
with the corresponding elements of H;. The sequence (b(V))2, defines a co-
cycle ¢ : X — G. Let m and mgs be normalized Haar measures of G and
G respectively. The dynamical system (X x G, B, Ty, X mg) has natural
factors

(X x Gs,Bs, Ty, , jp xms), s2>0,
where s = 15 0  and the mappings
Ws=Idx x¢s: X xG— X x G,
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are homomorphisms of those systems. Each cocycle ¢s is an M-cocycle
determined by the blocks (bgt));’io, where b{") = Y (0W) if t > s and
bgt) =1 0...0m_1 (b)) if t < s.

4. Example 1. In this section we describe an example of an M-cocycle
¢ such that T, has infinite rank and spectral multiplicity r > 1.

4.1. Definition of the cocycle. Let vy = 72!, t > 0, and n > 2. Select a
sequence (I;)72, of positive integers such that n|l;, Iy / oo and
(8) (I —=n/l;)™ — 1.
Let Z,, = {0,1,...,n— 1} ~ Z/nZ, and
Tt
—N—
Gi=Zn®...07L,
be the direct product of r; copies of Z,,’s, t = 0,1,... For g € G; we write

g= (907917 s 797”,5—1)’ gi € Zn
We let

e =e;=(0,...,0,1,0,...,0), i=1,...,r,—1.
——
i—1
Define homomorphisms m; : Gi11 — G¢ by wt(e(ﬁl)) = egt), where j =
0,1,...r441—1,i=0,1,...,m,—1and i = j (mod r;). We have the natural
mappings 7; : G — G4y defined by

’I"t—l Tt—l
Tt( Z giegt)) = Z giegtH), 9o, Gr,—1 =0,1,...,n — 1.
i=0 i=0

Then 7; o 7 = id. Set
G = @(Gt, 7Tt).
As above let 9; : G — G} be continuous homomorphisms such that
T 0 Y1 = Y.
Now, we are in a position to describe M-cocycles ¢; as in part 3.2. To
do this we define a sequence {b(")}22 of blocks, each block b() over G;. Put
9) Fi=F"=0(e)(2e:) ... (1= 1)(es),

1=0,1,...,r — 1, I =y, ei:e(t)

Then define a block /Bff) = Bug, u=0,1,...,28 =1, k=0,...,r —1, as

follows:

(10) 5u,k = qurk X Fur+(k€B1) X... X Fur+(k@7,_1) where a®b is a+b taken
modr,a,b=0,1,...,7—1,and By r = Ouk X Oug1,k X .. X Ou@2t—1 k,
and now u @ u is u + u taken mod 2°.
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Finally, define

(11> /Bz(f) - ﬁu = ﬁu,Oﬁu,l cee ﬁu,r—la U= Oa 17 e 72t -1
and
qt¢,0 qt¢,1 ¢,2t —1
—l——— ————
(12) b =By B0 Br...Pr... Bot_1...Bot_1

where ¢, are positive integers such that
1
(13) Z — <00, g =min(g0,qr1s---,qe2t-1)-
i—o It
Some additional conditions on ¢;,’s will be specified later.
Obviously, F -(t), ﬁff}:, ﬁq(f), b®) are blocks over Gy and we have

1

Bl =1, |Buxl =07 1B =00, Y] =1 Q

where
2t—1

Qt = Z qt,u-
u=0

Let v = v : G¢ — G; be the group automorphisms defined by
v(eyrtk) = Cur+ (k1)
w=0,1,..,2" =1, k=0,1,....r — 1, eyry =), .
Then we have

(14) U(Fur—‘rk) = Fur—i—(k@l)a U(/Bu,k) = ﬁu,k@l.

Now, let (X, B, u,T) be the (p;)-adic adding machine, where p; = Ay ...
A A= [P = rlltQy, t > 0. The sequence {b}22 determines the
sequences of blocks {bgt)};ﬁo, s > 0, and in consequence M-cocycles ¢ :
X — G and ¢ : X — G5 described in part 3.2.

We have a sequence of dynamical systems

(15) (X % Go, Tpy) &% (X x Gy, Tp,) &2 (X x G, Typy) €2 ..

determined by the homomorphisms 7;, the mappings 7; (in this case 7y are
homomorphisms) and by the blocks (12).

4.2. Additional conditions. The blocks bgt), t,s > 0, can be obtained
by a procedure similar to that for b;’s. If £ < s then bgt) = b (with egs)
instead of ez@, i=0,...,74 —1). If t > s, we define the blocks Fi(,i) by (9)
fori=0,1,...,7rs — 1 and [ = l;. We have
(16) myo...om(FE)=FY, |FY =1

0,8

forj=0,1,...,r4—1,i=0,1,...,7rs — 1 and j =4 (mod ry).
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Then we define 83, 8", u=0,1,...,2° ~ 1, k=0,1,...,r — 1, by

(10) and (11) using the blocks Féi&rk,s. Let
dt,a2s dt,a25 1 dt,a28 425 -1
- —N———
(17) d0a=Po---BoPr-..01...02:-1...0251

fora=0,1,...,2t75—1, B, = 8", w=0,1,...,25 — 1. Then (16) implies
) =y (BY.,,) foru=0,1,....2° —Tand a = 0,1,...,275 — 1.
Now, comparing the blocks (12) and (17) we get

bgt) = 8081 e gzt—s_l.

To finish the definition of ¢ we must give conditions for the numbers
Qtu, v=0,1,...,28 =1, ¢ > 0. To do this consider the dual group G. We
have G = UZio CAJS. The group automorphisms v, : G; — G4 satisfy vgsomy =
s 0 Vg1 and they determine a continuous group automorphism v : G — G
such that v; 015 = s 0v. The dual group automorphism o : G - G satisfies
v(Gs) = Gs. It is not hard to see that every v-trajectory of G has length
< r and there are v-trajectories having length r. Consider all possible pairs
(7,7'), 7,7 € G, such that v,7" are from different v-trajectories. Divide
the set N ={0,1,...} into disjoint infinite subsets N(v,~’). For every such

~

pair (7y,7") we choose s = s(y,7’) > 0 such that v,~" € Gs. The functions
1 r—1 1 r—1
Ay == 00(n), Ay = 07()
p=0 p=0

are orthogonal in L?(G,, ms) so we can find g = g(~,7’) € G5 such that

(18) A(9) £ Ay (g).
Choose ¢ = ¢(7,7) in such a way that
(19) 2<e<1l and 2(1—c)<icld,(g9)— Ay (g)l.

To find the numbers ¢, we need probability vectors o) =5 = <w§t’s))
where s <t and z =0,1,...,2% — 1, defined as follows:

2t=s5 1 2t—1

(20) w.= Y. qf’g“”, Q= tra
t u=0

a=0

Take t € N(v,7') and t > s = s(7,7’). Choose ¢ ,,u =0,1,...,2" — 1, in
such a way that
(21) wg™? = e(7,7),
(22) lim  wi™ = e(y,7),
t—o00
teN(v,7")



270 J. Kwiatkowski

(23) wt®) = wg’s) for z,2/ =1,...,2° — 1.
If t € N(v,7') and t < s(v,~') then we pick ¢, satisfying (23) for every
2,2 =0,1,...,2% — 1.

4.3. Propositions. In the sequel let T, be the group extension of 1" defined
by the cocycle ¢ described in 4.1 and 4.2.

PROPOSITION 3. T}, is ergodic and ¢ is continuous.

Proof. Take v € G, and assume that
f(Tx)/ f(x) = v(ps(x))

for a.e. z € X, where f: X — S! is a measurable function (see (2)). Using
the same arguments as in [FeKwMa] we get

(24) Wl @) = 1
in measure. The definition of b%, (4), (19) and (21)—(23) imply that @épt) (x)
(()s),. el? L onaset By C X with u(Ey) — 1.

is equal to e N

Moreover, if
Ey={z€B:o® @) =e}, i=01,...m-1,
then
p(Eei) > 5¢(7,7")

ift € N(v,v") and v’ comes from a different v-trajectory than . It is obvious
that the last inequality and (24) imply v = 1. Thus T}, is ergodic and then
T, is ergodic because T), = lim T}, .

To show the continuity of ¢ we must prove that the only eigenvalues of

T, are ps-roots of unity. Let F(x,g) be an eigenfunction with eigenvalue A.
We have

F(z,9) =Y f(z)v(9),
veG
where f, € L?(X,pn). Then f(Tz)v(p(z)) = Mfy(z) for all v € G and a.e.
x € X. Using again the same arguments as in [FeKwMa] we get

(25) ’Y(so(pt)(av)))\_pt — 1 in measure

for every v € G such that fy #0in L?(X, u). Then v € és for some s > 0
so (25) can be rewritten as

P @A = 1.

Taking again " as before and ¢t — oo, t € N(v,7’) we find that ’7(62(-3)) is
constant for i = 0,1,...,r,—1. Thus vy = 1. This means that F(z,y) = fo(x)
and A is an eigenvalue of 7', i.e. \ is a ps-root of unity. We have proved the
continuity of v. m
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PROPOSITION 4. m(T,) = r.

Proof. Let p, be the spectral measure defined in part 3.1, and v € G.
We will show that

(26) Py X K,
(27) py L py whenever v, are in different v-trajectories.
qt,u
—f
It follows from (14) that every fragment 3,0, ..., u =0,1,...,2" — 1, of

b®) is of the form Bu,0v(Bu,0) - - - o (Bu0), " =7q . — 1. Thus

< 24| Bu.ol (1§3) l
‘6u,0‘er qt

Choose s > 0 such that v € G,. The inequality (28) is valid for the blocks

bgt), because ¥s o v = vs o Ps. Thus the sequence (bé”)g’;o satisfies the

conditions (a) and (b) of Proposition 1. In this manner (26) is proved.
Now we prove (27). Suppose 7,~" do not belong to the same v-trajectory.

Let v,v" € G and let g = g(7y,7’) satisfy (18). Then

9=g0ey + ..o groel) |,

(28> g<b(t) [l:t - 17 )‘t - 1]7 U(b(t))[()? )‘t - l:t - 1])

with go,...,9r.—1 =0,1,...,n — 1. Define
ar=go+gile+ ...+ graly

Then
ar _ nrgly® Lo
T Tt — - 0
l; l; n

and
> a =1
PDEEEUD i S
o M e t Q1

We now show that

lim | |yl @) plda) = |7/ (00 (@) plda) | # 0.
teN(yY) by X

t—o0

Repeating the same calculations as in [GoKwLeLi] and using (4) we get for
t> s,

(20) | Al (2)) u(da)
X

=2 { Z o [1 Zﬁpm(ws(h»] ot,uws(h))} +or

heG, u=0

n'g

I,



272 J. Kwiatkowski

where

ou(h) = Iy #{0 <J <t —ag—1: Buolj +as] — Buols] = R},

~ , 2! (t,5)
y=~vory, o< lr,+——>0 Bu,o = By -
t

But 04, (¢s(h)) = 01.a(¢s(h)) if w=u (mod 2°). Thus

o =z [Eeee]{T oL

g p=0
“y E 2@’@)(9)] { §:j or-(g)e- .

Take j =0,1,...,0;* — 1. We can represent it as
= o+ il el
where jo,j1,...,Jr,—1 =0,1,...,0; — 1. Let
Ky ={0<j<Ul*—=1:0<jo,015-5Jr—1 < lg—n— 1}
We have
If j € Ky then it is easy to check that

(32)  PBuoli + at] — Buoli] = goegsr) + gleii)-rl +...+ grsfleii)-ws—l
=g;, 2=0,1,...,2° =1, u=z (mod 2%).

In particular, g5 = g(v,7)-
(31) and (32) imply

(33) 00-(g8) 2 (1 - Z) }

Using (8) and (29)-(33) we obtain
e @) utn) = 3w [ LS #)0)] + ot ol
X z=0

ot — 0, 0y <1-— (1—?> £,
t
Now, if ¢t € N(~,’) then (18), (19) and (21)—(23) imply

Jim | § (el @) p(de) = |/ (o7 (@) ()
X X

= c(v,7)[45(9) — Ay (9)] + b,
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and
bl < 2(1 = ¢(3,7) < 3el Ay (9) = A (9)]
In this way
tim [ § () (@) () = § (o170 (@) ()| # 0.
Nt L %

We have shown (1, L 11, by Proposition 2. It follows from (5) and from the
simplicity of Ur, on L., v € G, that

m(T,) = max{lengths of v-trajectories of Gl=rm
PROPOSITION 5. 7(T,) = 0.

Proof. We have r(T,) = lims_,oc (7T, ). The blocks bgt), t=0,1,...,
defining the M-cocycle ¢, over G4 have a similar structure to those inves-
tigated in [KwLal]. Repeating the same reasoning as in [KwLal] we get
r(T,,) = rs. In this manner r(7,) = limsry; = co. m

5. Example 2. In this part we construct an M-cocycle ¢ such that T,
has the properties announced in the second part of the abstract.

To do this choose a prime number p > r, set Gy = Z,e+1, t > 0, and
denote by m; : G¢11 — Gy the natural homomorphisms. Next, let 7 : Gy —
Giy1 be defined by 74(g9) = g, g = 0,1,...,p'Tt — 1. The groups G, the
homomorphisms 7; and the mappings 7 satisfy the conditions described in
3.2. Take a probability vector (w(i)), ¢ = 1,...,r, with w(i) > 0. Select

positive integers )\El), . ,)\gT) such that
(34) AD = @Dyt D o,
(35)  w (D) =AY /N Bw), i=1,...,m A=A+ A
Set
By =B =0(i)(2i) ... ((I = 1)i), i
and

p® = g g0,
The sequence {b(t)} of blocks determines an M-cocycle ¢ over the group
G = lim(Gy, ) (G is the group of p-adic integers) and M-cocycles p5 over
G5 according to the definitions in 3.2.

PROPOSITION 6. There exists a probability vector (w(i)), i = 1,...,r,
with w(l) > 1/r, 0 < w(i) < w(l), i = 2,...,r, such that r(T,) = r,
F*(Ty) = w(1), #C(Ty,) /wel{Ty : n € Z} = oo and Ty, has simple spectrum.

Proof. It is proved in [FiKw] that for every s > 0, T, is ergodic
and r(Ty,,) = r, F*(T,,) = max(w(l),...,w(r)) = w(l). Then »(T,) =



274 J. Kwiatkowski

lim, r(T,,) and F*(T,) = lim, F*(T,,) = w(1). To prove the next properties
of T, let us remark that the set (Joo, H, from 3.2 coincides with the set
of all rational p-adic integers. For g € G let 05 : X x G — X X G be
defined by o4(z,h) = (x,9 + h),h € G. By this formula G acts as a group
of measure-preserving transformations in X x G. Moreover, o, € C(T,,).

Consider 04, g € G5 ~ Hg, s > 0. We show that o, ¢ wel{T7 : n € Z}.

Assume that (T,)"* — o4 in C(T,). Then (T,)" 54 o4 for every s > 0,
which implies

(36) plo € X - o) (@) # g} =1 > 0.

Fix s > 0. Choose 7(t) = 7 such that u;/p, < &5/2. It follows from (3)
that

o (@) = Brli+ ] — Brli]
ifee D], i=0,1,...,pr —u; — 1. Then (36) implies

1
—{0<i<pr—u—1:B;li+u]—B:fi] =g} >1—¢5.
pr

On the other hand, from [FiKw] we can deduce that

i{()Sz'ng—u—l:BT[i—i—u]—BT[i];ég}ZQ>0
whenever g # 0 and 0 < u < p, /2.

In this way oy & wel{T} : n € Z} for every g € |2, Gs. To finish the
proof it remains to select a probability vector (w(i)), i = 1,...,r, for T,
to have simple spectrum. It follows from [KwSi| that if the numbers w(3)
satisfy the condition

(37) > (@) =7 (@)]w(i) #0
i=1
whenever v # 7/, 7,7 € G, then T, has simple spectrum.
Fix w(1) with 1/r < w(1) < 1. If r = 2 then F*(T,) > 1/2 and it is
known [Fe2| that T;, has simple spectrum.
Let r > 3. Consider the set
A= {(w(2), coow(r) ERTT?0 < w(i) < w(1), w()=1- w(l)}.

.
V)

For distinct 7,7 € G = Uso G, we have an (r — 3)-dimensional plane
D(v,v") in R"=2 described by

D(v,7') = {(W(2)7 csw(r) Y ) = (@D)w@) = (1) - V(l)]W(l)}-

=2
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The set Ag = U, D(7,7') has Lebesgue measure 0 (in R"~2) so that we

can find (w(i)) € A — Ap, i = 2,...,7. Then the condition (37) is satisfied

and T,,, has simple spectrum for s > 0. But m(T,,) = sup, m(T,,,) = 1.
The proposition is proved. m
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