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Abstract. Let f be a continuous map of the circle S1 or the interval I into itself,
piecewise C1, piecewise monotone with finitely many intervals of monotonicity and having
positive entropy h. For any ε > 0 we prove the existence of at least e(h−ε)nk periodic
points of period nk with large derivative along the period, |(fnk )′| > e(h−ε)nk for some
subsequence {nk} of natural numbers. For a strictly monotone map f without critical
points we show the existence of at least (1− ε)ehn such points.

Introduction. This paper is inspired by the seminal work of Michał
Misiurewicz and Wiesław Szlenk [MS1, MS2]. For any continuous, piece-
wise monotone map of the circle or an interval into itself they proved the
fundamental inequality

h(f) ≤ p(f),

where h is the topological entropy and p is the exponential growth rate of
the number of periodic orbits:

p(f) = lim sup
n→∞

logPn(f)
n

,

where Pn(f) = Card{x : fnx = x}.
Our main goal is to show that for smooth or piecewise smooth maps a

large number of periodic orbits are expanding with exponent at least almost
as large as entropy.

Theorem 1. Let f : S1 → S1 be a C1 monotone map without critical
points with |deg f | = k, k > 1 (hence h(f) = log k). Then for each ε > 0
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and n large enough one can find at least (1 − ε)kn periodic points xni of
period n for which |(fn)′(xni )| ≥ (k − ε)n.

Theorem 2. Let f be a continuous, piecewise C1 map of S1 or I into
itself with finitely many critical points and with entropy h(f) = h > 0. Then
for each ε > 0 one can find a subsequence {nk}∞k=0 of natural numbers such
that for each nk the function f has at least e(h−ε)nk periodic points xnki of
period nk for which |(fnk)′(xnki )| > e(h−ε)nk .

In both statements the loss of expansion is small on the exponential
scale. The loss in the number of periodic points is small in the stronger mul-
tiplicative sense for monotone maps of the circle but only in the exponential
sense if critical points are present. This exponential loss in the number of
points with large derivative is probably unavoidable even if we assume higher
smoothness.

One can naturally ask whether for monotone maps of the circle one can
actually guarantee that no expansion is lost. An easy answer is that the ex-
pansion is actually controlled not by entropy but by the Lyapunov exponent
with respect to the maximal entropy measure which is always greater than
or equal to the entropy; if the inequality is strict, which is generically true,
one can avoid the loss of expansion altogether (Proposition 4). We discuss
the difficulties of the remaining case at the end of the paper.

Our results can be viewed as a simple model case for the still unknown
C1 versions of results connecting entropy and the growth of periodic orbits
for C1+ε diffeomorphisms in dimension two and flows in dimension three,
specifically [K1, Theorem 4.3; K2, Theorem 4.1; KM, Corollary S.5.11]. For
the proofs of those results the C1+ε assumption is crucial since they heavily
rely on Pesin theory [P, KM, BKP], essential elements of which fail in the
C1 case [Pu].

The novelty of our approach lies in not requiring any regularity beyond
C1 while the influence of critical points is overcome in a more or less stan-
dard fashion by considering a Markov approximation for orbits avoiding
a neighborhood of the critical set. If we assume that f is C1+ε for some
positive ε then Theorem 1 becomes a simpler version of the results for the
two-dimensional invertible case (e.g. [KM, Corollary S.5.11]) and Theorem 2
can be deduced from those results via the Markov approximation (see proof
of Theorem 2 below). The argument in the C1+ε case uses existence of or-
bits regular with respect to a measure with high entropy which return very
close to the initial condition and then one uses a non-uniform version of the
Anosov closing lemma for hyperbolic systems (see [KM, Theorem S.4.13]).
The latter depends on a bounded distortion estimate which is exactly where
Hölder regularity of the derivative is required. Uniform bounded distortion
breaks down for C1 maps so we have to replace it with a counting argument
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showing that it still holds in many places. While completely elementary, the
argument is “ergodic” in spirit and possibly its more sophisticated versions
may be used in the two-dimensional case.

We would like to thank the referees for their comments which helped
to improve the presentation of the paper. In particular, we are grateful for
pointing out the argument and references which produce a multiplicative
lower bound for the number of periodic points (see subsection “Multiplica-
tive growth estimate” below).

Proofs. Theorems 1 and 2 will be deduced from the following result.

Theorem 3. Let f be a continuous, piecewise C1 map of S1 or I into
itself. Assume that there exist a > 1, M > 0 and β > 0 and an increasing
sequence {nl} of positive integers such that for each nl one can find [anl ]
non-intersecting intervals {∆nl

i }[a
nl ]

i=1 in S1 with the following properties:

(1) f is C1 on each interval fm(∆nl
i ) for m = 0, 1, . . . , nl − 1,

(2) each ∆nl
i contains a periodic point xnli ∈ ∆nl

i of period nl,
(3) the derivative of f at each xnli and at each of its images is greater

than β in absolute value,

(4)
∑nl−1
m=0

∑[anl ]
i=1 l(fm(∆nl

i )) ≤ Manl , where l(∆) is the length of the
interval ∆,

(5) l(fnl(∆nl
i )) ≥ β.

Then for each ε > 0 one can find N ∈ N such that for each nl > N
the function f has at least (1 − ε)anl periodic points xi of period nl with
|(fnl)′(xi)| > (a− ε)nl .

Condition (5) will give us the existence in most ∆nl
i ’s of a point ynli where

the function fnl has large derivative, |(fnl)′(ynli )| > (a−ε)nl . Condition (2)
will guarantee the existence of a periodic point xnli of period nl in each
interval ∆nl

i containing ynli , and conditions (1), (3) and (4) will give us the
estimate ∣∣∣∣

(fnl)′(ynli )
(fnl)′(xnli )

∣∣∣∣ < eεnl

for most intervals ∆nl
i .

Denote by ωg(δ) the δ-modulus of continuity of a function g,

ωg(δ) = sup{|g(x)− g(y)| | |x− y| < δ}.
In the proof of Theorem 3 we use the following lemma.
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Lemma 1. Let f be a C1 map of the circle or an interval into itself and
ψ : N→ R+ be a function with ψ(n) = o(n). For each natural n define

φ(n) = φf,ψ(n) = sup
{ n∑

i=1

ωf ′(δi)
∣∣∣

n∑

i=1

δi < ψ(n), 0 ≤ δi ≤ 1
}
.

Then φ(n) = o(n).

P r o o f. Fix ε > 0. We show that there exists N such that φ(n) ≤ εn
for each n > N . As f ′ is uniformly continuous, limδ→0 ωf ′(δ) = 0, so there
exists γ such that ωf ′(δ) < ε/2 if δ < γ. Then if

∑n
i=1 δi ≤ ψ(n) we have

Card({i | δi ≥ γ}) < ψ(n)/γ, and hence
n∑

i=1

ωf ′(δi) =
∑

i:δi<γ

+
∑

i:δi≥γ
≤ ε

2
n+

ψ(n)
γ

ωf ′(1) ≤ εn

for n large enough, as ψ(n) = o(n).

Proof of Theorem 3. Fix ε > 0. For each nl we have A = [anl ] non-
intersecting intervals {∆nl

i }Ai=1, so the sum of their lengths
∑A
i=1 l(∆

nl
i ) is

at most 1. Hence all but at most (a−ε)nl intervals have length smaller than
(a − ε)−nl . Furthermore, for any interval, l(fnl(∆nl

i )) ≥ β, so in each of
those A− (a− ε)nl intervals there exists a point ynli ∈ ∆nl

i with

|(fnl)′(ynli )| ≥ β

(a− ε)−nl = β(a− ε)nl .

As
∑A
i=1

∑nl−1
k=0 l(fk(∆nl

i )) ≤Manl , we know that

Card
({
i
∣∣∣
nl−1∑

k=0

l(fk(∆nl
i )) ≥ √nl

})
≤ anl M√

nl
.

So, at least A− anlM/
√
nl − (a− ε)nl intervals ∆nl

i contain a point ynli in
their interior and satisfy the inequality

nl−1∑

k=0

l(fk(∆nl
i )) ≤ √nl.

Let xnli be our periodic point in one of those intervals. Let Si be the set
of integers k between 0 and nl − 1 such that

|(fnl)′(fk(xnli ))| ≤ |(fnl)′(fk(ynli ))|.
Then we have

log
∣∣∣∣
(fnl)′(ynli )
(fnl)′(xnli )

∣∣∣∣ ≤
∑

k∈Si
(log |f ′(fk(ynli ))| − log |f ′(fk(xnli ))|)

≤ β−1
∑

k∈Si
(|f ′(fk(ynli ))| − |f ′(fk(xnli ))|)
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≤ β−1
nl−1∑

k=0

||f ′(fk(ynli ))| − |f ′(fk(xnli ))||

≤ β−1
nl−1∑

k=0

ωf ′(l(fk(∆nl
i ))).

Here we assume that the logarithms are natural.
By Lemma 1 we know that if nl > N0 then

∑n−1
k=0 ωf ′(l(f

k(∆nl
i ))) <

εβnl, hence for all nl large enough we have

log
∣∣∣ (f

nl)′(ynli )
(fnl)′(xnli )

∣∣∣ ≤ εnl.

From this we get

|(fnl)′(xnli )| ≥ |(f
nl)′(ynli )|
eεnl

≥ (a− ε)nl
eεnl

=
(
a− ε
eε

)nl

for all nl large enough, which completes the proof.

We will use the following remarks in the proof of Theorem 1, Theorem 2
and Proposition 4.

Remark 1. Suppose that instead of condition (5) the intervals ∆nl
i sat-

isfy the following condition:

(5a) There exists b > 0 such that for all γ > 0 and for nl large enough, in
at least (1− γ)anl intervals ∆nl

i one can find a point ynli such that

|(fnl)′(ynli )| ≥ bnl .
Then f has at least (1− ε)anl periodic points xnli of period nl with

|(fnl)′(xnli )| ≥ (b− ε)nl .
Remark 2. If conditions (1)–(5) hold for all n large enough, say n > N ,

the conclusion will hold in the sense of existence of periodic points of all
periods n > N .

Proof of Theorem 1. Let f : S1 → S1 be a monotone C1 map of de-
gree k, |k| > 1, without critical points. To prove the theorem we check that
conditions (1)–(5) of Theorem 3 are satisfied for a = k. As f is smooth on
the whole circle condition (1) is true.

For each positive integer n take a standard decomposition of the circle
into kn intervals {∆n

i }k
n

i=1, each mapped by fn onto the whole S1 and hence
containing a periodic point of f of period n. For example, pre-images of a
fixed point of order up to n may serve as endpoints of these intervals. As
f does not have critical points its derivative is bounded away from zero on
the whole circle. Condition (3) then holds with any β < min |f ′|.
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As for each i and each positive n one has fn(∆n
i ) = S1, to satisfy (5) we

can take any β < 1. Further, for each m the intervals {fm(∆n
i )}kni=1 cover

the circle exactly km-fold, which implies
kn∑

i=1

l(fm(∆n
i )) = km and

n−1∑
m=0

kn∑

i=1

l(fm(∆n
i )) ≤ kn.

Now conditions (1)–(5) of Theorem 3 are satisfied for a = k and M = 1
from which it follows that for each ε > 0 and all n large enough there are at
least (1− ε)kn periodic points xni of period n with |(fn)′(xni )| > (k− ε)n.

To prove Theorem 2 we use [KH, Corollary 15.2.9] which says that the
topological entropy of a continuous piecewise monotone map f of I or S1

into itself can be approximated arbitrarily well by the topological entropy of
Markov chains for iterates of f associated with collections of subintervals.

Proof of Theorem 2. We call a point x singular for the function f if either
f is not C1 in a neighborhood of x or f ′(x) = 0. Singular points divide
the domain of f into finitely many intervals such that on each interval the
derivative is continuous and strictly positive in the interior. Fix an ε > 0.
By [KH, Corollary 15.2.9] one can construct a one-sided topological Markov
chain (ΩRA , σ

R
A = σ¹ΩRA ) for an iterate of f with entropy h(σ¹ΩRA ) > h−ε. We

still denote this iterate by f since it satisfies the assumptions of the theorem.
Following [KH] we use the upper index R for one-sided topological Markov
chains to distinguish them from two-sided ones. To apply Theorem 3 we
consider an invariant subset of ΩRA such that the subintervals corresponding
to periodic points in ΩRA do not contain singular points of f .

The function f can only have finitely many singular points and those
which belong to ΩRA can be coded by sequences

ω(i) = (ωi1, ω
i
2, . . . , ω

i
n, . . .) ∈ ΩRA , i = 1, . . . , q.

For a positive integer r consider the subset F = F (r) of ΩRA that consists
of all elements of ΩRA which contain no finite subsequence (ωi1, ω

i
2, . . . , ω

i
r)

for i = 1, . . . , q. Obviously, F is σ-invariant for any value of r . As there are
only finitely many sequences ω(i) we can take r large enough that h(σ¹F ) >
hΩRA − ε > h− 2ε. (See [Li], where also an exponential estimate from above
for the drop in entropy is obtained.)

Notice that once we fix r, by the construction of F we can find
δ > 0 such that all points corresponding to sequences in F lie outside
the δ-neighborhood of the set of singular points. In fact, otherwise for
any positive δ we could find a point x and the corresponding sequence
ω = (ω1, ω2, . . . , ωn, . . .) such that some iterate fs(x) would belong to the
δ-neighborhood of some singular point. For sufficiently small δ this would
imply that ω(i) = (ωi1, ω

i
2, . . . , ω

i
r, . . .) and σsω = (ωs+1, ωs+2, . . . , ωs+r, . . .)
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have at least r first elements equal: ωs+1 = ωi1, . . . , ωs+r = ωir. But it would
mean that ω contains the subsequence (ωi1, ω

i
2, . . . , ω

i
r) and hence cannot

belong to F .
From this we see that the derivative of f is uniformly bounded away

from 0 at all the periodic points of f with corresponding sequences in F .
By the choice of F , h(σ¹F ) > h − 2ε and we can find an increas-

ing sequence {nk}∞k=1 of positive integers such that F contains at least
e(h(σ|F )−ε)nk > e(h−3ε)nk different periodic sequences of period nk. The
subintervals ∆(nk)

i corresponding to the first nk elements of those periodic
sequences satisfy the conditions of Theorem 3 for a = eh−3ε and so give us at
least 1

2e
(h−3ε)nk periodic points xnki of period nk with |f ′(xnki )|>e(h−4ε)nk .

Remark 3. With a slight modification the above proof works for maps
whose set of critical points consists of finitely many isolated points and
intervals.

The next proposition shows that if in Theorem 1 the exponent χ of the
measure µ of maximal entropy for f is strictly greater than log k then one
can get a stronger estimate for the derivative of f along periodic orbits.

Proposition 4. Let f : S1 → S1 be a C1 monotone map without critical
points with |deg f | = k > 1. Let τ = eχ be strictly greater than k, τ = k+α,
α > 0. Then for each ε > 0 and all n large enough one can find at least
(1− ε)kn periodic points xni of period n for which |(fn)′(xni )| > kn.

P r o o f. To prove the proposition we check that condition (5a) of Theo-
rem 3 is satisfied for a = k and b = k + 1

2α > k.
As f does not have critical points the function ϕ = log f ′ is bounded and

hence integrable. As µ is ergodic the Birkhoff Ergodic Theorem tells us that
n−1∑n−1

k=0 ϕ(fk(x)) = n−1 log (fn)′(x) converges to the constant χ = log τ
µ-almost everywhere. This implies that as n→∞,

µ
({
x
∣∣ (fn)′(x) <

(
τ − 1

2α
)n})→ 0.

But as µ is a counting measure on the intervals ∆n
i we get

Card
{
i
∣∣ (fn)′(x) <

(
τ − 1

2α
)n ∀x ∈ ∆n

i

}
= o(kn),

which gives us the condition (5a) for b = τ − 1
2α = k + 1

2α > k.
As the function f satisfies the conditions of Theorem 1 it also satisfies

conditions (1)–(4) of Theorem 3, which proves the proposition.

Open questions and comments

Infinite critical sets. The inequality

h(f) ≤ p(f)
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established by Misiurewicz and Szlenk for piecewise monotone continuous
maps of the circle or an interval has been extended by Misiurewicz to ar-
bitrary continuous maps [M1, ALM]. Correspondingly, it is natural to ask
whether our results about abundance of fast expanding periodic points also
hold for arbitrary C1 or continuous piecewise C1 maps. In order to carry
out the scheme of our proof we need to know that the invariant set of points
which avoid a sufficiently small neighborhood of the critical set carries topo-
logical entropy which converges to the topological entropy of the map as the
size of the neighborhood decreases. M. Misiurewicz pointed out to an argu-
ment in his paper [M2] which, while dealing with piecewise monotone maps,
may be useful in establishing this fact.

Multiplicative expansion estimate. Another question is whether in the
statement of Theorem 1 one can replace the inequality |(fn)′(xni )| ≥ (k−ε)n
by a stronger inequality: either |(fn)′(xni )| ≥ kn or at least |(fn)′(xni )| ≥
Ckn for a positive constant C. One needs to consider only the case not
covered by Proposition 4, namely a C1 monotone map f : S1 → S1 with
|deg f | = k > 1 without critical points such that τ = eχ = k. Even in
the expanding case |f ′| > 1 the situation is not completely clear. If f is
a C1+ε expanding map for some ε > 0 the situation is rigid: the max-
imal entropy measure is absolutely continuous, in fact, it has a contin-
uous positive density and the conjugacy with the linear expanding map
Ek is smooth. Hence, for all points of period n the derivative of fn is ex-
actly kn. However, A. Quas [Q] has shown that the rigidity result does
not extend to C1 maps. While in his examples the periodic points are not
affected (the derivatives are still equal to exactly kn) this makes an im-
provement of Theorem 1 mentioned above rather unlikely. The main rea-
son the usual argument establishing rigidity fails is the loss of the uniform
bounded distortion estimate which is also responsible for examples of C1

expanding maps without an absolutely continuous invariant measure [GS]
and for a similar pathology such as “thick” invariant Cantor sets [Ho, The-
orem 4].

Two-dimensional case. As mentioned in the introduction, one of our
motivations was to try to find a method which may lead to a proof of the
Misiurewicz–Szlenk inequality h(f) ≤ p(f) for any C1 diffeomorphism of a
compact two-dimensional manifold. In fact, a proper conjecture would be
the following “semilocal” statement:

Let M be a two-dimensional manifold, U ⊂ M its open subset and
Λ ⊂ U be a compact set. If f : U → M is a C1 diffeomorphic embedding
such that fΛ = Λ then for any open neighborhood V ⊃ Λ,

h(f¹Λ) ≤ p(f¹V ).
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Multiplicative growth estimate. For piecewise monotone maps the Misiu-
rewicz–Szlenk inequality can be strengthened to a multiplicative estimate
for the growth of the number of periodic orbits:

(∗) lim sup
n→∞

Pn(f)
expnh(f)

> 0.

While we have not found an explicit reference to that result in the liter-
ature it can be easilly deduced from the Milnor–Thurston kneading theory
[MlT] and the work of Hofbauer [Ho]. This reduction was suggested by one
of the referees. It works as follows. By [MlT] a piecewise monotone inter-
val map with positive entropy is semiconjugate to a map g with the same
entropy and a constant absolute value of the slope. This semiconjugacy is
non-decreasing, so the fiber over a periodic point of g is a point or an inter-
val, and therefore it contains a periodic point of the original map. Thus, it
is enough to prove the estimate for g. But such a map g has an absolutely
continuous ergodic measure µ which is supported on finitely many intervals
(this follows, for example, from [LY]). The entropy hµ(g) of g with respect
to this measure must be equal to the Lyapunov exponent which is equal
to the absolute value of the slope and hence by Ruelle’s entropy inequality,
hµ(g) = h(g). Denote the support of µ by J . Thus h(g) = h(g¹J) and since g
is topologically transitive on J by [Ho, Theorem 3], the inequality (∗) holds.

Using a further development of the Hofbauer technique J. Buzzi [Bu,
Theorems 1.1 and 2.9] proved existence and structural results for arbitrary
C∞ maps of the circle or an interval which in particular imply the multi-
plicative estimate (∗). He also shows [Bu, Appendix A] that (∗) does not
hold for Cr maps for any finite r.

On the other hand, such estimates are known for certain classes of dy-
namical systems in dimensions higher than one. In particular, they appear
in systems with uniformly hyperbolic behavior, such as Axiom A diffeomor-
phisms or locally maximal hyperbolic sets (see e.g. [KH, Theorem 18.5.5]).
There are other situations where such estimates are known, the most re-
markable being C∞ diffeomorphisms of compact two-dimensional manifolds
[KT] and also geodesic flows on rank one manifolds of non-positive curva-
ture [Kn].
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