The structure of atoms
(hereditarily indecomposable continua)

by

R. N. Ball (Denver, Colo.), J. N. Hagler (Denver, Colo.)
and Y. Sternfeld (Haifa)

Abstract. Let \(X \) be an atom (= hereditarily indecomposable continuum). Define a
metric \(\rho \) on \(X \) by letting
\[
\rho(x, y) = W(A_{x,y})
\]
where \(A_{x,y} \) is the (unique) minimal subcontinuum of \(X \) which contains \(x \) and \(y \)
and \(W \) is a Whitney map on the set of subcontinua of \(X \) with \(W(X) = 1 \). We prove that
\(\rho \) is an ultrametric and the topology of \((X, \rho) \) is stronger
than the original topology of \(X \). The \(\rho \)-closed balls \(C(x, r) = \{ y \in X : \rho(x, y) \leq r \} \) coincide with the subcontinua of \(X \). \(C(x, r) \) is the unique subcontinuum of \(X \) which contains
\(x \) and has Whitney value \(r \). It is proved that for any two (nontrivial) atoms and any
Whitney maps on them, the corresponding ultrametric spaces are isometric. This implies
in particular that the combinatorial structure of subcontinua is identical in all atoms.

The set \(M(X) \) of all monotone upper semicontinuous decompositions of \(X \) is a lattice
when ordered by refinement. It is proved that for two atoms \(X \) and \(Y \), \(M(X) \) is lattice
isomorphic to \(M(Y) \) if and only if \(X \) is homeomorphic to \(Y \).

1. Introduction. A continuum is a compact metrizable connected space.
A continuum \(X \) is decomposable if it is representable as \(X = X_1 \cup X_2 \)
with \(X_i \) proper subcontinua of \(X \). All common naturally described continua
are decomposable. Brouwer constructed an indecomposable continuum, and
Knaster [Kn] constructed a hereditarily indecomposable continuum, i.e., a
continuum all of whose subcontinua are indecomposable. Following [Lev-St3]
we call such continua atoms. Bing [Bi] proved the existence of atoms of all

1991 Mathematics Subject Classification: 54F15, 54F45, 54B20, 54C35.

Key words and phrases: atoms (hereditarily indecomposable continua), ultrametric
spaces, isometries, lattices, lattice isomorphism.

This paper was written during a visit of the third named author to the University of
Denver in the summer of 1996. During this visit he was supported by the cordial hospitality
of the Department of Mathematics and Computer Science and by grants from the Ann
and Ullus Gudder Charitable Trust and the Office of Internationalization of the University
of Denver.

The authors wish to express their gratitude to John Greene.

[261]
dimensions. Krasinkiewicz [Kra] (see also [Lev]) proved that if M is a manifold then for every compact metrizable space X the functions $f : X \to M$ such that for each $m \in M$ every component of $f^{-1}(m)$ is an atom, form a dense G_δ set in the function space $C(X, M)$. This indicates, in particular, that “most” subcontinua of X are atoms.

In recent years atoms have been applied in various cases to solve problems which were originally unrelated to atoms (see [Po1], [St], [Po2], [Lev-St3], [Lev-St4], [Lev]) and a comprehensive text on atoms [Lew] is in preparation.

The usefulness of atoms follows from the rather simple relationships between their subcontinua:

1.1. If A and B are subcontinua of an atom and $A \cap B \neq \emptyset$, then $A \subset B$ or $B \subset A$.

(This is immediate—if not, $A \cup B$ would be a decomposable continuum.)

In this article we study the combinatorial structures of the family of subcontinua of an atom X, and that of the upper semicontinuous decompositions of X into continua, denoted by $M(X)$.

It turns out that in spite of the large diversity of atoms, the combinatorial structure of their subcontinua is the same in all of them: given two nontrivial atoms X and Y there exists a one-to-one function f of X onto Y such that both f and f^{-1} carry continua to continua. (This result is due to Nikiel [Ni].) The construction of f and the exhibition of its properties depend on the following consequence of 1.1.

1.2. Let X be an atom. Then

(a) any two points $x, y \in X$ are contained in a unique minimal subcontinuum A_{xy}; and

(b) if z is yet another point of X, then two of the continua A_{xy}, A_{xz} and A_{yz} coincide and contain the third.

For the proof of (b) observe that (by 1.1) the family $\{A_{xy}, A_{xz}, A_{yz}\}$ is nested. Assume e.g. that $A_{xy} \subset A_{xz} \subset A_{yz}$. If $A_{xz} \neq A_{yz}$ then $A_{xz} = A_{xz} \cup A_{xy}$ is a continuum which contains both y and z and hence must contain A_{yz}, a contradiction.

For any Whitney map W (see §2 for a definition) on the set $C(X)$ of all subcontinua of an atom X we let

\[
(x, y) = W(A_{xy}) \quad \text{for } x, y \in X.
\]

It follows immediately from 1.2 and properties of Whitney maps that ϱ is a metric and

\[
\varrho(x, y) \leq \max\{\varrho(x, z), \varrho(y, z)\} \quad \text{for } x, y, z \in X.
\]

We call the metric space (X, ϱ) an ultrametric atom associated with the Whitney map W; the name is motivated by the fact that a metric ϱ on
a set X which satisfies the strong form (***) of the triangle inequality is called an ultrametric ([Sch], [VR]). We prove (see Theorem 2.4) that any two nontrivial ultrametric atoms are isometric and this is the central result of §2; it implies, in particular, that the combinatorial structure of the set of all subcontinua of a nontrivial atom is independent of that atom. Clearly, the isometries between two ultrametric atoms (X, ρ) and (Y, τ) are in general discontinuous in the original topologies of X and Y (and are of necessity such if X is not homeomorphic to Y).

In §3 we turn to the study of the collection $M(X)$ of upper semicontinuous decompositions of X into subcontinua. We show that, in contrast, the lattice $M(X)$ determines the atom X uniquely (see Theorem 3.11).

The authors express their thanks to both referees for their detailed and helpful comments.

2. The ultrametric atom. Let (X, ρ) be a metric space. For $x \in X$ and $0 \leq r \leq 1$, we let $B(x, r) = \{ y \in X : \rho(x, y) < r \}$, $C(x, r) = \{ y \in X : \rho(x, y) \leq r \}$ and $S(x, r) = \{ y \in X : \rho(x, y) = r \}$ denote (respectively) the open r-ball, the closed r-ball and r-sphere with center x and radius r. Note that if $r = 0$ then $B(x, r) = \emptyset$ and $C(x, r) = S(x, r) = \{ x \}$.

Lemma 2.1. Let ρ be an ultrametric on a set X. Then the following hold (cf. [Sch], [VR]).

1. If $r > 0$ then $B(x, r)$, $C(x, r)$ and $S(x, r)$ are clopen subsets of the metric space (X, ρ).
2. If $y \in B(x, r)$ then $B(x, r) = B(y, r)$.
3. If $y \in C(x, r)$ then $C(x, r) = C(y, r)$.
4. If two closed balls $C(x, r)$ and $C(y, s)$ intersect and $r \geq s$, then $C(x, r) \supset C(y, s)$.
5. Every family of mutually intersecting closed balls or open balls is nested.
6. For any three points x, y, and z in X, the two largest of the three reals $\rho(x, y)$, $\rho(x, z)$ and $\rho(y, z)$ coincide. That is, every triangle in (X, ρ) is isosceles and the two equal sides dominate the third side.

Before continuing, we define Whitney maps and present other general facts that will be applied in the sequel. Let X be a compact metrizable space. Let 2^X denote the space of all nonempty closed subsets of X equipped with the Hausdorff metric and let $C(X) \subset 2^X$ denote the set of its subcontinua.

2.2. A continuous function $W : C(X) \rightarrow [0, 1]$ is called a Whitney map if $W(\{ x \}) = 0$ for every $x \in X$, $W(X) = 1$ and $A \subsetneq B \in C(X)$ implies $W(A) < W(B)$. Whitney maps exist for every nontrivial X (see e.g. [Na], or [Lev-St4] for a simple construction).
Let X be an atom and let $x \in X$. The composant of x in X is the union of all proper subcontinua of X which contain x. Every composant is the union of countably many continua. (Take, e.g., $C = \bigcup \{A_n : n \geq 1\}$ where A_n is the continuum with $x \in A_n$ and $W(A_n) = 1 - 1/n$, where W is some Whitney map.) As proper subcontinua of atoms have an empty interior (see e.g. [Ho-Yo]) composants are sets of first category in X. The Baire Category theorem thus implies that every atom contains uncountably many composants. Mazurkiewicz [Ma] improved this observation; he proved that every atom X contains a perfect $G_δ$ subset Y which intersects a composant in one point at most. Y must contain a Cantor set and it follows that the cardinality of the set of composants in an atom is $c = 2^{2^{\aleph_0}}$.

Proposition 2.3. Every ultrametric atom (X, ϱ) satisfies the following:

1. The identity map $id : (X, \varrho) \to X$ is continuous.
2. For $0 \leq r \leq 1$ and $x \in X$, $C(x, r)$ is the unique subcontinuum A of X (with respect to the original topology on X) which contains x and with $W(A) = r$. In particular, $C(x, 1) = X$.
3. For $r > 0$ and $x \in X$, $B(x, r)$ is the composant of x relative to the continuum $C(x, r)$.
4. Every family of mutually intersecting closed balls in (X, ϱ) has a nonempty intersection. Moreover, if $\{C(x_\alpha, r_\alpha)\}$ are mutually intersecting balls, then $\bigcap \{C(x_\alpha, r_\alpha)\} = C(x, r)$ where x is any point in the intersection and $r = \inf r_\alpha$. (This property is referred to in [Sch] and [VR] as “spherical completeness;” a related property, called “hyperconvexity” was introduced by [Ar-Pa]; in [Li] and [Li-Tz] it is called “the 2-∞ intersection property.”)
5. For every $x \in X$ the range of the function $\varrho(x, \cdot)$ is $[0, 1]$.
6. The weight $\text{wt}(X, \varrho)$ (= minimal cardinality of a dense set) of (X, ϱ) is $c = 2^{2^{\aleph_0}}$.
7. In every closed ball $C(x, r)$ for $r > 0$ in (X, ϱ) the cardinality of the family of distinct open balls $\{B(y, r) : y \in C(x, r)\}$ is $c = 2^{2^{\aleph_0}}$. (Note that by 2.1(5) two such balls are either disjoint or coincide.)

Proof. (1) Let $x_n \to x_0$ in (X, ϱ), i.e., $\varrho(x_0, x_n) = W(A_{x_0x_n}) \to W(A_{x_0x_0}) = 0$. Since $x_0 \in A_{x_0x_n}$ for every n, it follows from 1.1 that the family $\{A_{x_0x_n}\}$ is nested. Since $W(A_{x_0x_n}) \to 0$, it also follows that $\bigcap_{n \geq 1} A_{x_0x_n} = \{x_0\}$. Hence, $\text{diam}(A_{x_0x_n}) \to 0$. (Here, diam refers to diameter with respect to the original metric d on X.) That is, $d(x_0, x_n) \to 0$.

5. Let $x \in X$. Then $L(x) = \{A \in C(X) : x \in A\}$ is an arc in $C(X)$ with end points $\{x\}$ and X (see [Ku, p. 186]). Also $W : L(x) \to [0, 1]$ is an embedding. It follows that for each $0 \leq r \leq 1$ there exists a unique $A \in L(x)$ such that $W(A) = r$. Let E denote the composant of x in A. If $r > 0$ then $E \subset A$ (by 2.2). Let $y \in A \setminus E$. It follows that $A = A_{xy}$, and hence that $\varrho(x, y) = r$.
(2) \(C(x, r) = \{ y \in X : d(x, y) \leq r \} = \{ y \in X : W(A_{xy}) \leq r \}. \) Let \(y \in X \) be such that \(d(x, y) = r. \) Such a \(y \) exists by (5). Then for \(A = A_{xy} \) we have \(x \in A \) and \(W(A) = r. \) If some other subcontinuum \(A' \) satisfies \(x \in A' \) and \(W(A') = r, \) then, since \(A' \subset A \) or \(A \subset A', \) we must have \(A = A' \) since \(W \) is strictly monotone. Now it is clear that \(A_{xy} \subset C(x, r) \) and so \(W(C(x, r)) \geq r. \) If \(W(C(x, r)) > r, \) then by (5) there is a \(z \in C(x, r) \) with \(W(A_{xz}) > r, \) i.e. \(d(x, z) > r, \) an impossibility. Thus, if \(d(x, y) = r, \) then \(C(x, r) = A_{xy}. \)

(3) \(B(x, r) = \{ y \in X : d(x, y) < r \} = \bigcup \{ C(x, s) : s < r \}. \) By (2), \(\{ C(x, s) : s < r \} \) ranges over all subcontinua of \(X \) which contain \(x \) and have Whitney value \(s < r, \) i.e., all proper subcontinua of \(C(x, r) \) which contain \(x. \) This is precisely the composant of \(x \) in \(C(x, r). \)

(4) Let \(\{ C(x_\alpha, r_\alpha) \} \) be a family of mutually intersecting closed balls in \((X, d). \) By 2.1(5) and 2.3(2), \(\{ A_\alpha = C(x_\alpha, r_\alpha) \} \) is a nested family of continua in \(X \) with \(W(A_\alpha) = r_\alpha. \) By compactness and continuity of \(W, \) \(A = \bigcap A_\alpha \neq \emptyset, \) \(W(A) = \inf r_\alpha = r \) and \(A = C(x, r) \) for each \(x \in A. \)

(7) By (2) and (4), \(\{ B(y, r) : y \in C(x, r) \} \) is the set of composants of the continuum \(C(x, r). \) By [Ma] (see also [Ku, p. 213, Remark (i)]) the cardinality of this set is \(c = 2^{2^0}. \)

(6) This follows immediately since by (7), \((X, d) \) contains \(c \) mutually distinct open balls. But here is a simpler and more elementary argument: for \(0 < r < 1 \) the collection \(\{ C(x, r) : x \in X \} \) is a decomposition of \(X \) into disjoint continua. It is easy to verify that this decomposition is continuous (with respect to the original atom topology on \(X \)). It follows that the quotient map \(q : X \to Y \) maps \(X \) onto a nontrivial atom \(Y, \) and for each \(y \in Y, q^{-1}(y) = C(x, r) \) for some \(x \in X. \) As the cardinality of \(Y \) is \(c \) and the balls \(q^{-1}(y) \) are distinct, it follows that \(\text{wt}(X, q) \geq c. \) (Clearly, \(\text{wt}(X, q) \leq \text{card } X = c. \))

Theorem 2.4. Any two nontrivial ultrametric atoms \((X, d) \) and \((Y, \tau) \) are isometric. Moreover, given a subset \(X' \subset X \) with \(\text{wt}_d(X') < c \) (i.e., the weight of \(X' \) as a subspace of \((X, d) \)) and an isometry \(f : X' \to (Y, \tau), \) \(f \) is extendable to an isometry of \((X, d) \) onto \((Y, \tau). \)

Remark 2.5. The restriction \(\text{wt}_d(X') < c \) is essential.

We demonstrate this by an example. Let \(X \) be an atom. Let \(E \subset X \) be a subset which consists of a single representative of each composant of \(X, \) i.e., for every composant \(B \) of \(X, \) \(B \cap E \) consists of a single point. Let \((X, d) \) be the associated ultrametric atom. Then for \(x \neq y \in E, \) \(d(x, y) = 1. \) (If \(d(x, y) < 1 \) then \(x \) and \(y \) are in the same composant of \(X.) \) By 2.3(7), \(\text{card}(E) = c \) and hence \(\text{wt}_d(E) = c. \) Let \(x_0 \in E \) and let \(f : E \setminus \{ x_0 \} \to E \) be one-to-one and onto. Then \(f \) is an isometry of \(E \setminus \{ x_0 \} \) onto \(E. \) But \(f \) is not extendable to an isometry of \((X, d) \) onto itself. As a matter of fact, \(f \) is not even extendable over \(E. \) Indeed, in order to extend \(f \) to \(x_0, f(x_0) \)
must satisfy \(\varrho(f(x), f(x_0)) = 1 \) for all \(x \in E \setminus \{x_0\} \). But \(\varrho(f(x), f(x_0)) = 1 \)
if and only if \(f(x) \) and \(f(x_0) \) belong to different composants of \(X \), and since
\(f(E \setminus \{x_0\}) = E \) and since \(E \) meets each composant, there are no composants
left in which to put \(f(x_0) \).

Before proving Theorem 2.4 we present some corollaries.

Corollary 2.6. Let \((X, \varrho) \) and \((Y, \tau) \) be ultrametric atoms, let \(x \in X \),
y \(\in Y \) and \(0 \leq r \leq 1 \). Then \(B_X(x, r) \) is isometric to \(B_Y(y, r) \), \(C_X(x, r) \) is
isometric to \(C_Y(y, r) \) and \(S_X(x, r) \) is isometric to \(S_Y(y, r) \).

Proof. Let \(f \) be the isometry of \((X, \varrho) \) onto \((Y, \tau) \) with \(f(x) = y \). Then
\(f \) maps \(B_X(x, r) \) and \(C_X(x, r) \) onto \(B_Y(y, r) \) and \(C_Y(y, r) \), respectively.

Corollary 2.7. Let \(x_0 \in X \) and \(1 \geq r > 0 \). Then \(S(x_0, r) = C(x_0, r) \setminus B(x_0, r) \) is
isometric to \(C(x_0, r) \). In particular, \(X \setminus B(x_0, 1) = C(x_0, 1) \setminus B(x_0, 1) \) is isometric to \((X, \varrho) \).

Proof. As in 2.5, let \(E \subset C(x_0, r) \) be a set which contains \(x_0 \) and
which intersects every composant of \(C(x_0, r) \) (i.e., every ball \(B(y, r) \), \(y \in C(x_0, r) \)) in exactly one point. Let \(f : E_0 = E \setminus \{x_0\} \rightarrow E \) be one-to-
one and onto. Then \(f \) is an isometry since for \(y \neq z \in E \), \(\varrho(y, z) = r \).
Extend \(f \) to an isometry \(F : C(x_0, r) \setminus B(x_0, r) \rightarrow C(x_0, r) \) as follows. Let
\(x \in S(x_0, r) \). Then \(x \) belongs to a unique ball \(B(y, r) \) for some \(y \in E \setminus \{x_0\} \).
By 2.6 there exists an isometry \(f_y : B(y, r) \rightarrow B(f(y), r) \) and we define
\(F(x) = f_y(x) \), i.e., \(F|_{B(y, r)} = f_y \) for \(y \in E \setminus \{x_0\} \). \(F \) is an isometry since
for \(y_1 \neq y_2 \in E \setminus \{x_0\} \), \(w \in B(y_1, r) \) and \(z \in B(y_2, r) \), we have \(\varrho(w, z) = r \),
and \(F(S(x_0, r)) = C(x_0, r) \), since \(S(x_0, r) = \bigcup \{B(y, r) : y \in E \setminus \{x_0\}\} \) and
\(C(x_0, r) = \bigcup \{B(y, r) : y \in E\} \).

A similar argument can be applied to prove the following.

Corollary 2.8. Let \((X, \varrho) \) and \((Y, \tau) \) be ultrametric atoms, let \(x_0 \in X \),
y \(\in Y \), and let \(0 < r \leq 1 \). Let \(D \subset C_X(x_0, r) \) and \(E \subset C_Y(y_0, r) \) be
subsets with the same cardinality such that the balls \(B_X(x, r) \), \(x \in D \), and
\(B_Y(y, r) \), \(y \in E \), are mutually disjoint, i.e., \(D \) (respectively \(E \)) intersects
every composant of \(C_X(x_0, r) \) (respectively \(C_Y(y_0, r) \)) in at most one point.
Then \(\bigcup \{B_X(x, r) : x \in D\} \) and \(\bigcup \{B_Y(y, r) : y \in E\} \) are isometric.

The following lemma will be applied in our proof of Theorem 2.4.

Lemma 2.9. Let \((X, \varrho) \) and \((Y, \tau) \) be ultrametric atoms. Let \(E \subset X \) be
closed in \((X, \varrho) \) with \(\text{wt}_\varrho(E) < c \), and let \(f : E \rightarrow (Y, \tau) \) be an isometry. Let
\(e \in X \setminus E \). Then \(f \) is extendable over \(E \cup \{e\} \).

Proof. We need to find a point \(v = f(e) \) in \(Y \) such that \(\tau(f(x), v) = \varrho(x, e) \)
for every \(x \in E \). Evidently, \(v \) has this property if and only if
It follows that \(A = Y, \tau \) and we shall show that the intersection in (2.10) is not empty.

Because \(E \) is closed in \((X, \rho)\) and \(e \not\in E, \ r = \text{dist}_\rho(e, E) > 0 \). Consider the following two cases:

Case (i): The distance \(r = \text{dist}_\rho(e, E) \) is not attained. In this case, let \((x_n)_{n \geq 1} \) be points in \(E \) such that the sequence \((\rho(x_n, e))\) is strictly decreasing to \(r \). Let \(x \in E \). Then for some \(n \), it follows that \(\rho(x_n, e) < \rho(x, e) \) and by 2.1(6), \(\rho(x_n, x) = \rho(x, e) \). Hence also \(\tau(f(x_n), f(x_n)) = \rho(x, e) \) and it follows that \(f(x_n) \in C_Y(f(x), \rho(x, e)) \). By 2.1(3) and 2.1(4), we conclude that

\[
C_Y(f(x), \rho(x, e)) = C_Y(f(x_n), \rho(x_n, e)) \ni C_Y(f(x_n), \rho(x_n, e)).
\]

It follows that \(A = \bigcap \{C_Y(f(x), \rho(x, e)) : x \in E\} = \bigcap \{C_Y(f(x_n), \rho(x_n, e)) : n \geq 1\} \). But \(C_Y(f(x_n), \rho(x_n, e)) \) is a decreasing sequence of closed balls in \((Y, \tau)\) and by spherical completeness (2.3(4)), \(A \neq \emptyset \); in fact, \(A = C_Y(y, r) \) for some (every) \(y \in A \).

Let us return to the arbitrary element \(x \in E \) which satisfies \(\rho(x_n, e) < \rho(x, e) = \rho(x, x_n) \). Then \(B_Y(f(x), \rho(x, e)) \) does not meet \(C_Y(f(x_n), \rho(x_n, e)) \). To see this, note that \(\tau(f(x_n), f(x)) = \rho(x_n, x) = \rho(x, e) \), which implies that \(f(x_n) \not\in B_Y(f(x), \rho(x, e)) \) and \(C_Y(f(x_n), \rho(x_n, e)) \) is a ball of smaller radius.

In particular, \(B_Y(f(x), \rho(x, e)) \cap A = \emptyset \). Hence

\[
\bigcup \{B_Y(f(x), \rho(x, e)) : x \in E\} \cap A = \emptyset
\]

and the intersection in (2.10) agrees with \(A \). This completes case (i).

Case (ii): The distance \(r = \text{dist}_\rho(e, E) \) is attained. Let \(E \supset E_1 = \{z \in E : \rho(z, e) = r\} \). For \(z, w \in E_1, \rho(z, e) = \rho(w, e) = r \) and by 2.1(2), \(r \geq \rho(z, w) \). Let \(E_2 \subset E_1 \) be a nonempty subset with \(\rho(z, w) = r \) for \(z, w \in E_2, z \neq w \), and such that \(E_2 \) is maximal with respect to this property. Since \(E_2 \) is \(r \)-discrete, \(\text{card}(E_2) \leq \text{wt}(E) < c \). (Note that \(E_2 \) may be finite or even consist of a single point. Recall that in the example in Remark 2.5 we had \(E = E_1 = E_2 \) with \(r = 1 \) and \(\text{card}(E_2) = c \), and the conclusion of the lemma failed.)

Consider the intersection

\[
D = \bigcap_{z \in E_2} S_Y(f(z), r) = \bigcap_{z \in E_2} C_Y(f(z), r) \setminus \bigcup_{z \in E_2} B_Y(f(z), r).
\]
Since for \(w, z \in E_2 \), \(\tau(f(w), f(z)) = \varrho(w, z) = r \), all the closed balls \(C_Y(f(z), r) \) coincide. So \(\bigcap \{ C_Y(f(z), r) : z \in E_2 \} = C_Y(f(z_0), r) \) for some \(z_0 \in E_2 \). By 2.3(7), \(C_Y(f(z_0), r) \) contains \(c \) mutually disjoint open balls \(B_Y(y, r) \) for \(y \in C_Y(f(z_0), r) \), while \(\bigcup \{ B_Y(f(z), r) : z \in E_2 \} \) is the union of at most \(\text{card}(E_2) < c \) such balls. It follows that \(\bigcup \{ B_Y(f(z), r) : z \in E_2 \} \) does not exhaust all of \(C_Y(f(z_0), r) \) and hence \(D \neq \emptyset \). We claim that \(D \subset \bigcap \{ S_Y(f(x), \varrho(x, e)) : x \in E \} \), i.e., if \(v \in D \) then for all \(x \in E \),
\[
\tau(f(x), v) = \varrho(x, e).
\]

To establish this claim, first note that if \(x \in E_2 \) this follows from 2.11. If \(x \in E_1 \setminus E_2 \), then by the maximality of \(E_2 \) there is some \(z \in E_2 \) with \(\varrho(x, z) < r = \varrho(z, e) \) and by 2.1(6), \(\varrho(x, e) = \varrho(x, z) = \tau(f(x), f(z)) \). Thus, \(r = \tau(f(x), v) < \tau(f(x), f(z)) \) and another application of 2.1(6) yields
\[
\tau(f(x), v) = \tau(f(x), f(z)) = \varrho(x, e).
\]

Proof of Theorem 2.4. Let \((X, \varrho)\) and \((Y, \tau)\) be ultrametric atoms, let \(X' \subset X\) with \(\text{wt}_\varrho(X') < c\), and let \(f : X' \to Y\) be an isometry. We must show that \(f\) is extendable to \(X\).

Note first that since \((X, \varrho)\) and \((Y, \tau)\) are complete metric spaces (which follows from spherical completeness), \(f\) is extendable over the closure of \(X'\). Hence we may assume that \(X'\) and \(Y' = f(X')\) are closed. Let \(A \subset X \setminus X'\) and \(B \subset Y \setminus Y'\) be dense in \(X \setminus X'\) and \(Y \setminus Y'\) respectively, with \(\text{card}(A) = \text{card}(B) = c\). Well order \(A\) and \(B\) by indexing their elements with ordinals \(\alpha < c\). Let \(A = \{ x_\alpha : \alpha < c \}\) and \(B = \{ y_\alpha : \alpha < c \}\). By transfinite induction we construct for each ordinal \(\alpha < c\) subsets \(X_\alpha \supset X'\) of \(X\) and \(Y_\alpha \supset Y'\) of \(Y\) with (i) \(\{ x_\beta \in A : \beta \leq \alpha \} \subset X_\alpha\), (ii) \(\{ y_\beta \in B : \beta \leq \alpha \} \subset Y_\alpha\), (iii) \(\text{wt}_\varrho(X_\alpha) < c\) and \(\text{wt}_\tau(Y_\alpha) < c\) and an isometric extension \(f_\alpha : X_\alpha \to Y_\alpha\) of \(f\).

This is done by a routine back and forth argument. Set \(X_0 = X'\) and \(Y_0 = Y'\). Apply Lemma 2.9 twice, first to extend \(f\) over \(X_0 \cup \{ x_0 \}\) to \(Y_0 \cup \{ f(x_0) \}\), and then if necessary to extend \(f^{-1}\) over \(Y_1 = Y_0 \cup \{ f(x_0) \} \cup \{ y_0 \}\) to \(X_1 = X_0 \cup \{ x_0 \} \cup \{ f^{-1}(y_0) \}\). Let \(\alpha < c\) be an ordinal. Assume that \(f_\beta, X_\beta\) and \(Y_\beta\) have been constructed for all ordinals \(\beta < \alpha\). If \(\alpha = \beta + 1\) for some \(\beta\), then we repeat the above argument to construct \(f_{\beta+1}, X_{\beta+1} = X_\beta \cup \{ x_\beta \} \cup \{ f^{-1}(y_\beta) \}\) and \(Y_{\beta+1} = Y_\beta \cup \{ f(x_\beta) \} \cup \{ y_\beta \}\). Note that if \(x_\beta \in X_\beta\) already then we take \(X_{\beta+1} = X_\beta\) and similarly if \(y_\beta \in Y_\beta\). If \(\alpha\) is a limit ordinal then first we apply completeness to extend \(f\) to \(f'_\alpha : \bigcup_{\beta<\alpha} X_\beta \to \bigcup_{\beta<\alpha} Y_\beta\) (with closure in \((X, \varrho)\) and \((Y, \tau)\) respectively). Now apply Lemma 2.9 to add \(x_\alpha \in A\) and

\[
\text{wt}_\varrho(X_\alpha) < c\) and \(\text{wt}_\tau(Y_\alpha) < c\) and an isometric extension \(f_\alpha : X_\alpha \to Y_\alpha\) of \(f\).
\[y_\alpha \in B. \] Note that the weights of both \(X_\alpha \) and \(Y_\alpha \) remain < \(c \) during the whole procedure. Eventually we obtain an isometric extension of \(f \) over a closed set containing \(A \) into a closed set containing \(B \), and as \(A \) and \(B \) are dense, this function maps \(X \) onto \(Y \).

Theorem 2.4 shows that there is a unique atomic ultrametric space up to an isometry. We conclude this section with a concrete model for this space. It turns out that only the following properties of an atomic ultrametric space \((X, \rho)\) were applied in the proof of Theorem 2.4.

2.12. (1) \((X, \rho)\) is an ultrametric space.
(2) Spherical completeness (2.3(4)).
(3) In every closed ball \(C(x, r), r > 0, \) the cardinality of the family of disjoint open balls \(B(y, r) \) for \(y \in C(x, r) \) is \(c \) (2.3(7)).

Note that (3) also implies that \(\text{wt}_\rho(X, \rho) \geq c \) and that the sphere \(S(x, r) = C(x, r) \setminus B(x, r) \) is not empty (2.3(7)). Also, spherical completeness implies completeness. It follows that every metric space which satisfies 2.12 is isometric to the ultrametric atom. The following space \((J, \rho)\) is such an example.

Example 2.13.

(i) \(J \) consists of all real-valued continuous functions \(f \) on \([0, 1]\) with \(f(1) = 0 \).

(ii) For \(f, g \in J, \rho(f, g) \leq r \) if \(f(x) = g(x) \) for all \(r \leq x \leq 1 \), i.e., if \(f \) and \(g \) agree on \([r, 1]\).

Note that \(\rho(f, g) = r \) if \(\rho(f, g) \leq r \) but \(f \) and \(g \) do not agree on \([s, 1]\) for any \(s < r \). We leave it to the reader to verify that \((J, \rho)\) satisfies 2.12. It follows that every ultrametric atom is isometric to \((J, \rho)\).

3. **The tree of subcontinua and the lattice of monotone upper semicontinuous decompositions of an atom.** The fact that any two ultrametric atoms are isometric, as proved in §2, indicates that the combinatorial structure of subcontinua is the same in all nondegenerate atoms. In this section we study a richer structure which distinguishes between different atoms.

Let \(X \) be a compact metrizable space. Define an equivalence relation on the family of all continuous functions (= maps) of \(X \) into any Hausdorff space by

Definition 3.1. \(f : X \to f(X) \) and \(g : X \to g(X) \) are equivalent \((f \sim g) \) if there exists a homeomorphism \(h : f(X) \to g(X) \) such that \(g = hf \).

For a map \(f : X \to f(X) \) and \(x \in X \) set \((x)f = f^{-1}f(x) \), the fiber of \(f \) at \(x \). One checks easily that \(f \sim g \) if and only if \((x)f = (x)g \) for all \(x \in X \), i.e., if \(f \) and \(g \) induce the same decomposition on \(X \).
Let \(D(X) \) denote that set of all maps of \(X \) into a Hausdorff space modulo the equivalence relation \(\sim \). Recall that a decomposition \(F \) of \(X \) into mutually disjoint closed sets is called upper semicontinuous if whenever a sequence \((A_n)_{n \geq 1} \) of elements of \(F \) converges to some closed subset \(A \) of \(X \) in \(2^X \) then \(A \) is contained in some element of \(F \). If every such limit \(A \) is itself an element of \(F \) then \(F \) is called a continuous decomposition.

A map \(f : X \to f(X) \) has a Hausdorff range if and only if the decomposition \(\{(x)f : x \in X\} \) is upper semicontinuous (see [Ku, p. 66]). It follows that an element of \(D(X) \) represents an upper semicontinuous decomposition of \(X \), and we call \(D(X) \) the space of upper semicontinuous decompositions.

Note that an element of \(D(X) \) is a continuous decomposition if and only if it represents an open mapping.

Although an element of \(D(X) \) is a decomposition of \(X \) we shall take some liberties and also use functional notation. Thus, for example, for \(f \in D(X) \),

\[
(x)f = \{f^{-1}(y) : y \in f(X)\},
\]

and \(A \in f \) if \(A = (x)f \) for some \(x \in X \). The class of the identity map is denoted by \(\text{id} \), while \(\text{const} \) denotes the class of the constant maps.

3.2. \(D(X) \) carries a natural order relation: \(f \leq g \) if \(g \) refines \(f \), i.e., if the decomposition \(g \) of \(X \) refines the decomposition \(f \), or, equivalently, if for all \(x \in X \), \((x)g \subset (x)f \). With this order, \(D(X) \) is a complete lattice. Indeed, for \(E \subset D(X) \), \(\bigvee E = \sup E = g \) is defined by

\[
(x)g = \bigcap \{(x)f : f \in E\}.
\]

That is, \(g = \sup E \) is the class of the product map \(X \to \prod \{f(X) : f \in E\} \) whose \(f \) coordinate, \(f \in E \), is \(f \) itself.

In particular, for \(f, g \in D(X) \), \((x)(f \vee g) = (x)f \cap (x)g \) and \(f \vee g \) is the class of the product map \((f, g) : X \to f(X) \times g(X) \), where \((f, g)(x) = (f(x), g(x)) \).

Also,

\[
\bigwedge E = \bigvee \{g : g \in D(X), \ g \leq f \ \text{for all} \ f \in E\}.
\]

Note that for all \(f \in D(X) \), \(\text{const} \leq f \leq \text{id} \). We use \(f < g \) to indicate that \(f \leq g \) and \(f \neq g \).

The sets \(D(X) \) (and \(M(X) \), which will be defined below) were introduced and studied in [St], [Lev-St1], [Lev-St2] and [Lev-St3]. Note, however, that in these papers \(f \leq g \) if \(f \) refines \(g \) and not as in this article.

Recall that a map \(f : X \to Y \) is monotone if \(f^{-1}(y) \) is connected for all \(y \in Y \). Let

\[
M(X) = \{f \in D(X) : f \text{ is monotone}\}.
\]
Thus, \(f \in M(X) \) if and only if \((x)f\) is a continuum for all \(x \in X \). In general \(M(X) \) is not a sublattice of \(D(X) \) since the intersection of continua need not be connected. But if \(X \) is an atom then \(M(X) \) is a complete sublattice of \(D(X) \). Indeed, if \(E \subseteq M(X) \) then
\[
(x) \bigvee E = \bigcap \{ (x)f : f \in E \}
\]
is an intersection in \(X \) of continua all of which contain the point \(x \) and hence are nested. This implies that the intersection is a nonempty continuum.

Moreover, for \(f, g \in M(X) \), we have
\[
(x)(f \land g) = (x)f \cup (x)g.
\]
The reader may verify (or else check in [St]) that if \(X \) is an atom, then \(\{ (x)f \cup (x)g : x \in X \} \) is indeed an upper semicontinuous monotone decomposition of \(X \) which agrees with the earlier definition of \(f \land g \) in (3.4). Note though that (3.6) is valid only for a finite subset \(E \subseteq M(X) \). Also, \(\bigcup \{ (x)f : f \in E \} \) is always a decomposition of \(X \) but is not necessarily upper semicontinuous when \(E \subseteq M(X) \) is an infinite set.

It should also be noted that atoms with monotone maps form a category; the quotient \(f(X) \) of a monotone upper semicontinuous decomposition \(f \) of an atom \(X \) is also an atom and one may think of the elements of \(M(X) \) as of atomic quotients of \(X \), where \(f \leq g \) means that \(f \) factors through \(g \). Thus, \(M(X) \) is a natural object to study when \(X \) is an atom.

For the remainder of the article we assume that \(X \) is a nontrivial atom. Let \(A \) be a nontrivial subcontinuum of \(X \), i.e., \(A \) contains more than one point. Let \(f_A \in M(X) \) be defined by
\[
(x)f_A = \begin{cases} A & \text{if } x \in A, \\ \{x\} & \text{if } x \notin A. \end{cases}
\]
i.e., \(f_A \) is the decomposition of \(X \) whose only nontrivial element is \(A \). Clearly \(f_A \) is upper semicontinuous and monotone.

Set
\[
T(X) = \{ f_A : A \text{ is a nontrivial subcontinuum of } X \}.
\]
Clearly \(f_A \leq f_B \) in \(M(X) \) if and only if \(B \subseteq A \). Hence the map \(A \to f_A \) is an order reversing isomorphism of the nontrivial subcontinua of \(X \) (ordered by inclusion) into \(T(X) \subseteq M(X) \).

Remark 3.9. The singletons of \(X \) are not represented explicitly in \(T(X) \) but they can be easily identified there. Let \(x \in X \). Set \(L(x) = \{ A \in C(X) : x \in A \} \). Then \(L(x) \) is a maximal chain (= linearly ordered set) in \(C(X) \) with respect to inclusion and is order isomorphic to \([0,1]\); indeed, every Whitney map is strictly monotone on \(L(x) \) with \(W(\{x\}) = 0 \) and \(W(X) = 1 \). Conversely, every maximal chain \(L \subseteq C(X) \) is of the form \(L(x) \) for some \(x \in X \).
Let \(r \geq 0 \). Since \(X \) determines \(T \), to prove Theorem 3.12 we shall need to show that \((r, f) \) if \((s, f) \) is continuous and satisfies \(f(1) = 0 \). Let \((r, f) \leq (s, g) \) if \([s, 1] \supset [r, 1] \) (i.e., \(s \leq r \)) and \(g_{|[r, 1]} = f \). We leave it to the reader to verify that \((T, \leq)\) is order isomorphic to \(T(X) \) for every nontrivial atom \(X \).

The main result of §3 is that, unlike \(T(X) \), the lattice structure of \(M(X) \) determines \(X \).

Theorem 3.11. Let \(X \) and \(Y \) be nontrivial atoms. Then \(M(X) \) and \(M(Y) \) are lattice isomorphic if and only if \(X \) and \(Y \) are homeomorphic.

To prove Theorem 3.11 we shall need the following proposition.

Proposition 3.12. Let \(X \) and \(Y \) be atoms and let \(\mu : M(X) \rightarrow M(Y) \) be a lattice isomorphism. Then \(\mu(T(X)) = T(Y) \).

Recall that \(T(X) \) has been defined (3.7, 3.8) in terms of subcontinua of \(X \). To prove Proposition 3.12 we shall need to show that \(T(X) \) is determined by the lattice structure of \(M(X) \).

Definition 3.13. An element \(f \) of a lattice \(M \) is *meet irreducible* if whenever \(f = g \wedge h \), then either \(f = g \) or \(f = h \).
Observe that \(\text{id} \in M(X) \) is meet irreducible but \(\text{id} \not\in T(X) \). The next result characterizes those meet irreducible elements in \(M(X) \) different from \(\text{id} \).

Proposition 3.14. An element \(f \in M(X) \), \(f \neq \text{id} \), is in \(T(X) \) if and only if it is meet irreducible, i.e., \(T(X) \) is the set of meet irreducible elements of \(M(X) \) different from \(\text{id} \).

Proof. Let \(f_A = g \wedge h \in T(X) \) for some \(g, h \in M(X) \). For \(x \in X \setminus A \), \((x)f_A = \{ x \} \supset (x)g \cup (x)h \) and it follows that every nontrivial fiber of \(g \) or \(h \) is contained in \(A \). For \(a \in A \),

\[
A = (a)f_A = (a)(g \wedge h) = (a)g \cup (a)h.
\]

But \((a)g \cup (a)h \) is either \((a)g \) or \((a)h \) and hence \(f_A \) is either \(g \) or \(h \).

Let \(f \in M(X) \setminus T(X) \) and \(f \neq \text{id} \). We must find \(g, h \) in \(M(X) \) such that \(f < g, f < h \) and \(f \neq g \wedge h \). Since \(f \not\in T(X) \), \(f \) has at least two nontrivial fibers \(A \) and \(B \). Let \(W \) be a Whitney map on \(X \) such that \(W(A) \neq W(B) \). (Such a Whitney map always exists: if \(A \cap B = \emptyset \) and \(W_1(A) = W_1(B) \) for some Whitney map \(W_1 \), let \(f : X \to [0,1] \) with \(f(A) = 0 \) and \(f(B) = [0,1] \), and let \(W(E) = \frac{1}{2} W_1(E) + \frac{1}{2} \text{diam} f(E) \).)

Let \(W(A) < r < W(B) \). Define decompositions \(g \) and \(h \) of \(X \) as follows:

\[
(x)g = \begin{cases} (x)f & \text{if } W((x)f) \leq r, \\ E & \text{if } W((x)f) > r, \end{cases}
\]

where \(E \) is the unique subcontinuum of \(X \) which contains \(x \) and satisfies \(W(E) = r \), i.e., \(\exists C(x,r) = \text{the closed ultrametric ball for the ultrametric } g \) obtained from the Whitney map \(W \). Now \(g \) is a decomposition of \(X \) (recall that closed ultrametric balls are disjoint) and clearly, since \(W(B) > r \) and \(B \) is a fiber of \(f \), \(g \) refines \(f \) and \(g \neq f \). We need to show that \(g \in M(X) \), i.e., that \(g \) is upper semicontinuous. So, let \((x_n)g \to E \) in \(C(X) \). Since \((x_n)f \) and \(f \) is upper semicontinuous, \(E \subset (x)f \) for some \(x \in E \). Also, since \(W((x_n)g) \leq r \) for all \(n \) and \(W \) is continuous on \(C(X) \), \(W(E) \leq r \). Hence by (3.15) if \(W((x)f) \leq r \) then \((x)g = (x)f \supset E \), while if \(W((x)f) > r \) then \(W((x)g) = r \) and since \(W(E) \leq r \) and both \((x)g \) and \(E \) contain \(x \), \((x)g \supset E \). Next set

\[
(x)h = \begin{cases} (x)f & \text{if } W((x)f) \geq r, \\ \{ x \} & \text{if } W((x)f) < r. \end{cases}
\]

Evidently \(h \) is a decomposition of \(X \), \(h \) refines \(f \) and \(h \neq f \) (since for \(x \in A \), \((x)f = A \) while \((x)h = \{ x \} \) and \(A \) is a nontrivial continuum).

We claim that \(h \) is upper semicontinuous. To see this let \((x_n)h \to E \) in \(C(X) \). We need to show that \(E \subset (x)h \) for some \(x \in X \). If for infinitely many values of \(n \), \((x_n)h = \{ x_n \} \), then \(E \) is a singleton and we are done. Hence we may assume without loss of generality that for all \(n \), \((x_n)h \) is nontrivial,
which by (3.16) implies that \(W((x_n)h) \geq r \) and hence \((x_n)h = (x_n)f\). Since \(f \) is upper semicontinuous, \(E \subset (x)f \) for some \(x \in E \). From the continuity of \(W \) it follows that \(r \leq W(E) \leq W((x)f) \). Then (3.16) implies that \((x)h = (x)f \supset E\) and we are done.

Thus \(g, h \in M(X) \), \(f < g \), \(f < h \) and we claim that \(f = g \land h \). Indeed, let \(x \in X \). If \(W((x)f) \leq r \) then \((x)g = (x)f\) by (3.15) while if \(W((x)f) \geq r \) then \((x)h = (x)f\) by (3.15). It follows that \((x)(g \land h) = (x)g \cup (x)h \supset (x)f\) i.e., \(g \land h \leq f \), so we have \(f = g \land h \) and Proposition 3.14 is proved.

Proof of Proposition 3.12. Clearly a lattice isomorphism preserves meet irreducibility and by Proposition 3.14 it carries \(T(X) \) onto \(T(Y) \).

Lemma 3.17. Let \(X \) be an atom. Let \((x_n)_{n \geq 1}\) be a sequence in \(X \) such that \(\lim x_n = y \). For each \(n \), let \(x_n \in A_n \in C(X) \), and let \(g = \bigwedge \{ g_{A_n} : n \geq 1 \} \). Then for every \(x \in X \) such that \((x)g \neq \{x\} \), either \((x)g = A_n\) for some \(n \) or \(y \in (x)g \).

Proof. Set \(E = \{ A_n : n \geq 1 \} \subset C(X) \) and let \(\overline{E} \) denote the closure of \(E \) in \(C(X) \). Let \(A \in \overline{E} \setminus E \). Then \(A = \lim A_{n_k} \) for some subsequence \((A_{n_k}) \) of \((A_n) \). Since \(x_{n_k} \in A_{n_k} \) and \(x_{n_k} \to y \), \(y \in A \). Now, by 1.1, the members of the family \(\{ A \in \overline{E} : y \in A \} \) are nested. A straightforward compactness argument shows that the set

\[
B = \bigcup \{ A \in \overline{E} : y \in A \}
\]

is also in \(\overline{E} \). So either \(E = \overline{E} \) or every \(A \in \overline{E} \setminus E \) is contained in \(B \).

Set \(H = \bigcup \{ A : A \in \overline{E} \} \). Then clearly \(H \) is a closed subset of \(X \). Let \(h \in M(X) \) be the decomposition which consists of the components of \(H \) and the singletons of \(X \setminus H \). (By [Ku, p. 182], \(h \) is upper semicontinuous.) For each \(n \geq 1 \), \(h \leq g_{A_n} \) since \(A_n \subset H \) is contained in some component of \(H \). Hence also \(h \leq g = \bigwedge \{ g_{A_n} : n \geq 1 \} \). It follows that for \(x \in X \setminus H \), \(\{x\} = (x)h \supset (x)g \), i.e., \((x)g = \{x\}\) for \(x \notin H \).

Now let \(x \in X \) be such that \((x)g \neq \{x\}\) and \(y \notin (x)g \). Then \(x \in H \). We claim that \(x \notin B \). Indeed, since \(B \in \overline{E} \), one of these two cases occurs.

Case (i): \(B = A_n \) for some \(n \). If \(x \in B \), then \((x)g \supset A_n = B \), so \(y \in (x)g \), a contradiction.

Case (ii): \(B = \lim A_{n_k} \) for some subsequence \((A_{n_k}) \) of \((A_n) \). Since \((x_{n_k})g \supset (x_{n_k})g_{A_{n_k}} = A_{n_k} \) and since \(g \) is upper semicontinuous, \(B \) must be contained in a fiber of \(g \). If \(x \in B \), then \((x)g \supset B \) and since \(y \in B \), this is impossible.

So it follows in both cases that \(x \in \bigcup \{ A_n : n \geq 1 \} \). But \(x \) can be a member only of finitely many \(A_n \)-s, since if \(x \in A_{n_k} \) for \(k = 1, 2, \ldots \), then \((x)g \supset \bigcup A_{n_k} \) and \(y \in \bigcup A_{n_k} \). Hence \((x)g = A_n\) for some \(n \).
Remark. It follows from Lemma 3.17 and its proof that

\[(x)g = \begin{cases}
\{x\} & \text{if } x \notin H = \bigcup \overline{E}, \\
B & \text{if } x \in B, \\
A_k & \text{if } x \in H \setminus B,
\end{cases}\]

where, if \(x \in H \setminus B\), \(x \in A_n\) for only finitely many values of \(n\), \(x \in A_{n_1} \subset \ldots \subset A_{n_m}\), and \(A_k = A_{n_m}\) is the union of all the \(A_n\)'s which contain \(x\).

Proposition 3.18. Let \(X\) be an atom. Let \((x_n)_{n \geq 1}\) be a sequence in \(X\) and let \(x_0 \in X\). Then the following are equivalent:

1. \(\lim x_n = x_0\) in \(X\).
2. For every continuum \(A_0 \subset X\) with \(x_0 \in A_0\) and every subsequence \((x'_n)\) of \((x_n)\), there exist continua \(A_n \subset X\) with \(x'_n \in A_n\) for all \(n\) such that \((x_0)g = A_0\), where \(g = \bigwedge\{g_{A_n} : n \geq 1\}\).

Proof. (1)\(\Rightarrow\)(2). First, suppose that \(x_n \to x_0\), let \(x_0 \in A_0\) and let \((x'_n)\) be a subsequence of \((x_n)\). Set \(A_n = C(x'_n, W(A_0))\), where \(W\) is a Whitney map on \(X\), and let \(g = \bigwedge\{g_{A_n} : n \geq 1\}\).

Let \(f\) denote the (continuous) decomposition of \(X\) into \(r\)-balls \(C(x, r)\), where \(r = W(A_0)\). Then for all \(n \geq 1\), \(f \leq g_{A_n}\). Hence \(f \leq g\). In particular, \(A_0 = C(x_0, r) = (x_0)f \supset (x_0)g\).

To obtain the converse inclusion let \((A_{n_k}) \subset (A_n)\) converge (in \(C(X)\)) to some \(A \in C(X)\). Then \((x_{n_k})g \supset A_{n_k} \to A\), as \(x_{n_k} \in A_{n_k}\), so \((x_0)g \supset A\). But \(W(A_{n_k}) = r\) and from the continuity of \(W\) it follows that \(W(A) = r\). Hence, since \(A\) and \(A_0\) both contain \(x_0\), we must have \(A = A_0 = C(x_0, r)\) and \((x_0)g \supset A_0\).

(2)\(\Rightarrow\)(1). Assume that \(x_n \to x_0\). Then by compactness there is a subsequence \((x'_n)\) such that \(x'_n \to y \neq x_0\) and such that \(x'_n \neq x_0\) for all \(n\). Then

\[\text{dist}(x_0, \{x'_n : n \geq 1\} \cup \{y\}) = 2\delta\]

is positive. Let \(A_0\) be a continuum of diameter \(\delta\) in \(X\) which contains \(x_0\). We claim that (2) fails for these \(A_0\) and \((x'_n)\). Indeed, let \(x'_n \in A_n \in C(X)\). Then by Lemma 3.17, \((x_0)g\) is either \(\{x_0\} \neq A_0\), or \((x_0)g = A_n\) for some \(n\). Now \(A_n \neq A_0\) since this would imply \(x'_n \in A_0\), and thus \(\text{diam}(A_0) \geq 2\delta\), while \(\text{diam}(A_0) = \delta\). Or, \(y \in (x_0)g\), which again implies \(\text{diam}((x_0)g) \geq 2\delta\), and we are done.

Definition 3.19. Let \(f \in M(X)\). Then

\[T_f = \{g \in T(X) : g \geq f \text{ and for all } h \in T(X), g \geq h \geq f \text{ implies } g = h\}\].

Proposition 3.20. Let \(f \in M(X)\). Then \(g = g_A \in T_f\) if and only if for every \(x \in A\), \((x)f = A\). Hence \(T_f = \{g(x)_f : x \in X\} \text{ and } (x)f \text{ is nontrivial}\).
Proof. Let \(g = g(x)f \) for some \(f \in M(X) \) and \(x \in X \) such that \((x)f\) is nontrivial. Then \(g \geq f \). If \(h = h_B \in T(X) \) is such that \(g(x)f \geq h_B \geq f \) then \((x)g(x)f = (x)f \cap (x)h_B = B \subset (x)f\), i.e., \(B = (x)f \) and \(g = h_B \). Hence \(g \in T_f \). Let \(g_A = g \in T_f \). Then \(g \geq f \). Thus for \(x \in A \), \((x)g = A \subset (x)f\).

If \(A \subset (x)f \), let \(A \subset B \subset (x)f \). Then \(h_B \in T(X) \) and \(g > h > f \). Hence \(A = (x)f \). \(\blacksquare \)

We continue with the proof of Theorem 3.11. Let \(X \) and \(Y \) be atoms and let \(\mu : M(X) \to M(Y) \) be a lattice isomorphism. Then by Proposition 3.12, \(\mu(T(X)) = T(Y) \). Define a function \(\hat{\mu} : X \to Y \) as follows. Let \(x \in X \). Then (see 3.9) \((x) \in T(X) : x \in A\) is a maximal chain in \(T(X) \). Hence \(\mu(x) = \{ \mu(x)_A : f \in \mu(x)_A \} \) is a maximal chain in \(T(Y) \), and, by 3.9 again, \(\mu(x) = \mu(x)_A \) for some \(y \in Y \). Define \(\hat{\mu}(x) = y \). Clearly \(\hat{\mu} \) is one-to-one and onto and we shall prove that it is continuous.

Remark. We have seen that for any two atoms \(X \) and \(Y \), \(T(X) \) and \(T(Y) \) are order isomorphic and every order isomorphism \(\mu : T(X) \to T(Y) \) gives rise to a surjective injection \(\hat{\mu} : X \to Y \) as above. But in general \(\hat{\mu} \) is not continuous. Our proof will show that if \(\hat{\mu} \) originates from an isomorphism of \(M(X) \) onto \(M(Y) \) then it is continuous.

Claim 3.21. Let \(A \subset X \) be a nontrivial continuum. Then \(\hat{\mu}(A) = \{ \hat{\mu}(x) : x \in A \} \subset Y \) is a continuum. Moreover, if \(\mu f_A = f_B \) for some \(B \in C(Y) \), then \(\hat{\mu}(A) = B \).

Proof. We know that \(x \in A \) if and only if \(A \in L(x) = \{ B \in C(X) : x \in B \} \). Hence

\[
A \in \bigcap \{ L(x) : x \in A \} = L_A = \{ E \in C(X) : A \subset E \}
\]

and \(A = \bigcap \{ E : E \in L_A \} \). Thus

\[
f_A = \bigvee \left\{ f_E : E \in \bigcap \{ L(x) : x \in A \} \right\}.
\]

By definition \(\mu(l(x)) = l(\hat{\mu}(x)) \). Hence

\[
\mu f_A = \bigvee \left\{ f_H : H \in \bigcap \{ L(\hat{\mu}(x)) : x \in A \} \right\}
= \bigwedge \{ l(y) : y \in \hat{\mu}A \} = f_B
\]

where \(B = \hat{\mu}A \). \(\blacksquare \)

Claim 3.22. For \(f \in M(X) \) and \(x \in X \), \(\hat{\mu}(x)f = (\hat{\mu}(x))\mu f \).

Proof. Note that (by 3.19 and 3.20) if \(A = (x)f \) is nontrivial then \(f_A = T_f \cap l(x) \). As \(\mu T_f = T_{\mu f} \) we obtain

\[
\mu f_A = \mu(T_f \cap l(x)) = T_{\mu f} \cap l(\hat{\mu}(x)) = f_B
\]
where $B = (\hat{\mu}(x))\mu f$, and by 3.21, $B = \hat{\mu}A$. If $(x)f = \{x\}$ then $(\hat{\mu}(x))\mu f = \hat{\mu}(x)$ since if $(\hat{\mu}(x))\mu f$ is nontrivial we can apply the above for μf and μ^{-1} and obtain a contradiction.

We complete the proof of Theorem 3.11. Let $x_n \to x_0$ in X. We apply Proposition 3.18 to show that $y_n = \hat{\mu}(x_n) \to \hat{\mu}(x_0) = y_0$ in Y. So, let $y_0 \in A_0 \subset Y$ and let $(y'_n) = (\hat{\mu}(x'_n)) \subset (y_n)$ be a subsequence. By 3.21 $x_0 \in \hat{\mu}^{-1}A_0 = B_0$ and is a continuum in X. Applying 3.18(2) to B_0 and $(x'_n) \subset (x_n)$ we obtain continua $x'_n \in B_n \subset X$ such that $g = \bigwedge\{g_{B_n} : n \geq 1\}$ satisfies $(x_0)g = B_0$. Set $A_n = \hat{\mu}B_n$. Then $y'_n \in A_n$, A_n are continua in Y, and for $h = \bigwedge\{g_{A_n} : n \geq 1\}$ we have (by 3.21)

$$
\mu g = \mu\left(\bigwedge\{g_{B_n} : n \geq 1\}\right) = \bigwedge\{\mu g_{B_n} : n \geq 1\} = \bigwedge\{g_{A_n} : n \geq 1\} = h.
$$

And 3.22 implies

$$(y_0)h = (\hat{\mu}(x_0))\mu g = \hat{\mu}((x_0)g) = \hat{\mu}(B_0) = A_0,$$

which shows that 3.18(2) holds, and by 3.18, $y_n \to y_0$, i.e., $\hat{\mu}$ is continuous.

References

[Lev-St1] M. Levin and Y. Sternfeld, *Mappings which are stable with respect to the property \(\dim f(X) \geq k\)*, Topology Appl. 52 (1993), 241–265.

