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Hyperconvexity of R-trees
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W. A. K i r k (Iowa City, Iowa)

Abstract. It is shown that for a metric space (M,d) the following are equivalent: (i)
M is a complete R-tree; (ii) M is hyperconvex and has unique metric segments.

1. Introduction. The purpose of this paper is not so much to shed light
on R-trees as to provide an example of an interesting class of hyperconvex
metric spaces. However, it does show that any complete R-tree can be viewed
as a nonexpansive retract of a Banach space, and this in turn suggests a new
approach to the study of fixed point theory in R-trees.

For a metric space (M,d) we use B(x; r) to denote the closed ball cen-
tered at x with radius r ≥ 0; thus B(x; r) = {z ∈M : d(x, z) ≤ r}.

Definition 1.1. A metric space (M,d) is said to be hyperconvex if⋂
α

B(xα; rα) 6= ∅

for any collection {B(xα; rα)} of closed balls in M for which d(xα, xβ) ≤
rα + rβ .

Hyperconvex metric spaces were introduced by Aronszajn and Panitch-
pakdi in [1], where it is shown that such spaces are injective. Specifically,
M is hyperconvex iff given any metric space Y with subspace X, any non-
expansive mapping f : X → M has a nonexpansive extension f̃ : Y → M .
(Recall that a mapping f : X →M is nonexpansive if d(f(x), f(y)) ≤ d(x, y)
for x, y ∈ X.) In particular, a hyperconvex space is a nonexpansive retract
of any metric space which contains it metrically. It is also known that ev-
ery metric space can be isometrically embedded in a hyperconvex space, its
so-called injective hull (see [4]). For other facts about hyperconvex spaces
see, e.g., [2], [10], [16].
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R-trees were introduced by J. Tits in [17]. In an ordinary tree the metric
is not often stressed since all the edges are assumed to have the same length.
An R-tree is a generalization of an ordinary tree which allows for different
length edges, thus enriching the behavior of free actions on R-trees (see, e.g.,
[13], [12]).

Definition 1.2. An R-tree is a nonempty metric space M satisfying:

(a) Any two points of p, q ∈ M are joined by a unique metric segment
[p, q].

(b) If p, q, r ∈M then [p, q] ∩ [p, r] = [p, w] for some w ∈M .
(c) If p, q, r ∈M and [p, q] ∩ [q, r] = {q} then [p, q] ∪ [q, r] = [p, r].

In this note we show that a complete R-tree is hyperconvex. Among
other things this fact provides a connection between R-trees and the abstract
hyperconvexity of [5]. We also show that a hyperconvex metric space which
has unique metric segments is an R-tree.

2. Preliminaries. We begin with the relevant notation. Let (M,d) be
a metric space and let A ⊆M be nonempty and bounded. Set

cov(A) =
⋂
{B : B is a closed ball and A ⊆ B}.

Let A(M) := {D ⊆ M : D = cov(D)}. Thus A(M) denotes the collec-
tion of all admissible sets (ball intersections) in M .

For D ∈ A(M), let diam(D) = sup{d(x, y) : x, y ∈ D}, and let r(D) =
inf{rx(D) : x ∈ D} where rx(D) = sup{d(x, y) : y ∈ D}. Thus r(D) denotes
the radius of the smallest ball (if one exists) which contains D and whose
center lies in D.
A(M) is said to be normal if for each D ∈ A(M) for which diam(D) > 0,

we have r(D) < diam(D), and A(M) is said to be uniformly normal if there
exists c ∈ [1

2 , 1
)

such that for each D ∈ A(M) for which diam(D) > 0, we
have r(D) ≤ cdiam(D).

Finally, A(M) is said to be compact [resp., countably compact ] if every
family [resp., countable family] of nonempty sets in A(M) which has the
finite intersection property has nonempty intersection. (The intersection of
such a family is necessarily also a member of A(M).)

The proof of our main result is rather simple, but one implication hinges
on the following somewhat deeper facts. The first is due to Khamsi [6] and
the second to Kulesza and Lim [9].

Theorem 2.1. Let M be a complete metric space for which A(M) is
uniformly normal. Then A(M) is countably compact.

Theorem 2.2. Let M be a metric space for which A(M) is countably
compact and normal. Then A(M) is compact.
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3. Results. We begin with the following.

Proposition 3.1. If M is an R-tree, then A(M) is uniformly normal.

P r o o f. Let ε ∈ (0, 1). For D ∈ A(M) with δ := diam(D) > 0, select
u, v ∈ D such that d(u, v) > (1 − ε)δ, and let x ∈ D be arbitrary. By (b)
of Definition 1.2 there exists w ∈ [u, v] such that [u, v] ∩ [u, x] = [u,w]. In
particular, d(x, u) = d(x,w) + d(w, u) ≤ δ and d(x, v) = d(x,w) + d(w, v)
≤ δ. Suppose m is the midpoint of [u, v]. If w ∈ [u,m] then

δ ≥ d(x,w) + d(w,m) + d(m, v) > d(x,m) + 1
2 (1− ε)δ

and it follows that d(x,m) ≤ 1
2 (1+ε)δ. Similarly the same conclusion follows

if w ∈ [v,m]. Thus D ⊆ B(m; 1
2 (1+ε)δ

)
. Since any closed ball in M contains

the segment joining any two of its points (this also is a simple consequence
of (b) of Definition 1.2), and since D ∈ A(M), we have m ∈ D. Therefore
r(D) ≤ 1

2 (1 + ε)δ. Since ε > 0 is arbitrary we conclude that A(M) is
uniformly normal with constant c = 1

2 .

Theorem 3.2. For a metric space M the following are equivalent :

(i) M is a complete R-tree.
(ii) M is hyperconvex and has unique metric segments.

P r o o f. (i)⇒(ii). We first show that if {B(xi; ri) : i = 1, . . . , n} is an
arbitrary finite collection of closed balls in an R-tree M , any two of which
intersect, then

n⋂

i=1

B(xi; ri) 6= ∅.

We proceed by induction on n. The conclusion is trivial if n = 2. Suppose
that for fixed n ≥ 2 each family of n balls, any two of which intersect,
has nonempty intersection, and suppose that any two balls of the family
{B(xi; ri) : i = 1, . . . , n + 1} intersect. Then by the inductive hypothesis
S :=

⋂n
i=1B(xi; ri) 6= ∅. Now suppose B(xn+1; rn+1)∩ S = ∅ and let p ∈ S.

Since xn+1 6∈ S, we have d(xn+1, p) > rn+1. Let t be the point of [xn+1, p]
for which d(xn+1, t) = rn+1 (thus t ∈ B(xn+1; rn+1)), and let i ∈ {1, . . . , n}.
There are two cases:

(I) t 6∈ [xi, p]. In this case [xi, t] ∩ [xn+1, t] = {t}, so by (c) of Defini-
tion 1.2, we have t ∈ [xn+1, xi] and therefore t is the point of B(xn+1; rn+1)
nearest to xi; hence t ∈ B(xi; ri) by the binary intersection property.

(II) t ∈ [xi, p]. In this case d(xi, t) ≤ d(xi, p) ≤ ri so again t ∈ B(xi; ri).

Therefore t ∈ B(xi; ri) in either case, so t ∈ ⋂n+1
i=1 B(xi; ri), completing

the induction.
Now suppose M is a complete R-tree. Since M is metrically convex, to

see that M is hyperconvex it need only be shown that
⋂
α∈AB(xα; rα) 6= ∅
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whenever {B(xα; rα)}α∈A is any family of closed balls in M any two of which
intersect. However, if any two balls in such a family intersect then by what
we have seen above the family {B(xα; rα)}α∈A has the finite intersection
property. Also, {B(xα; rα)}α∈A is a subfamily of A(M), and by Proposi-
tion 3.1, A(M) is uniformly normal. Thus, since M is complete, A(M) is
compact by Theorems 2.1 and 2.2, so any subfamily of A(M) which has
the finite intersection property must have nonempty intersection. Therefore⋂
α∈AB(xα; rα) 6= ∅, proving (i)⇒(ii).

We now show (ii)⇒(i). Suppose M is hyperconvex and suppose any two
points p, q ∈ M are joined by a unique metric segment [p, q]. We need
show that (b) and (c) of Definition 1.2 hold. To see that (b) holds, suppose
w ∈ [p, q]∩ [p, r]. Then by uniqueness of metric segments it must be the case
that [p, w] ⊆ [p, q]∩ [p, r]. It follows that [p, q]∩ [p, r] = [p, w] where w is the
point of [p, q] ∩ [p, r] which is nearest to q.

To see that (c) holds, suppose [p, q] ∩ [q, r] = {q}, and without loss of
generality assume d(q, r) ≤ d(q, p). Let r′ denote the point of [r, p] ∩ [r, q]
which is nearest to q. If [p, r′] = [p, q] ∪ [q, r′] then it follows that [p, r] =
[p, q] ∪ [q, r] (by transitivity of metric betweenness [3, p. 33]) and there is
nothing to prove. So we assume [p, r′] 6= [p, q]∪[q, r′]. (Thus r′ = r is possible,
but r′ 6= q.) It follows that d(p, r′) < d(p, q) + d(q, r′) and therefore

% := d(p, q) + d(q, r′)− d(p, r′) > 0.

Now let m denote the midpoint of [q, r′] and consider the family

B1 = B
(
q; 1

2d(q, r′)
)
, B2 = B

(
r′; 1

2d(q, r′)
)
, B3 = B

(
p; d(p, q)− 1

2d(q, r′)
)
.

By uniqueness of segments B1 ∩ B2 = {m}. For the same reason B1 ∩ B3

consists of exactly one point which lies on [p, q]. It follows thatB2∩B3 = ∅ for
otherwise, by the binary intersection property,m ∈ ⋂3

i=1Bi; hencem ∈ [p, q]
and since m 6= q this contradicts [p, q] ∩ [q, r] = {q}. Therefore

d(p, r′) > 1
2d(q, r′) +

(
d(p, q)− 1

2d(q, r′)
)

= d(p, q) ≥ d(q, r′).

Now let

B′1 = B(q; %), B′2 = B(r′; d(p, r′)− d(p, q)), B′3 = B(p; d(p, q)).

Since d(p, r′) > d(p, q), we have d(p, r′)−d(p, q) > 0 and therefore B′2∩B′3 =
{z1} where z1 ∈ [p, r′]. Also, B′1 ∩ B′2 = {z2} where z2 ∈ [q, r′]. Therefore
(since q ∈ B′1 ∩ B′3) the family {B′1, B′2, B′3} has the binary intersection
property. Thus

⋂3
i=1B

′
i 6= ∅, which implies z1 = z2. This in turn implies

z1 ∈ [r, p] ∩ [r, q], contradicting the definition of r′.

Several facts about R-trees can now be derived from known facts about
hyperconvex spaces. For example if S is a closed subtree of a complete R-tree
M then it is easy to see that for each point x ∈ M there is a unique point
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p(x) ∈ S which is nearest to x, and moreover that the mapping x 7→ p(x)
is nonexpansive. However, since S itself is hyperconvex, this can now be
viewed as a special case of the well-known fact that a hyperconvex space is
a nonexpansive retract of any space in which it is isometrically embedded.
(See, e.g., [16] for a discussion.)

The next fact has been known for some time (cf. Mańka [11]), but the
retraction approach via hyperconvexity seems to be entirely new.

Corollary 3.3. Let M be a compact R-tree. Then every continuous
mapping f : M →M has a fixed point.

P r o o f ([7]). It is well known that any complete metric space is isomet-
ric with a subset of a Banach space, and any hyperconvex space is a non-
expansive retract of any space in which it is isometrically imbedded. Thus,
regarding M as a closed subset of a Banach space, there is a nonexpansive
retraction r of conv(M) onto M . By the Schauder fixed point theorem f ◦ r
has a fixed point which necessarily lies in M and must therefore be a fixed
point of f .

The following is a special case of known results for nonexpansive map-
pings.

Corollary 3.4. Let M be a bounded and complete R-tree and let f :
M → M be nonexpansive. Then f has a nonempty fixed point set which is
a closed subtree of M .

P r o o f. It is known ([14], [15]) that every bounded hyperconvex met-
ric space M has the fixed point property for nonexpansive self-mappings.
(Indeed, any commuting family of nonexpansive self-mappings of M has a
nonempty common fixed point set [2].) The final assertion of the corollary
is a consequence of the fact that if p and q are in the fixed point set of f
then [p, q] is as well.

In fact a little more can be said. (Here ∂S denotes the boundary of S in
the usual topological sense.)

Corollary 3.5. Let M be a complete R-tree and let S be a closed and
bounded subtree of M . Suppose f : S → M is nonexpansive and suppose
f(∂S) ⊆ S. Then f has a nonempty fixed point set (which is a closed subtree
of S).

P r o o f. The analog holds for hyperconvex spaces [8].

Acknowledgements. The author thanks the referee for calling atten-
tion to a number of oversights and for helpful suggestions which improved
the exposition.
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