Fundamental pro-groupoids and covering projections

by

Luis Javier Hernández-Paricio (Zaragoza)

Abstract. We introduce a new notion of covering projection $E \to X$ of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid $\pi \operatorname{crs}(X)$ and an induced category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$ such that for any topological space X the category of covering projections and transformations of X is equivalent to the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$. We also prove that the latter category is equivalent to $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$, where πCX is the Čech fundamental pro-groupoid of X. If X is locally path-connected and semilocally 1-connected, we show that $\pi \operatorname{crs}(X)$ is weakly equivalent to πX , the standard fundamental groupoid of X, and in this case $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$ is equivalent to the functor category $\operatorname{Sets}^{\pi X}$. If (X, *) is a pointed connected compact metrisable space and if (X, *) is 1-movable, then the category of covering projections of X is equivalent to the category of covering projections $\check{\pi}_1(X, *)$ is the Čech fundamental group provided with the inverse limit topology.

Introduction. It is well known that if X is a locally path-connected and semilocally 1-connected space then the category Cov proj X of covering projections and transformations of X is equivalent to the category of πX -sets, that is, to the functor category $\mathsf{Sets}^{\pi X}$. The aim of this work is to study the category Cov proj X for any space X, without local conditions of connectedness.

In 1972–73, Fox [F1, F2] introduced the notion of overlay of a metrisable space. The fundamental theorem of Fox's overlay theory establishes the existence of a bi-unique correspondence between the *d*-fold overlayings of a connected metrisable space X and the representations of the fundamental trope of X in the symmetric group Σ_d of degree *d*.

¹⁹⁹¹ Mathematics Subject Classification: Primary, 55Q07, 55U40, 57M10; Secondary, 18B25, 18F20, 20L15.

Key words and phrases: covering projection, covering transformation, pro-groupoid, Čech fundamental pro-groupoid, covering reduced sieve, locally constant presheaf, category of fractions, subdivision, fundamental groupoid, Čech fundamental group, G-sets, continuous G-sets.

^[1]

On the other hand, for a locally connected distributive category \mathcal{C} , using the filtered small category of hypercoverings, Artin and Mazur [A-M] constructed a pro-simplicial set $\Pi \mathcal{C}$. In particular, for the category \mathcal{C} induced by a locally connected space, this pro-simplicial set is the Čech pro-simplicial set defined by the Čech nerve of all open coverings \mathcal{U} of the space X. As a consequence of this construction they classify the covering projections of Xwhich are trivial over an open covering \mathcal{U} . The construction given by Artin and Mazur cannot be applied to non-locally connected spaces.

The objective of this paper is to solve the classification problem of "covering projections" for a general space. We want to remove the condition of local connectedness considered by Artin and Mazur and the conditions of metrisable space and finite fibre of the d-fold overlayings analysed by Fox. Of course we want to have a classification up to isomorphism of covering projections but we also want to have a classification of morphisms between "covering projections".

For this aim, we consider a new notion of covering projection $E \to X$ using atlases and an equivalence relation between atlases. If X is a connected metrisable space and all the fibres of $E \to X$ have a finite cardinal d, we have Fox's d-fold overlay and if X is a locally connected space we have the usual notion of covering projection given, for instance, in Spanier's book [S] and analysed by Artin and Mazur. To generalise the Fox fundamental trope or the Artin–Mazur fundamental pro-group of a space we consider a fundamental pro-groupoid $\pi \operatorname{crs}(X)$ and a category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$ which is equivalent to the category of covering projections of the space X. This kind of category is also related to the notion of Galois category characterized by Grothendieck [Gro] and to the notion of Galois topos considered by Moerdijk [M].

If G is a pro-finite group, we can consider the category G-FinSets of continuous finite G-sets. A category \mathcal{C} equivalent to G-FinSets is said to be a Galois category. Grothendieck [Gro] gave an axiomatic description of these categories and proved that the pro-finite group G is unique up to isomorphism. The fundamental group of a pointed connected Grothendieck topos \mathcal{E} can be defined as the group determined by the Galois category \mathcal{E}_{lcf} of locally constant finite objects in \mathcal{E} . For instance, if X is a connected CWcomplex, then the category of finite covering projections of X is equivalent to the category of continuous finite $\widehat{\pi_1 X}$ -sets, where $\widehat{\pi_1 X}$ is the pro-finite completion of $\pi_1 X$.

We also note that Moerdijk [M] gave a characterization of the toposes of the form BG for G a pro-discrete localic group. He also proved that the category of surjective pro-groups is equivalent to the category of pro-discrete localic groups. For a connected locally connected space this equivalence of categories carries the Artin–Mazur fundamental surjective pro-group to the fundamental localic group considered by Moerdijk. This implies that the category of covering projections of a connected locally connected space is determined either by the Artin–Mazur fundamental pro-group or by the corresponding localic group. Nevertheless, this construction does not characterise the category of covering projections of a non-locally connected space X. In this case the fundamental pro-group(oid) $\pi \operatorname{crs}(X)$ that we consider need not be a surjective pro-group(oid). At present, we do not know if for every pro-group G the category $\operatorname{pro}(G, \operatorname{Sets})$ is a Galois topos in the sense of the definition given in [M]. One interesting property of a Galois topos is that the pro-discrete localic group is determined up to isomorphism. However, the category of the form $\operatorname{pro}(G, \operatorname{Sets})$ does not determine the pro-groupoid G up to isomorphism. In §1, we give an example of two non-isomorphic pro-groups G and G' such that $\operatorname{pro}(G, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G', \operatorname{Sets})$. We do not know if the existence of an equivalence of categories implies that G and G' are weakly equivalent in some sense.

We also analyse the category of covering projections of a compact metrisable space X. In this case, the fundamental pro-groupoid is isomorphic to a tower of groupoids. If we assume that X is connected, then the tower of groupoids reduces to a tower of groups G and if for a given point $x \in X$, (X, x) is 1-movable, then the category $\operatorname{pro}(G, \operatorname{Sets})$ is equivalent to the category of continuous $\lim G$ -sets, where $\lim G$ is provided with the inverse limit topology. We note that the condition of pointed 1-movability implies that the Čech fundamental pro-group is isomorphic to a tower $G = \{G(n)\}$ of groups with surjective bonding homomorphisms. Since we are working with a tower we see that $\lim G$ is not trivial and the maps $\lim G \to G(n)$ are surjections. For the more general case of surjective pro-groups, Moerdijk [M] has noted that $\lim G$ can be trivial; he has solved this pathology by considering the inverse limit in the category of localic groups. I suppose that for some notion of "surjective pro-groupoid" G the category pro(G, Sets)will be equivalent to a category of LG-sets, where LG will be an associated pro-discrete localic groupoid.

This paper illustrates some nice relationships between the étale homotopy developed by Artin and Mazur [A-M], the theory of classifying toposes of localic groupoids of Moerdijk [M] and the methods used by Fox [F1, F2], by Edwards and Hastings [E-H] and by Porter [P] in shape theory and strong shape theory.

We finish this introduction by giving a summary of the main results of the paper. In §1, for a pro-groupoid G we define the category $\operatorname{pro}(G, \operatorname{Sets})$ and we show that a map $f: G \to G'$ in pro Gpd induces an equivalence of categories $f^* : \operatorname{pro}(G', \operatorname{Sets}) \to \operatorname{pro}(G, \operatorname{Sets})$ if f is an isomorphism in pro Gps, or if f is a (level) weak equivalence, or if G, G' are towers and f is an isomorphism in the category tow π_0 Gpd. The main results of §2 are the right definition

of covering projection, the determination of the pro-groupoid $\pi \operatorname{crs}(X)$, and Theorem 2.2, which shows that for any space X the category of covering projections of X is equivalent to the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$. In §3, we establish a connection with the Artin–Mazur fundamental pro-groupoid which is isomorphic to the Čech fundamental pro-groupoid, and we find a weak equivalence $\pi \operatorname{Sd} CX \to \pi \operatorname{crs}(X)$ from the fundamental pro-groupoid of the subdivision of the Čech pro-simplicial set to the pro-groupoid $\pi \operatorname{crs}(X)$ of reduced covering sieves of X. Therefore the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$ is equivalent to $\operatorname{pro}(\pi CX, \operatorname{Sets})$. In §4, we give an easy proof of the standard classification of covering projections of a locally connected and semilocally 1-connected space. Finally, in §5, we show that under some shape conditions, we can obtain surjective towers of groups and in this case the category of covering projections reduces to a category of continuous $\check{\pi}_1(X, *)$ -sets, where $\check{\pi}_1(X, *)$ is the Čech fundamental topological group. We also prove as a corollary a version of the fundamental theorem of Fox's overlay theory.

0. Preliminaries. In this section, we introduce some notation and terminology which is frequently used in this paper.

Let C be a small category and C^{op} its opposite. As usual, we denote by $\mathsf{Sets}^{C^{\text{op}}}$ the category whose objects are all functors $P: C^{\text{op}} \to \mathsf{Sets}$ and morphisms $P \to P'$ are all the natural transformations $\theta: P \to P'$ between such functors. A functor $P: C^{\text{op}} \to \mathsf{Sets}$ is also called a *presheaf* on C. A presheaf P on C is said to be *locally constant* if for every arrow $f: A \to B$ in $C, Pf: PB \to PA$ is an isomorphism. We denote by $(\mathsf{Sets}^{C^{\text{op}}})_{\text{lc}}$ the category of locally constant presheaves on C.

For the category C we have the Yoneda embedding $y: C \to \mathsf{Sets}^{C^{\mathrm{op}}}$ defined on objects by $yA(B) = \operatorname{Hom}_C(B, A)$. The following result will be used; for more details we refer the reader to [M-M, Theorem I.5.2].

THEOREM 0.1. Let $l: C \to \mathcal{D}$ be a functor from a small category C to a cocomplete category \mathcal{D} . Then the functor $R: \mathcal{D} \to \mathsf{Sets}^{C^{\mathrm{op}}}$ defined by

$$RX(C) = \operatorname{Hom}_{\mathcal{D}}(lC, X)$$

has a left adjoint $L: \mathsf{Sets}^{C^{\mathrm{op}}} \to \mathcal{D}.$

Let Δ denote the small category whose objects are finite ordered sets $[n] = \{0 < \ldots < n\}$ and whose morphisms are those $\phi : [n] \to [m]$ which preserve the order. We shall consider the category of simplicial sets as the functor category $SS = Sets^{\Delta^{op}}$. By Theorem 0.1 the functor $y : \Delta \to Sets^{\Delta^{op}}$ and the functor $\Delta \to \mathsf{Top}, [n] \to \Delta_n$, where Δ_n is the standard *n*-simplex, induce the singular functor Sing : $\mathsf{Top} \to \mathsf{SS}$ and its left adjoint, the realization functor $|-|: \mathsf{SS} \to \mathsf{Top}, X \to |X|$. We recall that a map $f : X \to Y$ in SS is a weak equivalence if for every $x \in X_0$ and $q \ge 0$ the induced

map $\pi_q(f) : \pi_q(X, x) \to \pi_q(Y, fx)$ is an isomorphism, where π_q denotes the homotopy group functor.

Let G be a group. We can view G as a small category with one object * and arrows given by the elements of G. The composition is given by the product of G. In this case Sets^G is the category of left G-sets and $\mathsf{Sets}^{G^{\mathsf{op}}}$ is the category of right G-sets. An object in Sets^G is determined by a homomorphism $\eta: G \to \operatorname{Aut} X$, where $\operatorname{Aut} X$ is the group of automorphisms of a set X. For a given map $\widehat{f}: X \to X'$ in Sets , we denote by $\operatorname{Aut} \widehat{f}$ the group of automorphisms of \widehat{f} in the category Maps(Sets) of maps in Sets . If $\eta: G \to \operatorname{Aut} X, \eta': G \to \operatorname{Aut} X'$ determine two objects in Sets^G , a morphism $f: \eta \to \eta'$ is given by a pair $f = (\theta_f, \widehat{f})$ where $\widehat{f}: X \to X'$ is a map and $\theta_f: G \to \operatorname{Aut} \widehat{f}$ is a group homomorphism such that the following diagram is commutative:

For G a topological group, we have an analogous category of continuous G-sets, which is denoted by G-Sets. In this case, Aut X and Aut \hat{f} are provided with the discrete topology and we consider continuous homomorphisms η and θ_f .

Given a topological space X, we denote by $\mathcal{O}(X)$ the small category whose objects are all open subsets U of X, and arrows $V \to U$ are inclusions $V \subset U$. In this paper, we will consider the category $\mathsf{Sets}^{\mathcal{O}(X)^{\mathrm{op}}}$ of presheaves on X, and the full subcategory $\mathrm{Sh}(X)$ of sheaves on X. For more properties of sheaves we refer the reader to [M-M] and [J]. We also consider the category Etale X whose objects are étale maps $p : E \to X$; that is, p is a local homeomorphism in the following sense: For each $e \in E$, there is an open set V such that pV is open in X and $p|V : V \to pV$ is a homeomorphism. A morphism $f : p \to p'$ is given by a continuous map $f : E \to E'$ such that fp' = p.

If $F : \mathcal{O}(X)^{\mathrm{op}} \to \mathsf{Sets}$ is a presheaf on X, we can consider $F_x = \mathrm{colim}_{x \in U} F(U)$ and the map $\operatorname{germ}_x : F(U) \to F_x$. For each $\sigma \in F(U)$, $\dot{s}U = \{\operatorname{germ}_x \sigma \mid x \in U\}$ is a subset of $E = \bigsqcup_{x \in E} F_x$. All the subsets $\dot{s}U$ form the base of a topology on E such that the map $p : E \to X$, $p(\sigma) = x$ if $\sigma \in F_x$, is an étale map, which is also called the *bundle of germs* of F. This construction gives a functor $\Lambda : \operatorname{Sets}^{\mathcal{O}(X)^{\mathrm{op}}} \to \operatorname{Etale} X$ which is left adjoint to the functor $\Gamma : \operatorname{Etale} X \to \operatorname{Sets}^{\mathcal{O}(X)^{\mathrm{op}}}$ defined by

$$\Gamma p(U) = \{ s \mid s \text{ is a continuous section of } p \text{ on } U \}$$

The restriction $\Lambda : \operatorname{Sh}(X) \to \operatorname{Etale} X$ is an equivalence of categories with quasi-inverse Γ .

We shall often use categories of fractions and categories of right fractions (see [G-Z]). Let \mathcal{C} be a category and let Σ be a class of morphisms in \mathcal{C} . The category of fractions induced by Σ will be denoted by $\mathcal{C}[\Sigma^{-1}]$, and by $\mathcal{C}\Sigma^{-1}$ if Σ admits a calculus of right fractions. In the last case the hom-set can be defined by

$$\operatorname{Hom}_{\mathcal{C}\Sigma^{-1}}(X,Y) = \operatorname{colim}_{s\in\Sigma,\operatorname{codomain}(s)=X} \operatorname{Hom}_{\mathcal{C}}(\operatorname{domain}(s),Y).$$

A category I is said to be *left filtering* if it satisfies the following conditions:

(a) given two objects i, i' in I, there is an object j in I and morphisms $j \to i, j \to i'$,

(b) if $u, v : j \to i$ are morphisms in *I*, there is *k* in *I* and a morphism $w : k \to j$ such that uw = vw.

A pro-object in C is a functor $X : I \to C$, where I is a left filtering small category. An arrow $u : j \to i$ is carried by X to a morphism X(u) : $X(j) \to X(i)$, which is called a *bonding morphism*. In some cases the hom– set $\operatorname{Hom}_{I}(j, i)$ only has one arrow and we then use the notation $X_{i}^{j} : X(j) \to$ X(i). We also use this notation when no confusion is possible.

We are going to consider the category pro C whose objects are proobjects in C. Given pro-objects $X : I \to C$ and $Y : J \to C$ in C, the morphism set from X to Y is defined by

$$\operatorname{Hom}_{\operatorname{pro} C}(X,Y) = \lim_{i} \operatorname{colim}_{i} \operatorname{Hom}_{C}(X(i),Y(j)).$$

An alternative description of morphisms in pro C can be given as follows: A morphism $u: X \to Y$ is represented by a pair $(\varphi, f(j))$, where $\varphi: |J| \to |I|$ is a map from the object set of J to the object set of I and $f(j): X(\varphi(j)) \to Y(j)$ is a morphism in $C, j \in |J|$, such that if $j \to j'$ is a morphism in J, then there are $i \in |I|, i \to \varphi(j)$ and $i \to \varphi(j')$ such that the following diagram is commutative:

Two pairs $(\varphi, f(j)), (\psi, g(j))$ represent the same morphism u if for each

 $j \in |J|$, there are $i \in |I|$, $i \to \varphi(j)$ and $i \to \psi(j)$ such that the following diagram commutes:

One of the more interesting properties of the category pro C is that if $Y : J \to C$ is a pro-object and $\phi : I \to J$ is a cofinal functor, then $Y\phi: I \to C$ is isomorphic to $Y: J \to C$ in the category pro C.

For each left filtering small category I, we denote by C^{I} the category whose objects are functors $X : I \to C$ and morphisms are natural transformations; that is, a morphism $f : X \to Y$ is given by a coherent family of morphisms $f(i) : X(i) \to Y(i), i \in |I|$. There is a canonical functor $\gamma : C^{I} \to \text{pro } C$, and a morphism of the form $\gamma f : \gamma X \to \gamma Y$ is said to be a *level morphism*.

Of particular interest is the full subcategory tow C of pro C determined by objects whose indexing category is \mathbb{N} , where \mathbb{N} is the category whose objects are non-negative integer numbers and $\operatorname{Hom}_{\mathbb{N}}(n,m)$ has either one element if $n \geq m$ or is the empty set if n < m.

1. The category $\operatorname{pro}(G, \operatorname{Sets})$. In this section, we define and study the category $\operatorname{pro}(G, \operatorname{Sets})$, where G is a pro-groupoid. Later in §2 we shall prove that the category of covering projections of a space is equivalent to a category of the form $\operatorname{pro}(G, \operatorname{Sets})$.

Recall that a groupoid G is a small category where any morphism in G is an isomorphism. Given two groupoids G and G', a groupoid homomorphism is just a functor $f: G \to G'$. Let Gpd denote the category of groupoids.

We denote by [0,1] the groupoid with two objects 0,1 and whose morphisms are the identities and two mutually inverse maps $u: 0 \to 1$ and $u^{-1}: 1 \to 0$. If G is a groupoid, we can consider the product groupoid $G \times [0,1]$ and the groupoid homomorphisms $\partial_0, \partial_1: G \to G \times [0,1]$, where for example ∂_0 carries an arrow $\alpha: U \to U'$ in G to the arrow $\partial_0 \alpha = (\alpha, \mathrm{id}_0): (U,0) \to (U',0)$. Using this cylinder, we can consider homotopies making commutative diagrams of the form

where G + G is the sum groupoid, and F is a groupoid homomorphism.

We note that a homotopy F determines a natural transformation η_F from f to g by $\eta_F(U) = F(\mathrm{id}_U, u)$. Conversely, a natural transformation $\eta: f \to g$ determines a homotopy F_η from f to g by $F_\eta(\mathrm{id}_U, u) = \eta(U)$.

If G and G' are two groupoids, we can consider a groupoid $\operatorname{HOM}_{\mathsf{Gpd}}(G, G')$ whose objects are given by the elements of the set $\operatorname{Hom}_{\mathsf{Gpd}}(G, G')$ and if $f, g : G \to G'$ are objects in $\operatorname{HOM}_{\mathsf{Gpd}}(G, G')$ a morphism $\eta : f \to g$ is a natural transformation from f to g. We denote by $\pi_0 \operatorname{HOM}_{\mathsf{Gpd}}(G, G')$ the set of isomorphism classes of the groupoid $\operatorname{HOM}_{\mathsf{Gpd}}(G, G')$. This set is also the set of homotopy classes of groupoid homomorphisms from G to G'. We also consider the category $\pi_0 \operatorname{Gpd}$ which has the same objects as Gpd and the hom-set is defined by $\operatorname{Hom}_{\pi_0 \operatorname{Gpd}}(G, G') = \pi_0 \operatorname{HOM}_{\operatorname{Gpd}}(G, G')$. Denote by $\gamma : \operatorname{Gpd} \to \pi_0 \operatorname{Gpd}$ the projection functor which carries an arrow $f : G \to G'$ to the homotopy class $\gamma f : \gamma G \to \gamma G'$. We note that f is an equivalence (of categories) if and only if f is a homotopy equivalence; that is, if γf is an isomorphism in $\pi_0 \operatorname{Gpd}$.

For a given pro-groupoid $G: I \to \mathsf{Gpd}$, we consider the category (G, Sets) . An object of (G, Sets) is given by a pair (G(i), F) where *i* is an object in *I* and $F: G(i) \to \mathsf{Sets}$ is a functor. A morphism α from (G(i), F) to (G(j), H) is a pair $\alpha = (i \to j, \ \theta_{\alpha} : F \to HG_j^i)$ where $i \to j$ is a morphism in *I* and $\theta_{\alpha} : F \to HG_j^i$ is a natural transformation (G_j^i) is the corresponding bonding map).

Consider the class

 $\Sigma = \{ \alpha \mid \alpha \text{ is a morphism in } (G, \mathsf{Sets}) \text{ and } \theta_{\alpha} \text{ is an equivalence} \}.$

It is easy to check that the class Σ admits a calculus of right fractions (see §1 and [G-Z]). Therefore we can consider the category of right fractions $(G, \mathsf{Sets})\Sigma^{-1}$ that will be denoted by $\operatorname{pro}(G, \mathsf{Sets})$.

If I is the indexing category of the pro-groupoid G, and i, j are two objects in I, we consider the category $I \downarrow \{i, j\}$ whose objects are pairs (u, v)of maps $u: k \to i, v: k \to j$, and a morphism from (u, v) to (u^1, v^1) is given by a map $w: k \to k^1$ such that $u^1w = u, v^1w = v$. If (G(i), F) and (G(j), H)are two objects in pro (G, Sets) , we can consider the category $I \downarrow \{i, j\}$; for an object (u, v) in $I \downarrow \{i, j\}$, we write $k = \operatorname{domain}(u) = \operatorname{domain}(v)$. From the definition of the hom-set in a category of right fractions, one has

$$\operatorname{Hom}_{\operatorname{pro}(G,\operatorname{Sets})}((G(i),F),(G(j),H)) \cong \operatorname{colim}_{I \downarrow \{i,j\}} \operatorname{Hom}_{\operatorname{Sets}^{G(k)}}(FG_i^k,HG_j^k).$$

Now assume that $f : G \to G'$ is a morphism in pro Gpd represented by a pair $(\varphi, f(i'))$. We are going to see how the pair $(\varphi, f(i'))$ induces a functor $(\varphi, f(i'))^* : \operatorname{pro}(G', \operatorname{Sets}) \to \operatorname{pro}(G, \operatorname{Sets})$. First we define a functor from $(G', \operatorname{Sets})$ to $\operatorname{pro}(G, \operatorname{Sets})$. Let $\alpha' = (i' \to j', \theta_{\alpha'} : F' \to H'G'_{j'})$ be a morphism in $(G', \operatorname{Sets})$ from (G'(i'), F') to (G'(j'), H'). Then $(\varphi, f(i'))^*$ carries these objects to $(G(\varphi i'), F'f(i'))$ and $(G(\varphi j'), H'f(j'))$, respectively. In order to get $(\varphi, f(i'))^*(\alpha')$, we choose k in I and arrows $k \to \varphi i'$ and $k \to \varphi j'$ such that the diagram

is commutative. Then $(\varphi, f(i'))^*(\alpha')$ is the morphism in $\operatorname{pro}(G, \operatorname{Sets})$ represented by the natural transformation $\theta_{\alpha'} * (f(i')G_{\varphi i'}^k) : F'f(i')G_{\varphi i'}^k \to H'f(j')G_{\varphi j'}^k$. It is easy to check that two choices of k represent the same morphism in $\operatorname{pro}(G, \operatorname{Sets})$. The functor $(\varphi, f(i'))^*$ has the property that if α' is in Σ' , then $(\varphi, f(i'))^*(\alpha')$ is an isomorphism. Therefore we have an induced functor

$$(\varphi, f(i'))^* : \operatorname{pro}(G', \operatorname{\mathsf{Sets}}) \to \operatorname{pro}(G, \operatorname{\mathsf{Sets}}).$$

We note that it $(\varphi, f(i'))$ and $(\psi, g(i'))$ represent the same morphism $f: G \to G'$, then the functor $(\varphi, f(i'))^*$ is isomorphic to $(\psi, g(i'))^*$. We will denote by $f^* : \operatorname{pro}(G', \operatorname{Sets}) \to \operatorname{pro}(G, \operatorname{Sets})$ one of these functors.

If $f: G \to G'$ and $g: G' \to G''$ are morphisms in pro Gpd represented by pairs $(\varphi, f(i'))$ and $(\psi, g(i''))$, then gf can be represented by $(\varphi\psi, g(i'')f(\psi i''))$. If gf = id and fg = id, then $(\varphi\psi, g(i)f(\psi i))^*$ and $(\psi\varphi, f(i')g(\varphi i'))^*$ are isomorphic to identity functors. Therefore the functor $(\varphi, f(i))^*$ is an equivalence of categories. We restate this fact in the following:

LEMMA 1.1. If $f : G \to G'$ is an isomorphism in pro Gpd, then f^* : $\operatorname{pro}(G', \operatorname{Sets}) \to \operatorname{pro}(G, \operatorname{Sets})$ is an equivalence of categories.

The following result will be useful:

LEMMA 1.2. Let $f: G \to G'$ be a level morphism in pro Gpd such that for each $i \in I$, $f(i): G(i) \to G'(i)$ is an equivalence. Then $f^*: \operatorname{pro}(G', \operatorname{Sets}) \to \operatorname{pro}(G, \operatorname{Sets})$ is an equivalence of categories.

Proof. In this case, the functor f^* is defined on objects by $f^*(G'(i), F') = (G(i), F'f(i))$ and for morphisms one has

 $\operatorname{Hom}_{\operatorname{pro}(G',\operatorname{Sets})}((G'(i),F'),(G'(j),H'))$

$$= \operatorname{colim}_{I \downarrow \{i,j\}} \operatorname{Hom}_{\mathsf{Sets}^{G'(k)}}(F'G'^k_i, H'G'^k_j)$$

$$\begin{aligned} &\cong \operatorname*{colim}_{I \downarrow \{i,j\}} \operatorname{Hom}_{\mathsf{Sets}^{G(k)}}(F'G_i'^k f(k), H'G_j'^k f(k)) \\ &\cong \operatorname*{colim}_{I \downarrow \{i,j\}} \operatorname{Hom}_{\mathsf{Sets}^{G(k)}}(F'f(i)G_i^k, H'f(j)G_j^k) \\ &\cong \operatorname{Hom}_{\operatorname{pro}(G,\mathsf{Sets})}((G(i), F'f(i)), (G(j), H'f(j))). \end{aligned}$$

Therefore f^* is a full faithful functor. On the other hand, if (G(i), F) is an object in pro (G, Sets) , we can take a quasi-inverse $g : G'(i) \to G(i)$ of the equivalence $f(i) : G(i) \to G'(i)$. Then $f^*(G'(i), Fg) = (G(i), Fgf(i))$. However, (G(i), Fgf(i)) is isomorphic to (G(i), F). Thus we have shown that f^* is an equivalence of categories.

At the beginning of this section we have considered the categories Gpd and $\pi_0\mathsf{Gpd}$ and the functor $\gamma : \mathsf{Gpd} \to \pi_0\mathsf{Gpd}$. This functor γ induces a functor $\gamma = \operatorname{pro} \gamma : \operatorname{pro} \mathsf{Gpd} \to \operatorname{pro} \pi_0\mathsf{Gpd}$. We have shown that two isomorphic objects G, G' in pro Gpd induce equivalent categories $\operatorname{pro}(G, \mathsf{Sets})$, $\operatorname{pro}(G', \mathsf{Sets})$. Next we analyse this kind of questions for objects in the category $\operatorname{pro} \pi_0\mathsf{Gpd}$.

If $G : \mathbb{N} \to \pi_0 \mathsf{Gpd}$ is an object in tow $\pi_0 \mathsf{Gpd}$, we can choose for each bonding morphism $G(i+1) \to G(i)$ in $\pi_0 \mathsf{Gpd}$ a representative map \overline{G}_i^{i+1} ; in this way we obtain and object $\overline{G} : \mathbb{N} \to \mathsf{Gpd}$ in tow Gpd such that $\overline{G}(i) = G(i)$ and $\gamma \overline{G} = G$. If we choose different bonding maps \widetilde{G}_i^{i+1} , we have a new pro-groupoid $\widetilde{G} : \mathbb{N} \to \mathsf{Gpd}$, but we can prove the following result:

LEMMA 1.3. The category $\operatorname{pro}(\overline{G}, \operatorname{Sets})$ is equivalent to the category $\operatorname{pro}(\widetilde{G}, \operatorname{Sets})$.

Proof. For each $i \geq 0$, since \overline{G}_i^{i+1} is homotopic to \widetilde{G}_i^{i+1} , we can choose a homotopy $L^{i+1} : G(i+1) \times [0,1] \to G(i)$ such that $L^{i+1}\partial_0 = \overline{G}_i^{i+1}$ and $L^{i+1}\partial_1 = \widetilde{G}_i^{i+1}$.

Consider the commutative diagram

$$\cdots \longrightarrow G(i+1) \xrightarrow{\overline{G}_{i}^{i+1}} G(i) \longrightarrow \cdots$$

$$\xrightarrow{\partial_{0} \bigvee} G(i+1) \times [0,1] \xrightarrow{(L^{i+1}, \operatorname{pr}_{2})} G(i) \times [0,1] \longrightarrow \cdots$$

$$\xrightarrow{\partial_{1} \uparrow} f_{1} \longrightarrow G(i) \longrightarrow G(i) \longrightarrow \cdots$$

and denote by $G \times [0,1]$ the "cylinder" pro-groupoid. We conclude that $\partial_0 : \overline{G} \to G \times [0,1]$ and $\partial_1 : \widetilde{G} \to G \times [0,1]$ satisfy the conditions of Lemma 1.2, and therefore $\operatorname{pro}(\overline{G}, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(\widetilde{G}, \operatorname{Sets})$.

As a consequence of Lemma 1.3, if G is an object in tow π_0 Gpd, the category pro(\overline{G} , Sets) will be denoted by pro(G, Sets).

LEMMA 1.4. Let $f = \{f(i) : G(i) \to G'(i)\}$ be a level morphism in tow π_0 Gpd and assume that there are maps $g(i) : G'(i+1) \to G(i)$ such that for each $i \ge 0$ the diagram

$$\begin{array}{c|c} G(i+1) \xrightarrow{f(i+1)} G'(i+1) \\ G_i^{i+1} & \downarrow & \downarrow \\ G(i) \xrightarrow{g(i)} & \downarrow \\ f(i) & \downarrow \\ G'(i) & \downarrow \\ f(i) & \downarrow \\ G'(i) & \downarrow \\ f(i) & \downarrow \\ G'(i) & \downarrow \\ f(i) & \downarrow \\$$

is commutative in π_0 Gpd. Then pro(G, Sets) is equivalent to pro(G', Sets).

Proof. Since $(G')_i^{i+1} = f(i)g(i)$ in $\pi_0 \text{Gpd}$, from Lemma 1.3 it follows that the towers

$$\dots \to G'(i+1) \xrightarrow{(G')_i^{i+1}} G'(i) \to \dots,$$
$$\dots \to G'(i+1) \xrightarrow{f(i)g(i)} G'(i) \to \dots$$

determine equivalent categories. Since the towers

$$\dots \to G'(i+1) \xrightarrow{f(i)g(i)} G'(i) \to \dots,$$
$$\dots \to G(i+1) \xrightarrow{f(i+1)} G'(i+1) \xrightarrow{g(i)} G(i) \xrightarrow{f(i)} G'(i) \to \dots,$$
$$\dots \to G(i+1) \xrightarrow{g(i)f(i+1)} G(i) \to \dots$$

are isomorphic in tow Gpd and $g(i)f(i+1) = G_i^{i+1}$ in π_0 Gpd, Lemmas 1.1 and 1.3 show that pro(G, Sets) is equivalent to pro(G', Sets).

As a consequence of these lemmas, we have:

PROPOSITION 1.1. Let G, G' be objects in tow π_0 Gpd. If G is isomorphic to G' in tow π_0 Gpd, then pro(G, Sets) is equivalent to pro(G', Sets).

Proof. Let $f: G \to G'$ be an isomorphism. The map f can be represented by a pair $(\varphi, f(i))$ such that $\varphi(i) \ge i$, $\varphi(i) > \varphi(j)$ if i > j, and for each $i \ge 0$, the diagram

$$\begin{array}{c} G(\varphi(i+1)) \xrightarrow{f(i+1)} G'(i+1) \\ \downarrow \\ G(\varphi(i)) \xrightarrow{f(i)} G'(i) \end{array}$$

is commutative in π_0 Gpd. Define an object G_1 in tow Gpd by $G_1(i) = G(\varphi(i))$

and $(G_1)_i^{i+1} = G_{\varphi(i)}^{\varphi(i+1)}$. We also have $f_1: G_1 \to G'$ defined by $f_1(i) = f(i): G_1(i) \to G'(i)$.

We know that G is isomorphic to G_1 in tow Gpd and $f_1 : G_1 \to G'$ is a level isomorphism in tow π_0 Gpd. By Lemma 1.1, $\operatorname{pro}(G, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G_1, \operatorname{Sets})$.

Since $f_1: G_1 \to G'$ is a level isomorphism in tow $\pi_0 \text{Gpd}$, there is a map $g: G' \to G_1$ in tow $\pi_0 \text{Gpd}$ represented by $(\psi, g(i))$ such that $\psi(i) \ge i$, $\psi(i) < \psi(j)$ if i < j, and the diagram

is commutative in π_0 Gpd, where ψ^k denotes the iterated map $\psi^{(k)} \cdots \psi$. Define

$$G_2(i) = G_1(\psi^i 0), \quad G'_1(i) = G'(\psi^i 0),$$

$$f_2(i) = f_1(\psi^i 0), \quad g(i) = g(\psi^i 0).$$

Now we see that G_1 is isomorphic to G_2 and G' is isomorphic to G'_1 in tow Gpd. By Lemma 1.1, $\operatorname{pro}(G_1, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G_2, \operatorname{Sets})$, and $\operatorname{pro}(G', \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G'_1, \operatorname{Sets})$. Since $f_2 : G_2 \to G'_1$ and g : $G'_1 \to G_2$ satisfy the conditions of Lemma 1.4, it follows that $\operatorname{pro}(G_2, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G'_1, \operatorname{Sets})$. Thus we conclude that $\operatorname{pro}(G, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(G', \operatorname{Sets})$.

EXAMPLE. We exhibit two non-isomorphic pro-groups F, F' which are isomorphic in tow π_0 Gpd. Therefore the categories $\operatorname{pro}(F, \operatorname{Sets})$ and $\operatorname{pro}(F',$ Sets) are equivalent. For $n \geq 0$ let F(n) be the free group generated by $x_0, x_{n+1}, x_{n+2}, \ldots$ and the bonding morphism $F(n+1) \to F(n)$ is defined to be the inclusion. The pro-group F' is defined by F'(n) = F(n) and the bonding is $(F'_n)^{n+1}(a) = x_{n+1}ax_{n+1}^{-1}$. It is easy to check that $\lim F$ is the infinite cyclic group and $\lim F'$ is trivial. This implies that F is not isomorphic to F'. However, the bonding $F(n+1) \to F(n)$ is homotopic to the bonding $F'(n+1) \to F'(n)$. Therefore F is isomorphic to F' in the category tow π_0 Gpd and by Proposition 1.1 above we see that $\operatorname{pro}(F, \operatorname{Sets})$ is equivalent to $\operatorname{pro}(F', \operatorname{Sets})$.

2. Classification of covering projections. In this section, we define a notion of covering projection that for locally connected spaces agrees with the notion given in Spanier's book [S]. The main result of this section is the determination of a pro-groupoid $\pi \operatorname{crs}(X)$ such that the category of covering projections of X is equivalent to the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{\mathsf{Sets}})$ defined in Section 1.

Given sets (or spaces) A, F, G a map $\theta : A \times F \to A \times G$ such that $\operatorname{pr}_A \theta = \operatorname{pr}_A$ is of the form $\theta(a, x) = (a, \theta_a(x))$ for $a \in A$ and $x \in F$, where $\theta_a : F \to G$ is a map which depends on $a \in A$. A map $\theta : A \times F \to A \times G$ such that $\operatorname{pr}_A \theta = \operatorname{pr}_A$ is said to be A-constant if $\theta_a = \theta_{a'}$ for all $a, a' \in A$.

Let $p: E \to X$ be a continuous map and let \mathcal{U} be an open covering of X. An atlas \mathcal{A} for $p: E \to X$ on \mathcal{U} consists of a family of homeomorphisms $\varphi_U: U \times F(U) \to p^{-1}U$, where $U \in \mathcal{U}$ and F(U) is a discrete space, such that if $U, V \in \mathcal{U}$ and $\emptyset \neq W = U \cap V$, then the induced homeomorphism

$$W \times F(U) \xrightarrow{\varphi_U} p^{-1}W \xrightarrow{\varphi_V^{-1}} X \times F(V)$$

is W-constant, where φ_U, φ_V also denote the corresponding restrictions.

If $\mathcal{A} = \{\varphi_U : U \times F(U) \to p^{-1}U\}$ is an atlas on \mathcal{U} and $\mathcal{B} = \{\psi_V : V \times G(V) \to p^{-1}V\}$ is an atlas on \mathcal{V} , then \mathcal{A} is said to be *equivalent* to \mathcal{B} if there is an open covering \mathcal{W} which refines \mathcal{U} and \mathcal{V} and such that if $W \subset U \cap V$, then the induced homeomorphism

$$W \times F(U) \xrightarrow{\varphi_U} p^{-1}W \xrightarrow{\psi_V^{-1}} W \times G(V)$$

is W-constant.

DEFINITION 2.1. A covering projection $(p : E \to X, [\mathcal{A}])$ consists of a continuous map $p : E \to X$ and an equivalence class $[\mathcal{A}]$ of atlases.

REMARKS. (1) If X is a metrisable space and \mathcal{A} is an atlas on \mathcal{U} such that for any $U \in \mathcal{U}$, F(U) is a finite set with d elements, then the map $p: E \to X$ is a d-fold overlay in the sense of Fox.

(2) If X is a locally connected space and \mathcal{A} is an atlas for $p : E \to X$ on \mathcal{U} and \mathcal{B} is an atlas for $p : E \to X$ on \mathcal{V} , then we can choose an open covering \mathcal{W} which refines \mathcal{U} and \mathcal{V} and such that each $W \in \mathcal{W}$ is connected. If $W \subset U \cap V$, then the homeomorphism

$$W \times F(U) \xrightarrow{\varphi_U} p^{-1} W \xrightarrow{\psi_V^{-1}} W \times G(V)$$

sends the connected components of $W \times F(U)$ into connected components of $W \times G(V)$. Therefore $\psi_V^{-1} \varphi_U$ is W-constant, and \mathcal{A} is equivalent to \mathcal{B} . Thus if X is a locally connected space, then a covering projection consists of a continuous map such that there is an open covering \mathcal{U} of X and for each $U \in \mathcal{U}, \ p^{-1}U = \coprod_{\alpha \in F(U)} U_{\alpha}$, where F(U) is an index set, each U_{α} is an open subset of E and the restriction $p|U_{\alpha}: U_{\alpha} \to U$ is a homeomorphism.

We shall use the following notion of covering transformation:

DEFINITION 2.2. Let $\Phi = (p : E \to X, [\mathcal{A}])$ and $\Phi' = (p' : E \to X, [\mathcal{A}'])$ be two covering projections. A covering transformation $f : \Phi \to \Phi'$ is a

continuous map $f: E \to E'$ such that p'f = p and if $\mathcal{A} = \{\varphi_U \mid U \in \mathcal{U}\}$ and $\mathcal{A}' = \{\varphi_{U'} \mid U' \in \mathcal{U}'\}$ are two atlases for Φ and Φ' , respectively, then there is an open covering \mathcal{W} which refines \mathcal{U} and \mathcal{U}' and such that if $W \subset U \cap U'$, then the induced map

$$W \times F(U) \xrightarrow{\varphi_U} p^{-1}W \xrightarrow{f} p'^{-1}W \xrightarrow{\varphi_U^{-1}} W \times F'(U')$$

is W-constant. We denote by Cov proj X the category of covering projections and covering transformations of X.

REMARK. If X is a locally connected space and $p: E \to X$ and $p': E' \to X$ are covering projections, then any continuous map $f: E \to E'$ such that p'f = p is a covering transformation. Therefore, in this case the category Cov proj X is equivalent to $(\text{Etale } X)_{cp}$, where $(\text{Etale } X)_{cp}$ denotes the full subcategory of Etale X determined by covering projections.

If \mathcal{U} is an open covering X, we denote by $(\text{Cov proj } X)_{\mathcal{U}}$ the subcategory of Cov proj X whose objects are those covering projections Φ which admit an atlas on \mathcal{U} . Given covering projections Φ and Φ' with atlases $\mathcal{A} = \{\varphi_U \mid U \in \mathcal{U}\}$ and $\mathcal{A}' = \{\varphi'_U \mid U \in \mathcal{U}\}$, a morphism $f : \Phi \to \Phi'$ in $(\text{Cov proj } X)_{\mathcal{U}}$ is a covering transformation $f : \Phi \to \Phi'$ in Cov proj X such that for any $U \in \mathcal{U}$ the map

$$U \times F(U) \xrightarrow{\varphi_U} p^{-1}U \xrightarrow{f} p'^{-1}U \xrightarrow{(\varphi'_U)^{-1}} U \times F'(U)$$

is U-constant. We note that if \mathcal{U} refines \mathcal{V} , then we have a faithful functor $(\operatorname{Cov} \operatorname{proj} X)_{\mathcal{V}} \to (\operatorname{Cov} \operatorname{proj} X)_{\mathcal{U}}$. One has the following result:

PROPOSITION 2.1. Let Φ and Φ' be two covering projections and let $\mathcal{A} = \{\varphi_U \mid U \in \mathcal{U}\}$ and $\mathcal{A}' = \{\varphi_{U'} \mid U' \in \mathcal{U}'\}$ be two atlases of Φ and Φ' , respectively. Then

$$\operatorname{Hom}_{\operatorname{Cov}\operatorname{proj} X}(\Phi, \Phi') \cong \operatorname{colim}_{\mathcal{W} \ge \mathcal{U}, \, \mathcal{W} \ge \mathcal{U}'} \operatorname{Hom}_{(\operatorname{Cov}\operatorname{proj} X)_{\mathcal{W}}}(\Phi, \Phi').$$

 $\mathbf{P}\,\mathbf{r}\,\mathbf{o}\,\mathbf{o}\,\mathbf{f}.$ This follows directly from the definition of covering transformation.

In order to use locally constant sheaves to study the category Cov proj X, we recall and introduce some notions:

A family \mathcal{U} of open subsets of the space X is called a *sieve* on X if for every $U \in \mathcal{U}$ and every open subset $V \subset U$, we have $V \in \mathcal{U}$. If moreover $X = \bigcup_{U \in \mathcal{U}} U$, then \mathcal{U} is called a *covering sieve* on X. We denote by \mathcal{O} the covering sieve of all open subsets of X.

DEFINITION 2.3. Let \mathcal{U} be a family of non-empty open subsets of X such that if $U \in \mathcal{U}$ and $\emptyset \neq V \in \mathcal{O}, V \subset U$, then $V \in \mathcal{U}$. We then say that \mathcal{U} is a *reduced sieve* on X and if $X = \bigcup_{U \in \mathcal{U}} U$, then \mathcal{U} is a *covering reduced sieve* on X.

We note that if \mathcal{U} is a covering sieve on X, then $*\mathcal{U} = \mathcal{U} \setminus \{\emptyset\}$ is a covering reduced sieve on X. Every open covering \mathcal{V} of X generates a covering sieve $s\mathcal{V} = \{U \in \mathcal{O} \mid \text{there is } V \in \mathcal{V} \text{ such that } U \subset V\}$ and the corresponding covering reduced sieve $*s\mathcal{V} = \{U \in \mathcal{O} \mid U \neq \emptyset \text{ and there is } V \in \mathcal{V} \text{ such that} U \subset V\}.$

A (reduced) sieve \mathcal{U} can be considered as a small category, denoted again by \mathcal{U} , where the set of morphisms from U to V is given by $\operatorname{Hom}_{\mathcal{U}}(U,V) = 1$ if $U \subset V$, and $\operatorname{Hom}_{\mathcal{U}}(U,V) = \emptyset$ otherwise. A functor $P : \mathcal{U}^{\operatorname{op}} \to \mathsf{Sets}$ is said to be a *presheaf* on \mathcal{U} .

DEFINITION 2.4. Given a covering reduced sieve \mathcal{U} on X, a presheaf $P: \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is said to be *locally constant* if P carries any arrow $U \subset V$ in \mathcal{U} into an isomorphism $P(V) \to P(U)$. We denote by $\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}}$ the category of presheaves on \mathcal{U} and by $(\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}}$ the category of locally constant presheaves on \mathcal{U} .

Given a covering sieve \mathcal{U} , the canonical inclusion $\mathcal{U}^{\mathrm{op}} \subset \mathcal{O}^{\mathrm{op}}$ induces a restriction functor re : $\mathsf{Sets}^{\mathcal{O}^{\mathrm{op}}} \to \mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}}$. We also have an extension functor ex : $\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}} \to \mathsf{Sets}^{\mathcal{O}^{\mathrm{op}}}$ which for a given presheaf $P : \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is defined by

$$\exp P(V) = \lim_{U \in \mathcal{U}^{\mathrm{op}}} P(V \cap U).$$

It is routine to check

PROPOSITION 2.2. The functor $re : Sets^{\mathcal{O}^{op}} \to Sets^{\mathcal{U}^{op}}$ is left adjoint to $ex : Sets^{\mathcal{U}^{op}} \to Sets^{\mathcal{O}^{op}}$.

If \mathcal{U} is a covering reduced sieve and $P: \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is a presheaf, we can consider the covering sieve $\mathcal{U} = \mathcal{U} \cup \{\emptyset\}$ and the presheaf $\mathcal{P}: \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ defined by the unique extension of P such that $P(\emptyset) = 1$. Therefore we also have an extension functor $\mathrm{ex}': \mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}} \to \mathsf{Sets}^{\mathcal{O}^{\mathrm{op}}}$ defined by $\mathrm{ex}'(P) = \mathrm{ex}(\mathcal{P})$.

Let $\Lambda : \mathsf{Sets}^{\mathcal{O}^{\mathrm{op}}} \to \mathrm{Etale} X$ be the functor which carries a presheaf $P : \mathcal{O}^{\mathrm{op}} \to \mathsf{Sets}$ into the bundle ΛP of germs of P (see §1 and [M-M]). For a covering reduced sieve \mathcal{U} on X one has the composite

$$\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}} \xrightarrow{\mathrm{ex}'} \mathsf{Sets}^{\mathcal{O}^{\mathrm{op}}} \xrightarrow{\Lambda} \mathsf{Etale}\, X.$$

If $P : \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is a presheaf and $x \in X$ we have the set of germs of P at x,

$$P_x = \operatorname{colim}_{x \in U \in \mathcal{U}} P(U),$$

and the canonical map $\operatorname{germ}_x^U : P(U) \to P_x$. We note that $A \operatorname{ex}' P = (q(P) : E(P) \to X)$, where

$$E(P) = \bigsqcup_{x \in X} P_x, \qquad (q(P))^{-1}x = P_x$$

and the topology of E(P) is given by the base

$$\mathcal{B} = \{ \dot{s}U \mid s \in P(U), \ U \in \mathcal{U} \}, \quad \dot{s}U = \{ \operatorname{germ}_x^U(s) \mid x \in U \}.$$

For each $U \in \mathcal{U}$, we consider the map

$$\varphi_U: U \times P(U) \to (q(P))^{-1}U$$

defined by $\varphi_U(x,s) = \operatorname{germ}_x^U s$ for $x \in U$ and $s \in P(U)$. We note that for a fixed $s \in P(U)$, the restriction $\varphi_U(-,s) : U \times \{s\} \to \dot{s}U$ is a homeomorphism.

If P is a locally constant presheaf, then $\operatorname{germ}_x^U : P(U) \to P_x$ is an isomorphism of discrete spaces. Therefore, in this case, φ_U is a homeomorphism.

Now we check that for a locally constant presheaf $P : \mathcal{U}^{\text{op}} \to \mathsf{Sets}$, $\mathcal{A}(P) = \{\varphi_U \mid U \in \mathcal{U}\}$ is an atlas on \mathcal{U} for $q(P) : E(P) \to X$. If $U, V \in \mathcal{U}$ and $W = U \cap V$, then the map

$$W \times P(U) \xrightarrow{\varphi_U} (q(P))^{-1} W \xrightarrow{\varphi_V^{-1}} W \times P(V)$$

is W-constant, because if $x, y \in W, s \in P(U)$ and $t, t' \in P(V)$ are such that

$$\operatorname{germ}_x^U s = \operatorname{germ}_x^V t, \quad \operatorname{germ}_y^U s = \operatorname{germ}_y^V t$$

then t|W = s|W = t'|W, hence t = t' (t|W denotes the image of $t \in P(V)$ under the restriction map $P(V) \to P(W)$).

Therefore for a locally constant presheaf $P: \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$, one has the covering projection $\overline{A}P = (q(P) : E(P) \to X, [\mathcal{A}(P)])$. In order to construct a functor $\overline{A}: (\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}} \to (\operatorname{Cov}\operatorname{proj} X)_{\mathcal{U}}$ we recall that if $f: P \to P'$ is a natural transformation of presheaves defined on \mathcal{U} , then we have an induced map $\overline{A}f: E(P) \to E(P')$ defined by $\overline{A}f(\operatorname{germ}_x^U s) = \operatorname{germ}_x^U(f(U)s)$, where $f(U): P(U) \to P'(U)$ are the "components" of f.

To show $\overline{A}f$ is a morphism in $(\operatorname{Cov}\operatorname{proj} X)_{\mathcal{U}}$ we have to check that

$$U \times P(U) \xrightarrow{\varphi_U} (q(P))^{-1}U \xrightarrow{\bar{\Lambda}f} (q(P'))^{-1}U \xrightarrow{(\varphi'_U)^{-1}} U \times P'(U)$$

is U-constant. If $(x, s) \in U \times P(U)$, then $(\varphi'_U)^{-1}(\overline{A}f)\varphi_U(x, s) = (x, f(U)(s))$ and f(U)(s) does not depend on x. This implies that the above map is U-constant.

Thus we have constructed a functor $\overline{\Lambda} : (\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}} \to (\mathrm{Cov} \operatorname{proj} X)_{\mathcal{U}}$. Now we can prove that the category of covering projections and transformations which trivialise on \mathcal{U} is equivalent to the category of locally constant presheaves on \mathcal{U} .

THEOREM 2.1. Given a covering reduced sieve \mathcal{U} on a space X, the functor $\overline{\Lambda} : (\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}} \to (\operatorname{Cov} \operatorname{proj} X)_{\mathcal{U}}$ is an equivalence of categories. Proof. First, we show that \overline{A} is a faithful functor. Suppose that $f, g : P \to P'$ are natural transformations and P, P' are objects in $(\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}}$. If $\overline{A}f = \overline{A}g$, then for each $U \in \mathcal{U}$ and $s \in P(U)$, we have $\operatorname{germ}_x^U(f(U)s) = \overline{A}f(\operatorname{germ}_x^U s) = \overline{A}g(\operatorname{germ}_x^U s) = \operatorname{germ}_x^U(g(U)s)$. Since P and P' are locally constant, the maps of the form germ_x^U are isomorphisms, hence f(U)s = g(U)s for each $s \in P(U)$. Therefore f(U) = g(U) for all $U \in \mathcal{U}$. Thus \overline{A} is a faithful functor.

Now assume that $h : E(P) \to E(P')$ is a covering transformation in $(\operatorname{Cov} \operatorname{proj} X)_{\mathcal{U}}$. Then the composite

$$U \times P(U) \xrightarrow{\varphi_U} (qP)^{-1}U \xrightarrow{h} (qP')^{-1}U \xrightarrow{(\varphi'_U)^{-1}} U \times P'(U)$$

is U-constant. Let $f(U) : P(U) \to P'(U)$ be the unique map such that $\mathrm{id}_U \times f(U) = (\varphi'_U)^{-1}h\varphi_U$. It is easy to check that if $U, V \in \mathcal{U}$ and $U \subset V$ then $(P')_U^V f(V) = f(U)P_U^V$. Then $f(U) : P(U) \to P'(U), U \in \mathcal{U}$, is a natural transformation from P to P'. The map $\overline{A}f$ has the property that for each $U \in \mathcal{U}$, the corresponding restrictions are such that $(\varphi'_U)^{-1}(\overline{A})f\varphi_U = (\varphi'_U)^{-1}h\varphi_U$. This implies that for any $U, \overline{A}f|(qP)^{-1}U = h|(qP)^{-1}U$, and so that $\overline{A}f = h$. Thus we have shown that \overline{A} is a full functor.

In order to check that \overline{A} is an equivalence of categories, it suffices to prove that if $\Phi = (p : E \to X, [A])$ is a covering projection in (Cov proj $X)_{\mathcal{U}}$, then there is a locally constant presheaf $F : \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ such that $\overline{A}F \cong \Phi$.

Suppose that $\mathcal{A} = \{\psi_U : U \times F(U) \to p^{-1}U\}$ is an atlas on \mathcal{U} . If $U' \subset U$, then

$$U' \times F(U') \xrightarrow{\psi_{U'}} p^{-1}U' \xrightarrow{\psi_U^{-1}} U' \times F(U)$$

is U'-constant. Denote by $F_{U'}^U : F(U) \to F(U')$ the unique bijective map such that $\operatorname{id}_{U'} \times F_{U'}^U = \psi_{U'}^{-1}\psi_U$. It is easy to check that $F_U^U = \operatorname{id}_{F(U)}$ and if $U'' \subset U' \subset U$, then $F_{U''}^{U'}F_{U'}^U = F_{U''}^U$. Therefore F is a locally constant functor from $\mathcal{U}^{\operatorname{op}}$ to Sets. Now we can consider the map $h : \overline{A}F \to \Phi$, where $h : E(F) \to E$ is defined by $h(\operatorname{germ}_x^U s) = \psi_U(x, s)$ for $x \in U$ and $s \in F(U)$. We note that if $U' \subset U$ and $\operatorname{germ}_x^U s = \operatorname{germ}_x^{U'} s'$, then $s' = F_{U'}^U s$ and $\psi_U(x,s) = \psi_{U'}(x, F_{U'}^U s)$. Therefore h is well defined. We also see that the maps

$$U \times F(U) \xrightarrow{\varphi_U} (qF)^{-1}U \xrightarrow{h} p^{-1}U \xrightarrow{\psi_U^{-1}} U \times F(U)$$

satisfy $h\varphi_U(x,s) = h(\operatorname{germ}_x^U s) = \psi_U(x,s)$. Then $\psi_U^{-1}h\varphi_U = \operatorname{id}_U \times \operatorname{id}_{F(U)}$ is U-constant and $h|(qF)^{-1}U$ is an isomorphism. Thus $h: \overline{A}F \to \Phi$ is an isomorphism in (Cov proj $X)_U$. Therefore \overline{A} is an equivalence of categories.

Given a covering reduced sieve \mathcal{U} , if we take the class Σ of all morphisms in \mathcal{U} , we have the corresponding category of fractions $\pi \mathcal{U} = \mathcal{U}[\Sigma^{-1}]$ which is a groupoid. We note the existence of natural isomorphisms $(\pi \mathcal{U})^{\text{op}} \cong \pi(\mathcal{U}^{\text{op}})$. Therefore we use the notation $\pi \mathcal{U}^{\text{op}}$. For locally constant presheaves on \mathcal{U} , one has:

LEMMA 2.1. Given a covering reduced sieve \mathcal{U} on X, the category $(\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}}$ of locally constant presheaves on \mathcal{U} is equivalent to the functor category $\mathsf{Sets}^{\pi\mathcal{U}^{\mathrm{op}}}$.

Proof. Denote by $\gamma : \mathcal{U}^{\mathrm{op}} \to \pi \mathcal{U}^{\mathrm{op}}$ the projection functor. If $P : \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is locally constant, then P carries each arrow of $\mathcal{U}^{\mathrm{op}}$ into an isomorphism. Therefore, P factors through $\pi \mathcal{U}^{\mathrm{op}}$ as $P = \overline{P} \gamma$. Conversely, if $F : \pi \mathcal{U}^{\mathrm{op}} \to \mathsf{Sets}$ is a functor, then because $\pi \mathcal{U}^{\mathrm{op}}$ is a groupoid, F carries every arrow of $\pi \mathcal{U}^{\mathrm{op}}$ into an isomorphism. Thus $F\gamma$ is a locally constant functor.

We recall that if \mathcal{U} and \mathcal{V} are open coverings of a space X, then we say that \mathcal{U} refines $\mathcal{V}, \mathcal{U} \geq \mathcal{V}$, if for every $U \in \mathcal{U}$, there is $V \in \mathcal{V}$ such that $U \subset V$. We note that for a given U, in general it is possible to find various $V \in \mathcal{V}$ such that $U \subset V$. It would be interesting to have a canonical way of finding a V for each U. We solve this problem if we work only with covering reduced sieves. We note that if \mathcal{U} and \mathcal{V} are two covering reduced sieves then \mathcal{U} refines \mathcal{V} if and only if $\mathcal{U} \subset \mathcal{V}$. If $U \in \mathcal{U}$, then there is $V \in \mathcal{V}$ such that $U \subset V$, but this implies that $U \in \mathcal{V}$. If $\mathcal{U} \subset \mathcal{V}$, then there is an induced functor $\pi_{\mathcal{V}}^{\mathcal{U}} : \pi \mathcal{U}^{\mathrm{op}} \to \pi \mathcal{V}^{\mathrm{op}}$ that again induces a functor $\mathsf{Sets}^{\pi_{\mathcal{V}}^{\mathrm{op}}} \to \mathsf{Sets}^{\pi_{\mathcal{U}}^{\mathrm{op}}}$.

Using the equivalence of categories $\mathsf{Sets}^{\pi\mathcal{U}^{\mathrm{op}}} \xrightarrow{\gamma^*} (\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}}$ we have a new equivalence Λ' obtained as the composite $\Lambda' = \overline{\Lambda}\gamma^*$:

$$\mathsf{Sets}^{\pi\mathcal{U}^{\mathrm{op}}} \xrightarrow{\gamma^*} (\mathsf{Sets}^{\mathcal{U}^{\mathrm{op}}})_{\mathrm{lc}} \xrightarrow{\Lambda} (\operatorname{Cov} \operatorname{proj} X)_{\mathcal{U}}$$

If \mathcal{U} refines \mathcal{V} one has the following:

PROPOSITION 2.3. Let \mathcal{U} and \mathcal{V} be two covering reduced sieves on X. If $\mathcal{U} \subset \mathcal{V}$, then the functor diagram

is commutative up to natural isomorphism.

Proof. If F is an object in $\mathsf{Sets}^{\pi\mathcal{V}^{\mathrm{op}}}$, we have the presheaf $P = \gamma F$, which satisfies

$$\operatorname{colim}_{x \in V \in \mathcal{V}} P(V) \cong \operatorname{colim}_{x \in U \in \mathcal{U}} P(U).$$

This fact easily gives the existence of an isomorphism of functors in the diagram above.

Given a space X, we denote by COV(X) the set of open coverings \mathcal{U} of X directed by refinement. We denote by CRS(X) the set of covering reduce sieves of X directed by refinement or equivalently by "inclusion"; that is, if $\mathcal{U}, \mathcal{V} \in CRS(X)$ then $\mathcal{U} \geq \mathcal{V}$ if and only if $\mathcal{U} \subset \mathcal{V}$. Recall that Gpd denotes the category of groupoids. Using the directed set CRS(X) as an indexing category we can consider the pro-groupoid

$$\pi \operatorname{crs}(X) : \operatorname{CRS}(X) \to \operatorname{Gpd}$$

defined by $\pi \operatorname{crs}(X)(\mathcal{U}) = \pi \mathcal{U}^{\operatorname{op}}$. Associated with the pro-groupoid $\pi \operatorname{crs}(X)$ we have the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{\mathsf{Sets}})$ defined in §1. The main result of this section is the following:

THEOREM 2.2. The category Cov proj X of covering projections and transformations of a topological space X is equivalent to the category $\operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets})$.

Proof. For the groupoid $\pi \operatorname{crs}(X)$, consider the category ($\pi \operatorname{crs}(X)$, Sets) defined in §1. Now we are going to define a functor

$$A': (\pi \operatorname{crs}(X), \operatorname{\mathsf{Sets}}) \to \operatorname{Cov} \operatorname{proj} X.$$

Suppose that $(\pi \mathcal{U}^{\mathrm{op}}, F)$ and $(\pi \mathcal{V}^{\mathrm{op}}, G)$ are objects in $(\pi \operatorname{crs}(X), \mathsf{Sets})$ and $\alpha = (\mathcal{U} \subset \mathcal{V}, \ \theta_{\alpha} : F \to G\pi_{\mathcal{V}}^{\mathcal{U}})$ is a morphism in $(\pi \operatorname{crs}(X), \mathsf{Sets})$. The functor Λ' carries $\alpha : (\pi \mathcal{U}^{\mathrm{op}}, F) \to (\pi \mathcal{V}^{\mathrm{op}}, G)$ to $\Lambda' \alpha : \Lambda'(\pi \mathcal{U}^{\mathrm{op}}, F) \to \Lambda'(\pi \mathcal{V}^{\mathrm{op}}, G)$, where $\Lambda'(\pi \mathcal{U}^{\mathrm{op}}, F) = \overline{\Lambda}(F\gamma), \ \Lambda'(\pi \mathcal{V}^{\mathrm{op}}, G) = \overline{\Lambda}(G\gamma)$ and if $s \in F\gamma(U)$ and $x \in U \in \mathcal{U}$, then $\Lambda' \alpha(\operatorname{germ}_{x}^{U} s) = \operatorname{germ}_{x}^{U}(\theta_{\alpha} * \gamma(U)(s))$.

It is easy to check that if α is in Σ , then $A'\alpha$ is an isomorphism, hence there is an induced functor

 $\Lambda' : \operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{\mathsf{Sets}}) \to \operatorname{Cov} \operatorname{proj} X.$

We note that if $\mathcal{U}, \mathcal{V} \in \operatorname{CRS}(X)$, then $\mathcal{U} \cap \mathcal{V} = \{W \mid W \in \mathcal{U} \text{ and } W \in \mathcal{V}\} \in \operatorname{CRS}(X)$. We also see that the inclusion $\operatorname{CRS}(X) \to \operatorname{COV}(X)$ of directed sets is cofinal.

If $(\pi \mathcal{U}^{\mathrm{op}}, F)$ and $(\pi \mathcal{V}^{\mathrm{op}}, G)$ are objects in $\operatorname{pro}(\pi \operatorname{crs}(X), \mathsf{Sets})$, then

 $\operatorname{Hom}_{\operatorname{pro}(\pi\operatorname{crs}(X),\operatorname{Sets})}((\pi\mathcal{U}^{\operatorname{op}},F),(\pi\mathcal{V}^{\operatorname{op}},G))$

$$\cong \operatorname{colim}_{\mathcal{W} \in \operatorname{CRS}(X), \mathcal{W} \subset \mathcal{U} \cap \mathcal{V}} \operatorname{Hom}_{\mathsf{Sets}^{\pi \mathcal{W}^{\operatorname{op}}}}(F\pi_{\mathcal{U}}^{\mathcal{W}}, G\pi_{\mathcal{V}}^{\mathcal{W}}) \cong \operatorname{colim}_{\mathcal{W} \in \operatorname{CRS}(X), \mathcal{W} \subset \mathcal{U} \cap \mathcal{V}} \operatorname{Hom}_{(\operatorname{Cov proj} X)_{\mathcal{W}}}(\Lambda'(F\pi_{\mathcal{U}}^{\mathcal{W}}), \Lambda'(G\pi_{\mathcal{V}}^{\mathcal{W}})) \cong \operatorname{colim}_{\mathcal{W} \in \operatorname{CRS}(X), \mathcal{W} \subset \mathcal{U} \cap \mathcal{V}} \operatorname{Hom}_{(\operatorname{Cov proj} X)_{\mathcal{W}}}(\Lambda'F, \Lambda'G) \cong \operatorname{Hom}_{\operatorname{Cov proj} X}(\Lambda'F, \Lambda'G).$$

...

...

Thus we have shown that $\Lambda' : \operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{\mathsf{Sets}}) \to \operatorname{Cov} \operatorname{proj} X$ is a full faithful functor.

On the other hand, if $\Phi = (p : E \to X, [\mathcal{A}])$ is an object in Cov proj X and \mathcal{A} is an atlas on a covering reduced sieve \mathcal{U} , then by Theorem 2.1 and Lemma 2.1, there is $F : \pi \mathcal{U}^{\text{op}} \to \text{Sets}$ such that $\Lambda'(\pi \mathcal{U}^{\text{op}}, F) \cong \Phi$. Therefore $\Lambda' : \operatorname{pro}(\pi \operatorname{crs}(X), \operatorname{Sets}) \to \operatorname{Cov} \operatorname{proj} X$ is an equivalence of categories.

3. The subdivision of the Čech nerve. The Čech nerve $CX(\mathcal{U})$ of an open covering \mathcal{U} of X is defined to be the simplicial set whose q-simplexes are given by

$$CX(\mathcal{U})_q = \{ (U_0, \dots, U_q) \mid U_0, \dots, U_q \in \mathcal{U}, \ U_0 \cap \dots \cap U_q \neq \emptyset \}.$$

The face and degeneracy operators are defined in the usual way. We note that if $\mathcal{U} \geq \mathcal{V}$, then we can choose a map $\varphi : \mathcal{U} \to \mathcal{V}$ such that $U \subset \varphi U$. This induces a simplicial map $(U_0, \ldots, U_q) \to (\varphi U_0, \ldots, \varphi U_q)$, which is denoted by $C\varphi : CX(\mathcal{U}) \to CX(\mathcal{V})$, and we also have the corresponding realization $|C\varphi| : |CX(\mathcal{U})| \to |CX(\mathcal{V})|$. If we choose a different map $\psi : \mathcal{U} \to \mathcal{V}$ such that $U \subset \psi U$, we have

$$\emptyset \neq U_0 \cap \ldots \cap U_q \subset \varphi U_0 \cap \ldots \cap \varphi U_q \cap \psi U_0 \cap \ldots \cap \psi U_q$$

hence there is a simplex $(\varphi U_0, \ldots, \varphi U_q, \psi U_0, \ldots, \psi U_q)$ having as faces $(\varphi U_0, \ldots, \varphi U_q)$ and $(\psi U_0, \ldots, \psi U_q)$. Then $|C\varphi|$ is contiguous to $|C\psi|$. Therefore $|C\varphi|$ is homotopic to $|C\psi|$, and we have $C\varphi = C\psi$ in the category Ho(SS) obtained by inverting the weak equivalences of the category of simplicial sets. As a consequence of these facts, we have a functor

$$CX : COV(X) \to Ho(SS).$$

It is interesting to observe that if \mathcal{U} and \mathcal{V} are covering reduced sieves and $\mathcal{U} \geq \mathcal{V}$, then there is a canonical map $\mathcal{U} \subset \mathcal{V}$. In this case we have an induced map $CX(\mathcal{U}) \to CX(\mathcal{V})$ and then we obtain a functor

$$CX : CRS(X) \to SS$$

Let Cat denote the category of small categories and functors. There is a functor $l : \Delta \to \mathsf{Cat}$ which carries an ordered set $[p] = \{0 \le 1 \le \ldots \le p\}$ to the small category $l[p] = \{0 \leftarrow 1 \leftarrow \ldots \leftarrow p\}$. On the other hand, we consider the Yoneda embedding $y : \Delta \to \mathsf{SS}$, $[p] \to \Delta[p] = \mathsf{Hom}_{\Delta}(-, [p])$. Since Cat is a cocomplete category, we can apply [M-M, Th. I.5.2] to obtain a pair of functors $L : \mathsf{SS} \to \mathsf{Cat}$ and Ner : Cat $\to \mathsf{SS}$ such that L is left adjoint to Ner and the diagram

$$\begin{array}{c|c} \Delta \\ \downarrow & \searrow \\ Cat \leftarrow L \\ SS \end{array}$$

is commutative up to isomorphism.

Given a small category C, Ner C is called the *nerve* of C; we note that Ner $C_0 \cong C_0 \cong$ Objects of C and for q > 0,

$$(\operatorname{Ner} C)_q = \{(f_0, \dots, f_{q-1}) \mid f_i \text{ is an arrow of } C \text{ and} \\ \operatorname{domain}(f_i) = \operatorname{codomain}(f_{i+1})\}.$$

If \mathcal{C} is a category and X is an object of \mathcal{C} , we denote by $\mathcal{C} \downarrow X$ the category which has as objects those morphisms u of \mathcal{C} such that $\operatorname{codomain}(u) = X$. A morphism from $u : A \to X$ to $v : B \to X$ is a morphism $f : A \to B$ in \mathcal{C} such that vf = u. We note that a morphism $g : X \to X'$ induces a functor $\mathcal{C} \downarrow g : \mathcal{C} \downarrow X \to \mathcal{C} \downarrow X'$ defined by $\mathcal{C} \downarrow g(u) = gu$.

In particular, for the category Δ , we have the functor $\Delta \downarrow - : \Delta \to \mathsf{Cat}$, $[q] \to \Delta \downarrow [q]$, and we can consider the composite

$$\operatorname{sd} = \operatorname{Ner}(\varDelta \downarrow -) : \varDelta \to \mathsf{Cat} \to \mathsf{SS}$$

Now we can apply [M-M, Th. I.5.2] to the functors $sd : \Delta \to Cat$ and $y : \Delta \to SS$ to obtain a pair of adjoint functors $Sd : SS \to SS$, $Ex : SS \to SS$ such that the diagram

is commutative up to isomorphism. The left adjoint $Sd : SS \rightarrow SS$ is called the *subdivision functor*.

For each space X, we consider the functor $NX : CRS(X) \to SS$ defined by $NX(\mathcal{U}) = Ner(\mathcal{U}^{op})$, where \mathcal{U}^{op} is the opposite category of \mathcal{U} considered as a small category. A typical q-simplex of $NX(\mathcal{U})_q$ is of the form $U_0 \subset$ $U_1 \subset \ldots \subset U_q$ with $U_0, \ldots, U_q \in \mathcal{U}$.

Next we prove that the subdivision $\operatorname{Sd} CX$ of the Čech nerve is weakly equivalent to NX.

THEOREM 3.1. There is a natural transformation ψ from the functor Sd CX : CRS(X) \rightarrow SS to the functor NX : CRS(X) \rightarrow SS such that for each \mathcal{U} in CRS(X), $\psi(\mathcal{U})$: Sd $CX(\mathcal{U}) \rightarrow NX(\mathcal{U})$ is a weak equivalence.

Proof. Using the notation of [M-M] (see also §0), we recall that for an object \mathcal{U} of CRS(X),

$$\operatorname{Sd} CX(\mathcal{U}) = \operatorname{colim} \left(\int_{\Delta} CX(\mathcal{U}) \xrightarrow{\operatorname{pr}_1} \Delta \xrightarrow{\operatorname{sd}} SS \right).$$

Given an object $([n], (V_0, \ldots, V_n))$ in $\int_{\Delta} CX(\mathcal{U})$, we have sd pr₁ $([n], (V_0, \ldots, V_n)) = sd[n]$. An element of $(sd pr_1([n], (V_0, \ldots, V_n)))_q$ is determined by

a diagram in Δ of the form

$$\begin{array}{c|c} [p_0] < \stackrel{\alpha_0}{\longleftarrow} [p_1] < \stackrel{\alpha_1}{\longleftarrow} \dots [p_{q-1}] < \stackrel{\alpha_{q-1}}{\longleftarrow} [p_q] \\ \alpha \\ \downarrow \\ [n] \end{array}$$

and it will be denoted by $_{\alpha}(\alpha_0,\ldots,\alpha_{q-1})$.

For each $([n], (V_0, \ldots, V_n))$ we have the map

$$\psi([n], (V_0, \dots, V_n))_q : (\operatorname{sd} \operatorname{pr}_1([n], (V_0, \dots, V_n)))_q \to NX(\mathcal{U})_q$$

defined by

$$\psi([n], (V_0, \dots, V_n))_{q \alpha}(\alpha_0, \dots, \alpha_{q-1})$$

= $(V_{\alpha(0)} \cap \dots \cap V_{\alpha(p_0)} \subset V_{\alpha\alpha_0(0)} \cap \dots \cap V_{\alpha\alpha_0(p_1)} \subset \dots$
 $\subset V_{\alpha\alpha_0\dots\alpha_{q-1}(0)} \cap \dots \cap V_{\alpha\alpha_0\dots\alpha_{q-1}(p_q)})$

These maps induce a map

$$\psi(\mathcal{U}) : \operatorname{Sd} CX(\mathcal{U}) \to NX(\mathcal{U}).$$

Now we define a transformation $\varphi(\mathcal{U}) : NX(\mathcal{U}) \to \operatorname{Sd} CX(\mathcal{U})$. Given an element $U_0 \subset \ldots \subset U_q$ of $NX(\mathcal{U})_q$, $([q], (U_0, \ldots, U_q))$ is an object of $\int_{\Delta} CX(\mathcal{U})$. Consider the element $\beta(\beta_0, \ldots, \beta_{q-1})$ of $(\operatorname{sd} \operatorname{pr}_1([q], (U_0, \ldots, U_q)))_q$ determined by the diagram

$$\begin{array}{c|c} [q] \xleftarrow{\beta_0} [q-1] \xleftarrow{\beta_1} [q-2] \xleftarrow{\ldots} [1] \xleftarrow{\beta_{q-1}} [0] \\ & \beta \\ & \downarrow \\ [q] \end{array}$$

where $\beta = \operatorname{id}_{[q]}$ and $\beta_i : [q - i - 1] \to [q - i]$ is defined by $\beta_i(j) = j + 1$ for $0 \leq j \leq q - i - 1$. The element $\beta(\beta_0, \ldots, \beta_{q-1})$ represents an element $[\beta(\beta_0, \ldots, \beta_{q-1})]$ of $\operatorname{Sd} CX(\mathcal{U})_q$. We define $\varphi(\mathcal{U})_q : NX(\mathcal{U})_q \to \operatorname{Sd} CX(\mathcal{U})_q$ by

$$\varphi(\mathcal{U})_q \ (U_0 \subset \ldots \subset U_q) = [\beta(\beta_0, \ldots, \beta_{q-1})].$$

Because

$$\psi([q], (U_0, \dots, U_q))_q(\beta(\beta_0, \dots, \beta_{q-1})) = (U_0 \subset U_1 \subset \dots \subset U_q)$$

we have $\psi(\mathcal{U})\varphi(\mathcal{U}) = \mathrm{id}_{NX(\mathcal{U})}$.

To see that $\psi(\mathcal{U})$ is a weak equivalence, it is sufficient to show that $|\varphi(\mathcal{U})| |\psi(\mathcal{U})|$ is homotopic to the identity. We note the following facts:

If we consider the realization functor $|-|: SS \to Top$, we find that for every object Y in SS, |sd Y| is homeomorphic to |Y|, and if y is an n-simplex of Y and $_{\alpha}(\alpha_0, \ldots, \alpha_{q-1})$ is a q-simplex of $(\operatorname{sd} \operatorname{pr}_1([n], y))_q$ which represents a q-simplex $[_{\alpha}(\alpha_0, \ldots, \alpha_{q-1})]$ of sd Y, then $|[_{\alpha}(\alpha_0, \ldots, \alpha_{q-1})]| \subset |y|$, where $|[_{\alpha}(\alpha_0, \ldots, \alpha_{q-1})]|$ and |y| denote the realizations of the corresponding simplexes.

For $Y = CX(\mathcal{U})$, if $[\alpha(\alpha_0, \ldots, \alpha_{q-1})]$ is a *q*-simplex of Sd $CX(\mathcal{U})$ represented by the *q*-simplex $\alpha(\alpha_0, \ldots, \alpha_{q-1})$ of sd $\mathrm{pr}_1([n], (V_0, \ldots, V_n))$, then we have

$$\psi(\mathcal{U})[\alpha(\alpha_0,\ldots,\alpha_{q-1})] = (U_0 \subset \ldots \subset U_q), \varphi(\mathcal{U})(U_0 \subset \ldots \subset U_q) = [\beta(\beta_0,\ldots,\beta_{q-1})].$$

Consider the (n+q+2)-simplex $(V_0, \ldots, V_n, U_0, \ldots, U_q)$ of $CX(\mathcal{U})$. The realizations $|[_{\alpha}(\alpha_0, \ldots, \alpha_{q-1})]|$ and $|[_{\beta}(\beta_0, \ldots, \beta_{q-1})]|$ are contained in $|(V_0, \ldots, V_n, U_0, \ldots, U_q)|$. This implies that $|\varphi(\mathcal{U})| |\psi(\mathcal{U})|$ is contiguous to $\mathrm{id}_{|\mathrm{Sd} CX(\mathcal{U})|}$ with respect to the simplicial decomposition given by $|CX(\mathcal{U})|$ (recall that $|CX(\mathcal{U})|$ is homeomorphic to $|\mathrm{Sd} CX(\mathcal{U})|$). Therefore $|\varphi(\mathcal{U})| |\psi(\mathcal{U})|$ is homotopic to $\mathrm{id}_{|\mathrm{Sd} CX(\mathcal{U})|}$.

Finally, we note that if $\mathcal{U}, \mathcal{V} \in CRS(X)$ and $\mathcal{U} \subset \mathcal{V}$, then the diagram

is commutative. Therefore $\psi : \operatorname{Sd} CX \to NX$ is a natural transformation.

LEMMA 3.1. Let C be a small category. Then the fundamental groupoid $\pi \operatorname{Ner} C$ is isomorphic to the category of fractions $C[\Sigma^{-1}]$, where Σ is the set of all morphisms of C.

Proof. The arrow of $\pi \operatorname{Ner} \mathcal{C}$ represented by an arrow $A_0 \leftarrow A_1$ in \mathcal{C} is carried by the equivalence functor to the arrow of $\mathcal{C}[\Sigma^{-1}]$ induced by $A_0 \leftarrow A_1$. For details we refer the reader to [Go].

REMARK. For a given covering reduced sieve \mathcal{U} , the groupoid $\pi N \mathcal{U}^{\text{op}}$ is isomorphic to the category of fractions $\pi \mathcal{U}^{\text{op}}$.

COROLLARY 3.1. Given a space X, the category Cov proj X of covering projections of X is equivalent to the category $pro(\pi CX, Sets)$.

Proof. For each $\mathcal{U} \in CRS(X)$,

$$\psi(\mathcal{U}): \mathrm{Sd}\, CX(\mathcal{U}) \to NX(\mathcal{U})$$

is a weak equivalence. Since $|CX(\mathcal{U})|$ is homeomorphic to $|\mathrm{Sd}\,CX(\mathcal{U})|$, we

also have the weak equivalences

$$CX(\mathcal{U}) \to \operatorname{Sing} |CX(\mathcal{U})| \to \operatorname{Sing} |\operatorname{Sd} CX(\mathcal{U})| \leftarrow \operatorname{Sd} CX(\mathcal{U})$$

Therefore, one has the zig-zag weak equivalences of pro-groupoids

$$\pi CX(\mathcal{U}) \to \pi \operatorname{Sing} |CX(\mathcal{U})| \to \pi \operatorname{Sing} |\operatorname{Sd} CX(\mathcal{U})| \leftarrow \pi \operatorname{Sd} CX(\mathcal{U})$$

Now, by Lemma 2.1, we conclude that $pro(\pi NX, Sets)$ is equivalent to $pro(\pi CX, Sets)$.

4. Covering projections for locally path-connected and semilocally 1-connected spaces. In this section we prove that under "good" local conditions of connectedness the pro-groupoid $\pi \operatorname{crs}(X)$ is equivalent to the standard fundamental groupoid πX . In this way we obtain the well known equivalence of the category of covering projections of a "good" space and the functor category $\operatorname{Sets}^{\pi X}$ (see [God]).

Given a space X, we denote by πX the fundamental groupoid of X. The groupoid πX has as objects the points of X and for $x_0, x_1 \in X$ an arrow from x_0 to x_1 is represented by a path from x_0 to x_1 (up to relative homotopy). If α is an arrow from x_0 to x_1 and β is an arrow from x_1 to x_2 the composite will be denoted by $\beta \alpha$. Let S be a subspace of X; then the inclusion $S \subset X$ induces a canonical groupoid homomorphism $\pi S \to \pi X$. We say that $\pi S \to \pi X$ is *trivial* if any arrow α of πS such that domain(α) = codomain(α) = $s \in S$ is carried to the identity arrow by the functor $\pi S \to \pi X$.

We will consider open coverings \mathcal{U} of X such that

(1) if U ∈ U, then U ≠ Ø, U is path-connected and πU → πX is trivial,
(2) if V is a non-empty open subset of X such that V is path-connected,
πV → πX is trivial and there is U ∈ U such that V ⊂ U, then V ∈ U.

An open covering \mathcal{U} of X which satisfies conditions (1) and (2) is said to be a *trivial covering* of X. We denote by TCOV(X) the family of all trivial coverings of X directed by refinement. We note that if $\mathcal{U}, \mathcal{V} \in \text{TCOV}(X)$, then $\mathcal{U} \geq \mathcal{V}$ if and only if $\mathcal{U} \subset \mathcal{V}$.

LEMMA 4.1. Let X be a locally path-connected and semilocally 1-connected space. Then the map $*s : \text{TCOV}(X) \to \text{CRS}(X)$ defined by $*s\mathcal{U} = \{V \mid V \neq \emptyset, V \text{ is open, } \exists U \in \mathcal{U} \text{ such that } V \subset U\}$ is cofinal.

Proof. Let \mathcal{V} be a covering reduced sieve on X. For each $V \in \mathcal{V}$ and $x \in V$ there is an open subset U(V, x) such that $x \in U(V, x) \subset V$, U(V, x) is path-connected and $\pi U(V, x) \to \pi X$ is trivial. Let $\mathcal{U} = \{U \in \mathcal{O}(X) \mid U \neq \emptyset, \exists U(V, x) \text{ such that } U \subset U(V, x), U \text{ is path-connected and } \pi U \to \pi X \text{ is trivial}\}$. Since X is locally connected and semilocally 1-connected, it follows that $\mathcal{U} \in \text{TCOV}(X)$, and from the definition of \mathcal{U} we have ${}^*s\mathcal{U} \subset \mathcal{V}$.

COROLLARY 4.1. Let X be a locally path-connected and semilocally 1connected space. Then the category Cov proj X is equivalent to the category

$$\operatorname{pro}(\{\pi(*s\mathcal{U}^{\operatorname{op}}) \mid \mathcal{U} \in \operatorname{TCOV}(X)\}, \mathsf{Sets}).$$

Proof. By Lemma 4.1, $\pi \operatorname{crs}(X) = \{\pi \mathcal{U}^{\operatorname{op}} \mid U \in \operatorname{CRS}(X)\}$ is isomorphic to $\{\pi(*s\mathcal{U}^{\operatorname{op}}) \mid U \in \operatorname{TCOV}(X)\}$ in pro Gpd. By Lemma 1.1, $\operatorname{pro}(\pi \operatorname{crs}(X),$ Sets) is equivalent to $\operatorname{pro}(\{\pi(*s\mathcal{U}^{\operatorname{op}}) \mid U \in \operatorname{TCOV}(X)\}, \operatorname{Sets})$. Now from Theorem 2.2, it follows that Cov proj X is equivalent to $\operatorname{pro}(\{\pi(*s\mathcal{U}^{\operatorname{op}}) \mid U \in \operatorname{TCOV}(X)\})$.

If a space X satisfies the usual connectedness conditions of this section, we can consider the following "maximal" open covering in TCOV(X):

 $\mathcal{U}_0 = \{ U \in \mathcal{O}(X) \mid U \neq \emptyset, U \text{ is path-connected and } \pi U \to \pi X \text{ is trivial} \}.$

Now we can take a map $\eta : {}^{*s}\mathcal{U}_{0} \to X$ such that $\eta(U) = x_{U} \in U \in {}^{*s}\mathcal{U}_{0}$. If $U, V \in \mathcal{U}_{0}$ and $U \subset V$, we can take in V a path α from x_{V} to x_{U} . We note that a different path α' determines the same arrow in πX . It is routine to check that this construction gives an equivalence $\eta : \pi({}^{*s}\mathcal{U}_{0}^{\mathrm{op}}) \to \pi X$. If $\mathcal{U} \in \mathrm{TCOV}(X)$, the inclusion $\mathcal{U} \subset \mathcal{U}_{0}$ induces the composite $\pi({}^{*s}\mathcal{U}_{0}^{\mathrm{op}}) \to \pi({}^{*s}\mathcal{U}_{0}^{\mathrm{op}}) \to \pi X$, which is also an equivalence of groupoids. Since the progroupoid $\{\pi({}^{*s}\mathcal{U}^{\mathrm{op}}) \mid \mathcal{U} \in \mathrm{TCOV}(X)\}$ and the constant pro-groupoid πX satisfy the conditions of Lemma 1.2, we deduce that $\mathrm{pro}(\{\pi({}^{*s}\mathcal{U}^{\mathrm{op}}) \mid \mathcal{U} \in \mathrm{TCOV}(X)\}$, Sets) is equivalent to $\mathrm{pro}(\pi X, \mathrm{Sets})$. Therefore one has:

THEOREM 4.1. Let X be a locally path-connected and semilocally 1-connected space. Then the category of covering projections of X is equivalent to $\mathsf{Sets}^{\pi X}$, the category of functors from πX to Sets .

5. Covering projections of compact metrisable spaces. The objective of this section is to reduce the pro-groupoid G of the category pro(G, Sets) to a pro-group, a tower of groups or even a pro-discrete topological group. For this purpose, we use compact metrisable spaces in order to obtain tower of groupoids, connectedness conditions to have a tower of groups, and finally pointed movability conditions to have a surjective tower of groups or a topological group.

In order to reduce a pro-groupoid to a tower of groupoids, we suppose that X is a compact metrisable space. Using the Lebesgue Lemma, we can construct a sequence

$$\ldots \geq \mathcal{V}_{n+1} \geq \mathcal{V}_n \geq \ldots \geq \mathcal{V}_0$$

of open coverings which is cofinal in COV(X). This implies that

$$\ldots \subseteq {}^*s\mathcal{V}_{n+1} \subseteq {}^*s\mathcal{V}_n \subseteq \ldots \subseteq {}^*s\mathcal{V}_0$$

is cofinal in CRS(X). Therefore:

(1) πCX is isomorphic to $\{\pi CX(*s\mathcal{V}_n)\}$ in pro Gpd,

(2) $\{\pi CX(*s\mathcal{V}_n)\}$ is isomorphic to $\{\pi CX(\mathcal{V}_n)\}$ in tow π_0 Gpd.

From Lemma 1.1, Proposition 1.1 and Corollary 3.1, we obtain the following:

THEOREM 5.1. Let X be a compact metrisable space and suppose that $\ldots \geq \mathcal{V}_{n+1} \geq \mathcal{V}_n \geq \ldots \geq \mathcal{V}_0$ is a cofinal sequence in COV(X). Then the category Cov proj X is equivalent to $\text{pro}(\{\pi CX(\mathcal{V}_n)\}, \text{Sets}).$

If X is a connected compact metrisable space and \mathcal{U} is an open covering, then $|CX(\mathcal{U})|$ is 0-connected. We can check this fact as follows: For $x, y \in X$, a \mathcal{U} -path from x to y is a finite family U_0, \ldots, U_m such that $x \in U_0, y \in U_m$ and $U_0 \cap U_1 \neq \emptyset, \ldots, U_{m-1} \cap U_m \neq \emptyset$. If $U, U' \in \mathcal{U}$, a \mathcal{U} -path from U to U' is a finite family U_0, \ldots, U_m such that $U = U_0, U' = U_m$ and $U_0 \cap U_1 \neq \emptyset, \ldots, U_{m-1} \cap U_m \neq \emptyset$. For $x_0 \in X$ it is easy to check that $C_0 = \{x \mid \text{there is a } \mathcal{U}\text{-path from } x_0 \text{ to } x\}$ is open and closed in X, and since X is connected it follows that $C_0 = X$. Now for a given $U_0 \in \mathcal{U}$ if U is also in \mathcal{U} we can choose $x_0 \in U_0$ and $x \in U$. Because $C_0 = X$ there is a \mathcal{U} -path V_0, \ldots, V_m from x_0 to x. Therefore U_0, V_0, \ldots, V_m, U is a \mathcal{U} -path from U_0 to U. This implies that the groupoid $\pi CX(\mathcal{U})$ is connected. For a connected groupoid π and an object U in π let π_1 be the group of endomorphisms of U. Then if π_1 is considered as a groupoid with one object, the inclusion $\pi_1 \to \pi$ is an equivalence of groupoids or equivalently an isomorphism in π_0 Gpd.

Suppose that X is a connected compact metrisable space and we have a given point $x \in X$. Then there exists a sequence $\ldots \geq \mathcal{V}_{n+1} \geq \mathcal{V}_n \geq \ldots$ of open coverings; we can also assume that there are open subsets $V_n \in \mathcal{V}_n$ such that $x \in V_n \subset V_{n+1}$. Denote by $\pi_1 CX(\mathcal{V}_i, V_i)$ the fundamental group of the groupoid $\pi CX(\mathcal{V}_i)$ based at the object V_i . In this way, the sequence of pointed open coverings induced by the pointed space (X, x) determines a tower $\{\pi_1 CX(\mathcal{V}_i, V_i)\}$ of groups that will be denoted by $\pi_1 C(X, x)$. Then $\pi_1 C(X, x)$ is isomorphic to $\{\pi CX(\mathcal{V}_i)\}$ in tow π_0 Gpd. From Proposition 1.1 and Theorem 5.1, we have:

THEOREM 5.2. Let (X, x) be a pointed connected compact metrisable space. Then Cov proj X is equivalent to $\operatorname{pro}(\pi_1 C(X, x), \operatorname{Sets})$.

The category G-Sets for G a group (see §0) can be generalised for a pro-group G as follows: Objects are morphisms $\eta: G \to \operatorname{Aut}(F)$ in pro Gps, where F is a set and $\operatorname{Aut}(F)$ is the group of automorphisms, which can be considered as a pro-group. A morphism $f: \eta \to \eta'$ is given by a map $\widehat{f}: F \to F'$ and a morphism $\eta_f: G \to \operatorname{Aut}(\widehat{f})$ such that the diagram

is commutative.

Recall that in §1 for a pro-group G we have constructed the category pro (G, Sets) as a category of right fractions $(G, \mathsf{Sets})\Sigma^{-1}$. An object (G(i), F) in (G, Sets) is determined by a homomorphism $F : G(i) \to$ $\operatorname{Aut}(F(*))$, where F(*) is the set obtained by the functor $F : G(i) \to \mathsf{Sets}$ when it is applied to the unique object * of the category G(i) (we denote by F both the functor and the homomorphism). It is clear that F represents a unique morphism $\eta_F : G \to \operatorname{Aut}(F(*))$, which is an object in G-Sets. On the other hand, a morphism $\alpha = (i \to j, \ \theta_\alpha : F \to HG_j^i)$ from (G(i), F)to (G(j), H) induces a map $(\theta_\alpha)_* : F(*) \to H(*)$ and a homomorphism $(F, HG_j^i) : G(i) \to \operatorname{Aut}((\theta_\alpha)_*)$ which represents a morphism $\eta_\alpha : \eta_F \to \eta_H$. This functor factorizes to $\operatorname{pro}(G, \mathsf{Sets})$ and one can check the following result:

PROPOSITION 5.1. For a given pro-group G the category pro(G, Sets) is equivalent to the category G-Sets.

As a consequence of this description and Theorem 5.2, for a finite set $\{1, \ldots, d\}$ one has the following version of the fundamental theorem of overlay theory proved by Fox [F1, F2].

COROLLARY 5.1. Let X be a connected compact metrisable space X and let x be a point of X. Then the d-fold covering projections X are in bi-unique correspondence with the representations up to conjugation of the fundamental pro-group $\pi_1 C(X, x)$ in the symmetric group Σ_d of degree d.

Proof. Two d-fold covering projections p, p' are isomorphic in the category Cov proj X if and only if the corresponding objects $\eta, \eta' : \pi_1 C(X, x) \to \Sigma_d$ are isomorphic in the category $\pi_1 C(X, x)$ -Sets. If $f : \eta \to \eta'$ is an isomorphism given by $\hat{f} \in \Sigma_d$ and $\eta_f : \pi_1 C(X, x) \to \operatorname{Aut}(\hat{f})$, then for some pointed open covering (\mathcal{V}_i, V_i) and each element $g \in \pi_1 CX(\mathcal{V}_i, V_i)$, we have $\eta_f(g) = (\eta(g), \eta'(g))$; that is, the following diagram commutes, where $F = \{1, \ldots, d\}$:

This implies that the representations η and η' are conjugate. Conversely, if η and η' are conjugate, then they are isomorphic in the category G-Sets.

REMARK. Notice that in this corollary we have considered connected compact metrisable spaces instead of connected separable metrisable spaces of Fox's overlay theorem (see [F1]). The notion of fundamental pro-group in the corollary corresponds to the one of the fundamental tropes of the space considered by Fox. It is not hard to give a version of our main Theorem 2.2 for a connected space with a base point. In this case the pro-groupoid reduces to a pro-group and a version of Fox's theorem can be obtained for covering projections over a pointed connected space with a fibre F. That is, we can avoid the separable metrisable condition and we can consider infinite fibres.

For an object G in tow Gps , $\lim G$ can be provided with the inverse limit topology and we have the category of continuous $\lim G$ -sets defined in §0. The canonical map θ : $\lim G \to G$ induces a functor $\theta^* : G$ -Sets $\to \lim G$ -Sets as follows:

If $f: \eta \to \eta'$ is a morphism in G-Sets represented by a map $\widehat{f}: F \to F'$ and a commutative diagram

we consider $\theta^*(f) = f\theta : \eta\theta \to \eta'\theta$ represented by the diagram

If the bonding maps, $G(i+1) \to G(i)$, are surjective, the map θ : $\lim G \to G$ is an epimorphism in tow Gps. Then if $\theta^*(f) = \theta^*(g)$, we have $\eta_f \theta = \eta_g \theta$. Therefore $\eta_f = \eta_g$ and this implies that f = g.

On the other hand, if $\eta : \lim G \to \operatorname{Aut}(\widehat{f})$ is a continuous homomorphism, since $\operatorname{Aut}(\widehat{f})$ has the discrete topology, $\eta^{-1}\{1\}$ is an open neighbourhood of 1, and so there is $\theta(i)$: $\lim G \to G(i)$ such that $\operatorname{Ker} \theta(i) \subset \eta^{-1}\{1\}$. Hence η factors as

And $\overline{\eta}_f$ defines a morphism $(\overline{\eta}_f, \widehat{f}) : \eta \to \eta'$ such that $\theta^*(\overline{\eta}_f, \widehat{f}) = (\eta, \widehat{f})$. Therefore one has:

PROPOSITION 5.2. Let G be an object in tow Gps such that the bonding morphisms of G are surjective maps. Then the category G-Sets is equivalent to the category $\lim G$ -Sets, where $\lim G$ is provided with the inverse limit topology.

REMARK. The proof given above only works for surjective towers of groups. For a more general surjective pro-group G, $\lim G$ can be trivial (see [M]). In this case, Moerdijk notes that a similar result is obtained by taking the inverse limit in the category of localic groups.

In order to obtain pro-groups it is convenient to work with pointed spaces and if we want to have surjective pro-groups, it will be useful to recall some notion of pointed movability. A *pointed open covering* is a pair (\mathcal{U}, U_0) where $U_0 \in \mathcal{U}$; (\mathcal{V}, V_0) refines (\mathcal{U}, U_0) if $\mathcal{V} \geq \mathcal{U}$ and $V_0 \subset U_0$.

DEFINITION 5.2. A pointed space (X, x) is said to be 1-movable if for every pointed open covering (\mathcal{U}, U_0) there is a finer pointed open covering $(\mathcal{V}, V_0) \geq (\mathcal{U}, U_0)$ such that for any pointed open covering $(\mathcal{W}, W_0) \geq$ (\mathcal{U}, U_0) , and for any pointed map $h : (P, *) \rightarrow (|CX(\mathcal{V})|, *)$, where P is a CW-complex with dim $P \leq 1$, there exists a pointed map $r : (P, *) \rightarrow$ $(|CX(\mathcal{W})|, *)$ such that $|CX|_{\mathcal{U}}^{\mathcal{W}}r$ is homotopic to $|CX|_{\mathcal{U}}^{\mathcal{V}}h$ relative to the base point.

Now we refer the reader to Theorem 2 of [M-S, Ch. II, §8.1] to deduce that if (X, x) is 1-movable, then the pro-group $\pi_1 C(X, x)$ satisfies the Mittag-Leffler condition, and by Theorem 7 of [M-S, Ch. II, §6.2], $\pi_1 C(X, x)$ is isomorphic to a pro-group G whose bonding maps are surjective. Moreover, if $\pi_1 C(X, x)$ is isomorphic to a tower, then we can suppose that G is a tower.

THEOREM 5.3. Let X be a connected compact metrisable space and let x be a point of X. Suppose that (X, x) is 1-movable and denote by $\check{\pi}_1(X, x)$ the Čech fundamental group of (X, x), $\check{\pi}_1(X, x) = \lim \pi_1 C(X, x)$, provided with the inverse limit topology. Then the category of covering projections of X is equivalent to the category of continuous $\check{\pi}_1(X, x)$ -sets.

Proof. This follows from Theorem 5.2 and Propositions 5.1 and 5.2.

REMARKS. (1) Let X be a pointed connected, compact and metrisable space and let $\pi_1 CX$ denote its fundamental pro-group. For a set F, the Brown \mathcal{P} functor (see [H]) carries a morphism $\eta : \pi_1 CX \to \operatorname{Aut} F$ to a morphism of the form $\mathcal{P}\eta : \mathcal{P}\pi_1 CX \to \mathcal{P}\operatorname{Aut} F$ and then we have the composite $\mathcal{P}\pi_1 CX \to \mathcal{P}\operatorname{Aut} F \to \operatorname{Aut} \mathcal{P}F$. Since $\mathcal{P}\pi_1 CX$ is isomorphic to the Quigley inward group ${}^I\pi_1^Q(X)$, the category of covering projections of X with fibre F is also equivalent to a category of "distinguished" representations of the Quigley inward group ${}^I\pi_1^Q(X)$ with "fibre" $\mathcal{P}F$. In [H], we have constructed a space $\overline{\mathcal{P}}^R CX$ whose fundamental group is isomorphic to the Quigley inward group ${}^I\pi_1^Q(X)$. Thus the category of covering projections of X with fibre F is equivalent to a category of "distinguished" covering projections of $\overline{\mathcal{P}}^R CX$ with fibre $\mathcal{P}F$.

(2) If the pointed space X of remark (1) is also 2-movable (see [M-S]) then the fundamental group of the homotopy limit $\lim^{R} CX$ is isomorphic to the Čech fundamental group of X. Therefore the category of covering projections of X is equivalent to a category of "distinguished" covering projections of $\lim^{R} CX$.

(3) Some additional results about classification of principal G-bundles of a space X can be obtained in terms of morphisms of the form $\pi CX \to G$, or $\lim \pi CX \to G$, even in the case where G is a pro-discrete group. This is also connected with the first cohomology set of a pro-groupoid or a topological group with coefficients in a discrete or pro-discrete group.

Acknowledgments. I am grateful to Prof. T. Porter for his suggestions on Galois categories. I would like to thank Prof. I. Moerdijk for his useful comments on the Artin–Mazur fundamental group and the covering projections of a locally connected space. Finally, I want to acknowledge the referee's remarks on pointed movability that have improved the last section of the paper. Also, I acknowledge the financial help obtained from the project DGICYT PB93–0581–C02–01.

References

- [A-M] M. Artin and B. Mazur, *Etale Homotopy*, Lecture Notes in Math. 100, Springer, Berlin, 1967.
- [E-H] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Math. 542, Springer, 1970.
- [F1] R. H. Fox, On shape, Fund. Math. 74 (1972), 47–71.
- [F2] —, Shape theory and covering spaces, in: Lecture Notes in Math. 375, Springer, 1974, 71–90.
- [G-Z] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer, Heidelberg, 1967.

- [God] C. Godbillon, Éléments de Topologie Algébrique, Hermann, Paris, 1971.
- [Go] M. Golasiński, Homotopies of small categories, Fund. Math. 114 (1981), 209– 217.
- [Gro] A. Grothendieck, Revêtements Etales et Groupe Fondamental (SGA 1), Lecture Notes in Math. 222, Springer, Berlin, 1971.
- [H] L. J. Hernández, Applications of simplicial M-sets to proper and strong shape theories, Trans. Amer. Math. Soc. 347 (1995), 363-409.
- [J] P. T. Johnstone, *Topos Theory*, Academic Press, New York, 1977.
- [M-M] S. MacLane and I. Moerdijk, Sheaves in Geometry and Logic, Springer, 1992.
- [M-S] S. Mardešić and J. Segal, Shape Theory. The Inverse Systems Approach, North-Holland, 1982.
 - [M] I. Moerdijk, Prodiscrete groups and Galois toposes, Proc. Konink. Nederl. Akad. Wetensch. Ser. A 92 (1988), 219–234.
 - [P] T. Porter, Abstract homotopy theory in procategories, Cahiers Topologie Géom. Différentielle 17 (1976), 113–124.
 - [S] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Departamento de Matemáticas Universidad de Zaragoza 50009 Zaragoza, Spain E-mail: ljhernan@posta.unizar.es

> Received 30 May 1995; in revised form 14 May 1997