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Fundamental pro-groupoids and covering projections

by

Luis Javier H e r n á n d e z - P a r i c i o (Zaragoza)

Abstract. We introduce a new notion of covering projection E → X of a topological
spaceX which reduces to the usual notion ifX is locally connected. We use locally constant
presheaves and covering reduced sieves to find a pro-groupoid π crs(X) and an induced
category pro(π crs(X), Sets) such that for any topological space X the category of covering
projections and transformations of X is equivalent to the category pro(π crs(X), Sets). We
also prove that the latter category is equivalent to pro(πCX, Sets), where πCX is the
Čech fundamental pro-groupoid of X. If X is locally path-connected and semilocally 1-
connected, we show that π crs(X) is weakly equivalent to πX, the standard fundamental
groupoid of X, and in this case pro(π crs(X), Sets) is equivalent to the functor category
SetsπX . If (X, ∗) is a pointed connected compact metrisable space and if (X, ∗) is 1-
movable, then the category of covering projections of X is equivalent to the category of
continuous π̌1(X, ∗)-sets, where π̌1(X, ∗) is the Čech fundamental group provided with
the inverse limit topology.

Introduction. It is well known that if X is a locally path-connected
and semilocally 1-connected space then the category Cov projX of covering
projections and transformations of X is equivalent to the category of πX-
sets, that is, to the functor category SetsπX . The aim of this work is to
study the category Cov projX for any space X, without local conditions of
connectedness.

In 1972–73, Fox [F1, F2] introduced the notion of overlay of a metris-
able space. The fundamental theorem of Fox’s overlay theory establishes the
existence of a bi-unique correspondence between the d-fold overlayings of a
connected metrisable space X and the representations of the fundamental
trope of X in the symmetric group Σd of degree d.
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On the other hand, for a locally connected distributive category C, using
the filtered small category of hypercoverings, Artin and Mazur [A-M] con-
structed a pro-simplicial set ΠC. In particular, for the category C induced by
a locally connected space, this pro-simplicial set is the Čech pro-simplicial
set defined by the Čech nerve of all open coverings U of the space X. As a
consequence of this construction they classify the covering projections of X
which are trivial over an open covering U . The construction given by Artin
and Mazur cannot be applied to non-locally connected spaces.

The objective of this paper is to solve the classification problem of “cov-
ering projections” for a general space. We want to remove the condition of
local connectedness considered by Artin and Mazur and the conditions of
metrisable space and finite fibre of the d-fold overlayings analysed by Fox.
Of course we want to have a classification up to isomorphism of covering
projections but we also want to have a classification of morphisms between
“covering projections”.

For this aim, we consider a new notion of covering projection E → X us-
ing atlases and an equivalence relation between atlases. If X is a connected
metrisable space and all the fibres of E → X have a finite cardinal d, we
have Fox’s d-fold overlay and if X is a locally connected space we have the
usual notion of covering projection given, for instance, in Spanier’s book [S]
and analysed by Artin and Mazur. To generalise the Fox fundamental trope
or the Artin–Mazur fundamental pro-group of a space we consider a fun-
damental pro-groupoid π crs(X) and a category pro(π crs(X), Sets) which
is equivalent to the category of covering projections of the space X. This
kind of category is also related to the notion of Galois category character-
ized by Grothendieck [Gro] and to the notion of Galois topos considered by
Moerdijk [M].

If G is a pro-finite group, we can consider the category G-FinSets of
continuous finite G-sets. A category C equivalent to G-FinSets is said to
be a Galois category. Grothendieck [Gro] gave an axiomatic description of
these categories and proved that the pro-finite group G is unique up to
isomorphism. The fundamental group of a pointed connected Grothendieck
topos E can be defined as the group determined by the Galois category Elcf

of locally constant finite objects in E . For instance, if X is a connected CW -
complex, then the category of finite covering projections of X is equivalent
to the category of continuous finite π̂1X-sets, where π̂1X is the pro-finite
completion of π1X.

We also note that Moerdijk [M] gave a characterization of the toposes
of the form BG for G a pro-discrete localic group. He also proved that the
category of surjective pro-groups is equivalent to the category of pro-discrete
localic groups. For a connected locally connected space this equivalence of
categories carries the Artin–Mazur fundamental surjective pro-group to the
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fundamental localic group considered by Moerdijk. This implies that the
category of covering projections of a connected locally connected space is
determined either by the Artin–Mazur fundamental pro-group or by the
corresponding localic group. Nevertheless, this construction does not char-
acterise the category of covering projections of a non-locally connected space
X. In this case the fundamental pro-group(oid) π crs(X) that we consider
need not be a surjective pro-group(oid). At present, we do not know if for
every pro-group G the category pro(G, Sets) is a Galois topos in the sense of
the definition given in [M]. One interesting property of a Galois topos is that
the pro-discrete localic group is determined up to isomorphism. However,
the category of the form pro(G, Sets) does not determine the pro-groupoid
G up to isomorphism. In §1, we give an example of two non-isomorphic
pro-groups G and G′ such that pro(G, Sets) is equivalent to pro(G′, Sets).
We do not know if the existence of an equivalence of categories implies that
G and G′ are weakly equivalent in some sense.

We also analyse the category of covering projections of a compact metris-
able space X. In this case, the fundamental pro-groupoid is isomorphic to
a tower of groupoids. If we assume that X is connected, then the tower of
groupoids reduces to a tower of groups G and if for a given point x ∈ X,
(X,x) is 1-movable, then the category pro(G, Sets) is equivalent to the cate-
gory of continuous limG-sets, where limG is provided with the inverse limit
topology. We note that the condition of pointed 1-movability implies that
the Čech fundamental pro-group is isomorphic to a tower G = {G(n)} of
groups with surjective bonding homomorphisms. Since we are working with
a tower we see that limG is not trivial and the maps limG→ G(n) are sur-
jections. For the more general case of surjective pro-groups, Moerdijk [M]
has noted that limG can be trivial; he has solved this pathology by con-
sidering the inverse limit in the category of localic groups. I suppose that
for some notion of “surjective pro-groupoid” G the category pro(G, Sets)
will be equivalent to a category of LG-sets, where LG will be an associated
pro-discrete localic groupoid.

This paper illustrates some nice relationships between the étale homo-
topy developed by Artin and Mazur [A-M], the theory of classifying toposes
of localic groupoids of Moerdijk [M] and the methods used by Fox [F1, F2],
by Edwards and Hastings [E-H] and by Porter [P] in shape theory and strong
shape theory.

We finish this introduction by giving a summary of the main results of the
paper. In §1, for a pro-groupoid G we define the category pro(G,Sets) and we
show that a map f : G→ G′ in pro Gpd induces an equivalence of categories
f∗ : pro(G′, Sets)→ pro(G, Sets) if f is an isomorphism in pro Gps, or if f is
a (level) weak equivalence, or if G, G′ are towers and f is an isomorphism
in the category tow π0Gpd. The main results of §2 are the right definition
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of covering projection, the determination of the pro-groupoid π crs(X), and
Theorem 2.2, which shows that for any space X the category of covering
projections of X is equivalent to the category pro(π crs(X), Sets). In §3,
we establish a connection with the Artin–Mazur fundamental pro-groupoid
which is isomorphic to the Čech fundamental pro-groupoid, and we find a
weak equivalence π SdCX → π crs(X) from the fundamental pro-groupoid
of the subdivision of the Čech pro-simplicial set to the pro-groupoid π crs(X)
of reduced covering sieves of X. Therefore the category pro(π crs(X), Sets)
is equivalent to pro(πCX, Sets). In §4, we give an easy proof of the standard
classification of covering projections of a locally connected and semilocally
1-connected space. Finally, in §5, we show that under some shape conditions,
we can obtain surjective towers of groups and in this case the category of
covering projections reduces to a category of continuous π̌1(X, ∗)-sets, where
π̌1(X, ∗) is the Čech fundamental topological group. We also prove as a
corollary a version of the fundamental theorem of Fox’s overlay theory.

0. Preliminaries. In this section, we introduce some notation and ter-
minology which is frequently used in this paper.

Let C be a small category and Cop its opposite. As usual, we denote
by SetsC

op

the category whose objects are all functors P : Cop → Sets and
morphisms P → P ′ are all the natural transformations θ : P → P ′ between
such functors. A functor P : Cop → Sets is also called a presheaf on C. A
presheaf P on C is said to be locally constant if for every arrow f : A→ B
in C, Pf : PB → PA is an isomorphism. We denote by (SetsC

op

)lc the
category of locally constant presheaves on C.

For the category C we have the Yoneda embedding y : C → SetsC
op

defined on objects by yA(B) = HomC(B,A). The following result will be
used; for more details we refer the reader to [M-M, Theorem I.5.2].

Theorem 0.1. Let l : C → D be a functor from a small category C to a
cocomplete category D. Then the functor R : D → SetsC

op

defined by

RX(C) = HomD(lC,X)

has a left adjoint L : SetsC
op → D.

Let ∆ denote the small category whose objects are finite ordered sets
[n] = {0 < . . . < n} and whose morphisms are those φ : [n] → [m] which
preserve the order. We shall consider the category of simplicial sets as the
functor category SS = Sets∆

op

. By Theorem 0.1 the functor y : ∆→ Sets∆
op

and the functor ∆ → Top, [n] → ∆n, where ∆n is the standard n-simplex,
induce the singular functor Sing : Top → SS and its left adjoint, the real-
ization functor | − | : SS→ Top, X → |X|. We recall that a map f : X → Y
in SS is a weak equivalence if for every x ∈ X0 and q ≥ 0 the induced
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map πq(f) : πq(X,x)→ πq(Y, fx) is an isomorphism, where πq denotes the
homotopy group functor.

Let G be a group. We can view G as a small category with one object
∗ and arrows given by the elements of G. The composition is given by the
product of G. In this case SetsG is the category of left G-sets and SetsG

op

is the category of right G-sets. An object in SetsG is determined by a ho-
momorphism η : G → AutX, where AutX is the group of automorphisms
of a set X. For a given map f̂ : X → X ′ in Sets, we denote by Aut f̂ the
group of automorphisms of f̂ in the category Maps(Sets) of maps in Sets.
If η : G → AutX, η′ : G → AutX ′ determine two objects in SetsG, a
morphism f : η → η′ is given by a pair f = (θf , f̂) where f̂ : X → X ′ is a
map and θf : G→ Aut f̂ is a group homomorphism such that the following
diagram is commutative:

AutX

G Aut f̂

AutX ′

θf //

η

xxxxxxx<<

η′

EEEEEEE""

pr1

OO

pr2

²²

For G a topological group, we have an analogous category of continu-
ous G-sets, which is denoted by G-Sets. In this case, AutX and Aut f̂ are
provided with the discrete topology and we consider continuous homomor-
phisms η and θf .

Given a topological space X, we denote by O(X) the small category
whose objects are all open subsets U of X, and arrows V → U are inclusions
V ⊂ U . In this paper, we will consider the category SetsO(X)op

of presheaves
on X, and the full subcategory Sh(X) of sheaves on X. For more properties
of sheaves we refer the reader to [M-M] and [J]. We also consider the category
EtaleX whose objects are étale maps p : E → X; that is, p is a local
homeomorphism in the following sense: For each e ∈ E, there is an open set
V such that pV is open in X and p|V : V → pV is a homeomorphism. A
morphism f : p → p′ is given by a continuous map f : E → E′ such that
fp′ = p.

If F : O(X)op → Sets is a presheaf on X, we can consider Fx =
colimx∈U F (U) and the map germx : F (U) → Fx. For each σ ∈ F (U),
ṡU = {germx σ | x ∈ U} is a subset of E =

⊔
x∈E Fx. All the subsets ṡU

form the base of a topology on E such that the map p : E → X, p(σ) = x if
σ ∈ Fx, is an étale map, which is also called the bundle of germs of F . This
construction gives a functor Λ : SetsO(X)op → EtaleX which is left adjoint
to the functor Γ : EtaleX → SetsO(X)op

defined by
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Γp(U) = {s | s is a continuous section of p on U}.
The restriction Λ : Sh(X) → EtaleX is an equivalence of categories with
quasi-inverse Γ .

We shall often use categories of fractions and categories of right fractions
(see [G-Z]). Let C be a category and let Σ be a class of morphisms in C.
The category of fractions induced by Σ will be denoted by C[Σ−1], and by
CΣ−1 if Σ admits a calculus of right fractions. In the last case the hom-set
can be defined by

HomCΣ−1(X,Y ) = colim
s∈Σ, codomain(s)=X

HomC(domain(s), Y ).

A category I is said to be left filtering if it satisfies the following conditions:

(a) given two objects i, i′ in I, there is an object j in I and morphisms
j → i, j → i′,

(b) if u, v : j → i are morphisms in I, there is k in I and a morphism
w : k → j such that uw = vw.

A pro-object in C is a functor X : I → C, where I is a left filtering
small category. An arrow u : j → i is carried by X to a morphism X(u) :
X(j)→ X(i), which is called a bonding morphism. In some cases the hom–
set HomI(j, i) only has one arrow and we then use the notation Xj

i : X(j)→
X(i). We also use this notation when no confusion is possible.

We are going to consider the category proC whose objects are pro-
objects in C. Given pro-objects X : I → C and Y : J → C in C, the
morphism set from X to Y is defined by

HomproC(X,Y ) = lim
j

colim
i

HomC(X(i), Y (j)).

An alternative description of morphisms in proC can be given as follows:
A morphism u : X → Y is represented by a pair (ϕ, f(j)), where ϕ : |J | → |I|
is a map from the object set of J to the object set of I and f(j) : X(ϕ(j))→
Y (j) is a morphism in C, j ∈ |J |, such that if j → j′ is a morphism in J ,
then there are i ∈ |I|, i → ϕ(j) and i → ϕ(j′) such that the following
diagram is commutative:

X(ϕ(j)) Y (j)

X(i)

X(ϕ(j′)) Y (j′)

//

²²

tttttttt::

JJJJJJJJ$$
//

Two pairs (ϕ, f(j)), (ψ, g(j)) represent the same morphism u if for each



Fundamental pro-groupoids and covering projections 7

j ∈ |J |, there are i ∈ |I|, i → ϕ(j) and i → ψ(j) such that the following
diagram commutes:

X(ϕ(j))

X(i) Y (j)

X(ψ(j))

MMMM&&qqqq88

MMMM&& qqqq88

One of the more interesting properties of the category proC is that
if Y : J → C is a pro-object and φ : I → J is a cofinal functor, then
Y φ : I → C is isomorphic to Y : J → C in the category proC.

For each left filtering small category I, we denote by CI the category
whose objects are functors X : I → C and morphisms are natural trans-
formations; that is, a morphism f : X → Y is given by a coherent family
of morphisms f(i) : X(i) → Y (i), i ∈ |I|. There is a canonical functor
γ : CI → proC, and a morphism of the form γf : γX → γY is said to be a
level morphism.

Of particular interest is the full subcategory towC of proC determined
by objects whose indexing category is N, where N is the category whose
objects are non-negative integer numbers and HomN(n,m) has either one
element if n ≥ m or is the empty set if n < m.

1. The category pro(G,Sets). In this section, we define and study
the category pro(G, Sets), where G is a pro-groupoid. Later in §2 we shall
prove that the category of covering projections of a space is equivalent to a
category of the form pro(G, Sets).

Recall that a groupoid G is a small category where any morphism in G is
an isomorphism. Given two groupoids G and G′, a groupoid homomorphism
is just a functor f : G→ G′. Let Gpd denote the category of groupoids.

We denote by [0, 1] the groupoid with two objects 0, 1 and whose mor-
phisms are the identities and two mutually inverse maps u : 0 → 1 and
u−1 : 1 → 0. If G is a groupoid, we can consider the product groupoid
G × [0, 1] and the groupoid homomorphisms ∂0, ∂1 : G → G × [0, 1], where
for example ∂0 carries an arrow α : U → U ′ in G to the arrow ∂0α =
(α, id0) : (U, 0) → (U ′, 0). Using this cylinder, we can consider homotopies
making commutative diagrams of the form

G+G G′

G× [0, 1]

f+g //

∂0+∂1

²² Fuuuuuuuu::

where G+G is the sum groupoid, and F is a groupoid homomorphism.
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We note that a homotopy F determines a natural transformation ηF
from f to g by ηF (U) = F (idU , u). Conversely, a natural transformation
η : f → g determines a homotopy Fη from f to g by Fη(idU , u) = η(U).

IfG andG′ are two groupoids, we can consider a groupoid HOMGpd(G,G′)
whose objects are given by the elements of the set HomGpd(G,G′) and if
f, g : G → G′ are objects in HOMGpd(G,G′) a morphism η : f → g is a
natural transformation from f to g. We denote by π0HOMGpd(G,G′) the
set of isomorphism classes of the groupoid HOMGpd(G,G′). This set is also
the set of homotopy classes of groupoid homomorphisms from G to G′. We
also consider the category π0Gpd which has the same objects as Gpd and
the hom-set is defined by Homπ0Gpd(G,G′) = π0HOMGpd(G,G′). Denote by
γ : Gpd→ π0Gpd the projection functor which carries an arrow f : G→ G′

to the homotopy class γf : γG→ γG′. We note that f is an equivalence (of
categories) if and only if f is a homotopy equivalence; that is, if γf is an
isomorphism in π0Gpd.

For a given pro-groupoid G : I→Gpd, we consider the category (G, Sets).
An object of (G, Sets) is given by a pair (G(i), F ) where i is an object in I
and F : G(i)→ Sets is a functor. A morphism α from (G(i), F ) to (G(j),H)
is a pair α = (i → j, θα : F → HGij) where i → j is a morphism in I and
θα : F → HGij is a natural transformation (Gij is the corresponding bonding
map).

Consider the class

Σ = {α | α is a morphism in (G, Sets) and θα is an equivalence}.
It is easy to check that the class Σ admits a calculus of right fractions (see
§1 and [G-Z]). Therefore we can consider the category of right fractions
(G, Sets)Σ−1 that will be denoted by pro(G, Sets).

If I is the indexing category of the pro-groupoid G, and i, j are two
objects in I, we consider the category I↓{i, j} whose objects are pairs (u, v)
of maps u : k → i, v : k → j, and a morphism from (u, v) to (u1, v1) is given
by a map w : k → k1 such that u1w = u, v1w = v. If (G(i), F ) and (G(j),H)
are two objects in pro(G,Sets), we can consider the category I↓{i, j}; for
an object (u, v) in I↓{i, j}, we write k = domain(u) = domain(v). From the
definition of the hom-set in a category of right fractions, one has

Hompro(G,Sets)((G(i), F ), (G(j),H)) ∼= colim
I↓{i,j}

HomSetsG(k)(FGki ,HG
k
j ).

Now assume that f : G → G′ is a morphism in pro Gpd represented
by a pair (ϕ, f(i′)). We are going to see how the pair (ϕ, f(i′)) induces a
functor (ϕ, f(i′))∗ : pro(G′,Sets) → pro(G,Sets). First we define a functor
from (G′,Sets) to pro(G, Sets). Let α′ = (i′ → j′, θα′ : F ′ → H ′G′i

′
j′ ) be

a morphism in (G′,Sets) from (G′(i′), F ′) to (G′(j′), H ′). Then (ϕ, f(i′))∗

carries these objects to (G(ϕi′), F ′f(i′)) and (G(ϕj′),H ′f(j′)), respectively.
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In order to get (ϕ, f(i′))∗(α′), we choose k in I and arrows k → ϕi′ and
k → ϕj′ such that the diagram

G(ϕi′) G′(i′)

G(k)

G(ϕj′) G′(j′)

f(i′) //

²²

vvvvvvv::

HHHHHHH$$

f(j′)
//

is commutative. Then (ϕ, f(i′))∗(α′) is the morphism in pro(G, Sets) rep-
resented by the natural transformation θα′ ∗ (f(i′)Gkϕi′) : F ′f(i′)Gkϕi′ →
H ′f(j′)Gkϕj′ . It is easy to check that two choices of k represent the same
morphism in pro(G,Sets). The functor (ϕ, f(i′))∗ has the property that if
α′ is in Σ′, then (ϕ, f(i′))∗(α′) is an isomorphism. Therefore we have an
induced functor

(ϕ, f(i′))∗ : pro(G′, Sets)→ pro(G, Sets).

We note that it (ϕ, f(i′)) and (ψ, g(i′)) represent the same morphism
f : G→ G′, then the functor (ϕ, f(i′))∗ is isomorphic to (ψ, g(i′))∗. We will
denote by f∗ : pro(G′,Sets)→ pro(G, Sets) one of these functors.

If f : G → G′ and g : G′ → G′′ are morphisms in pro Gpd repre-
sented by pairs (ϕ, f(i′)) and (ψ, g(i′′)), then gf can be represented by
(ϕψ, g(i′′)f(ψi′′)). If gf = id and fg = id, then (ϕψ, g(i)f(ψi))∗ and
(ψϕ, f(i′)g(ϕi′))∗ are isomorphic to identity functors. Therefore the func-
tor (ϕ, f(i))∗ is an equivalence of categories. We restate this fact in the
following:

Lemma 1.1. If f : G → G′ is an isomorphism in pro Gpd, then f∗ :
pro(G′, Sets)→ pro(G, Sets) is an equivalence of categories.

The following result will be useful:

Lemma 1.2. Let f : G→ G′ be a level morphism in pro Gpd such that for
each i ∈ I, f(i) : G(i)→ G′(i) is an equivalence. Then f∗ : pro(G′, Sets)→
pro(G, Sets) is an equivalence of categories.

P r o o f. In this case, the functor f∗ is defined on objects by f∗(G′(i), F ′)
= (G(i), F ′f(i)) and for morphisms one has

Hompro(G′,Sets)((G
′(i), F ′), (G′(j),H ′))

= colim
I↓{i,j}

HomSetsG′(k)(F ′G′ki , H
′G′kj )
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∼= colim
I↓{i,j}

HomSetsG(k)(F ′G′ki f(k),H ′G′kj f(k))

∼= colim
I↓{i,j}

HomSetsG(k)(F ′f(i)Gki , H
′f(j)Gkj )

∼= Hompro(G,Sets)((G(i), F ′f(i)), (G(j),H ′f(j))).

Therefore f∗ is a full faithful functor. On the other hand, if (G(i), F ) is
an object in pro(G, Sets), we can take a quasi-inverse g : G′(i) → G(i) of
the equivalence f(i) : G(i) → G′(i). Then f∗(G′(i), Fg) = (G(i), Fgf(i)).
However, (G(i), Fgf(i)) is isomorphic to (G(i), F ). Thus we have shown
that f∗ is an equivalence of categories.

At the beginning of this section we have considered the categories Gpd
and π0Gpd and the functor γ : Gpd → π0Gpd. This functor γ induces a
functor γ = pro γ : pro Gpd → proπ0Gpd. We have shown that two iso-
morphic objects G,G′ in pro Gpd induce equivalent categories pro(G, Sets),
pro(G′, Sets). Next we analyse this kind of questions for objects in the cat-
egory proπ0Gpd.

If G : N → π0Gpd is an object in tow π0Gpd, we can choose for each
bonding morphism G(i + 1) → G(i) in π0Gpd a representative map Gi+1

i ;
in this way we obtain and object G : N→ Gpd in tow Gpd such that G(i) =
G(i) and γG = G. If we choose different bonding maps G̃i+1

i , we have a new
pro-groupoid G̃ : N→ Gpd, but we can prove the following result:

Lemma 1.3. The category pro(G, Sets) is equivalent to the category
pro(G̃, Sets).

P r o o f. For each i ≥ 0, since Gi+1
i is homotopic to G̃i+1

i , we can choose
a homotopy Li+1 : G(i + 1) × [0, 1] → G(i) such that Li+1∂0 = Gi+1

i and
Li+1∂1 = G̃i+1

i .
Consider the commutative diagram

. . . G(i+ 1) G(i) . . .

. . . G(i+ 1)× [0, 1] G(i)× [0, 1] . . .

. . . G(i+ 1) G(i) . . .

// Gi+1
i //

∂0

²²

//

∂0

²²
// (Li+1,pr2) // //

//

∂1

OO

G̃i+1
i

//

∂1

OO

//

and denote by G × [0, 1] the “cylinder” pro-groupoid. We conclude that
∂0 : G→ G× [0, 1] and ∂1 : G̃→ G× [0, 1] satisfy the conditions of Lemma
1.2, and therefore pro(G, Sets) is equivalent to pro(G̃, Sets).



Fundamental pro-groupoids and covering projections 11

As a consequence of Lemma 1.3, if G is an object in tow π0Gpd, the
category pro(G, Sets) will be denoted by pro(G, Sets).

Lemma 1.4. Let f = {f(i) : G(i) → G′(i)} be a level morphism in
tow π0Gpd and assume that there are maps g(i) : G′(i+ 1)→ G(i) such that
for each i ≥ 0 the diagram

G(i+ 1) G′(i+ 1)

G(i) G′(i)

f(i+1)//

Gi+1
i

²²
(G′)i+1

i

²²

g(i)

xxrrrrrrrrr

f(i)
//

is commutative in π0Gpd. Then pro(G,Sets) is equivalent to pro(G′, Sets).

P r o o f. Since (G′)i+1
i = f(i)g(i) in π0Gpd, from Lemma 1.3 it follows

that the towers

. . .→ G′(i+ 1)
(G′)i+1

i−−−−→ G′(i)→ . . . ,

. . .→ G′(i+ 1)
f(i)g(i)−−−−→ G′(i)→ . . .

determine equivalent categories. Since the towers

. . .→ G′(i+ 1)
f(i)g(i)−−−−→ G′(i)→ . . . ,

. . .→ G(i+ 1)
f(i+1)−−−−→ G′(i+ 1)

g(i)−→ G(i)
f(i)−→ G′(i)→ . . . ,

. . .→ G(i+ 1)
g(i)f(i+1)−−−−→ G(i)→ . . .

are isomorphic in tow Gpd and g(i)f(i + 1) = Gi+1
i in π0Gpd, Lemmas 1.1

and 1.3 show that pro(G, Sets) is equivalent to pro(G′, Sets).

As a consequence of these lemmas, we have:

Proposition 1.1. Let G,G′ be objects in tow π0Gpd. If G is isomorphic
to G′ in tow π0Gpd, then pro(G, Sets) is equivalent to pro(G′, Sets).

P r o o f. Let f : G → G′ be an isomorphism. The map f can be repre-
sented by a pair (ϕ, f(i)) such that ϕ(i) ≥ i, ϕ(i) > ϕ(j) if i > j, and for
each i ≥ 0, the diagram

G(ϕ(i+ 1)) G′(i+ 1)

G(ϕ(i)) G′(i)

f(i+1) //

²² ²²

f(i)
//

is commutative in π0Gpd. Define an objectG1 in tow Gpd byG1(i) = G(ϕ(i))
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and (G1)i+1
i = G

ϕ(i+1)
ϕ(i) . We also have f1 : G1 → G′ defined by f1(i) = f(i) :

G1(i)→ G′(i).
We know that G is isomorphic to G1 in tow Gpd and f1 : G1 → G′ is a

level isomorphism in tow π0Gpd. By Lemma 1.1, pro(G, Sets) is equivalent
to pro(G1, Sets).

Since f1 : G1 → G′ is a level isomorphism in tow π0Gpd, there is a map
g : G′ → G1 in tow π0Gpd represented by (ψ, g(i)) such that ψ(i) ≥ i,
ψ(i) < ψ(j) if i < j, and the diagram

G1(ψi+10) G′(ψi+10)

G1(ψi0) G′(ψi0)

f1(ψi+10) //

²² ²²

g(ψi0)

vvmmmmmmmmmmm

f1(ψi0)
//

is commutative in π0Gpd, where ψk denotes the iterated map ψ (k). . . ψ. Define

G2(i) = G1(ψi0), G′1(i) = G′(ψi0),

f2(i) = f1(ψi0), g(i) = g(ψi0).

Now we see that G1 is isomorphic to G2 and G′ is isomorphic to G′1 in
tow Gpd. By Lemma 1.1, pro(G1, Sets) is equivalent to pro(G2, Sets), and
pro(G′, Sets) is equivalent to pro(G′1,Sets). Since f2 : G2 → G′1 and g :
G′1 → G2 satisfy the conditions of Lemma 1.4, it follows that pro(G2, Sets) is
equivalent to pro(G′1,Sets). Thus we conclude that pro(G,Sets) is equivalent
to pro(G′,Sets).

Example. We exhibit two non-isomorphic pro-groups F , F ′ which are
isomorphic in tow π0Gpd. Therefore the categories pro(F, Sets) and pro(F ′,
Sets) are equivalent. For n ≥ 0 let F (n) be the free group generated by
x0, xn+1, xn+2, . . . and the bonding morphism F (n + 1) → F (n) is defined
to be the inclusion. The pro-group F ′ is defined by F ′(n) = F (n) and
the bonding is (F ′n)n+1(a) = xn+1ax

−1
n+1. It is easy to check that limF is

the infinite cyclic group and limF ′ is trivial. This implies that F is not
isomorphic to F ′. However, the bonding F (n + 1) → F (n) is homotopic to
the bonding F ′(n + 1) → F ′(n). Therefore F is isomorphic to F ′ in the
category tow π0Gpd and by Proposition 1.1 above we see that pro(F, Sets)
is equivalent to pro(F ′,Sets).

2. Classification of covering projections. In this section, we define
a notion of covering projection that for locally connected spaces agrees with
the notion given in Spanier’s book [S]. The main result of this section is the
determination of a pro-groupoid π crs(X) such that the category of covering
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projections of X is equivalent to the category pro(π crs(X),Sets) defined in
Section 1.

Given sets (or spaces) A, F , G a map θ : A × F → A × G such that
prAθ = prA is of the form θ(a, x) = (a, θa(x)) for a ∈ A and x ∈ F , where
θa : F → G is a map which depends on a ∈ A. A map θ : A × F → A ×G
such that prAθ = prA is said to be A-constant if θa = θa′ for all a, a′ ∈ A.

Let p : E → X be a continuous map and let U be an open covering of
X. An atlas A for p : E → X on U consists of a family of homeomorphisms
ϕU : U × F (U) → p−1U , where U ∈ U and F (U) is a discrete space, such
that if U, V ∈ U and ∅ 6= W = U ∩ V , then the induced homeomorphism

W × F (U)
ϕU−→ p−1W

ϕ−1
V−→ X × F (V )

is W -constant, where ϕU , ϕV also denote the corresponding restrictions.
If A = {ϕU : U × F (U) → p−1U} is an atlas on U and B = {ψV :

V × G(V ) → p−1V } is an atlas on V, then A is said to be equivalent to
B if there is an open covering W which refines U and V and such that if
W ⊂ U ∩ V , then the induced homeomorphism

W × F (U)
ϕU−→ p−1W

ψ−1
V−→W ×G(V )

is W -constant.

Definition 2.1. A covering projection (p : E → X, [A]) consists of a
continuous map p : E → X and an equivalence class [A] of atlases.

Remarks. (1) If X is a metrisable space and A is an atlas on U such
that for any U ∈ U , F (U) is a finite set with d elements, then the map
p : E → X is a d-fold overlay in the sense of Fox.

(2) If X is a locally connected space and A is an atlas for p : E → X
on U and B is an atlas for p : E → X on V, then we can choose an open
covering W which refines U and V and such that each W ∈ W is connected.
If W ⊂ U ∩ V , then the homeomorphism

W × F (U)
ϕU−→ p−1W

ψ−1
V−→W ×G(V )

sends the connected components of W × F (U) into connected components
of W × G(V ). Therefore ψ−1

V ϕU is W -constant, and A is equivalent to B.
Thus if X is a locally connected space, then a covering projection consists
of a continuous map such that there is an open covering U of X and for each
U ∈ U , p−1U =

∐
α∈F (U) Uα, where F (U) is an index set, each Uα is an

open subset of E and the restriction p|Uα : Uα → U is a homeomorphism.

We shall use the following notion of covering transformation:

Definition 2.2. Let Φ = (p : E → X, [A]) and Φ′ = (p′ : E → X,
[A′]) be two covering projections. A covering transformation f : Φ→ Φ′ is a
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continuous map f : E → E′ such that p′f = p and if A = {ϕU | U ∈ U} and
A′ = {ϕU ′ | U ′ ∈ U ′} are two atlases for Φ and Φ′, respectively, then there
is an open covering W which refines U and U ′ and such that if W ⊂ U ∩U ′,
then the induced map

W × F (U)
ϕU−→ p−1W

f−→ p′−1W
ϕ−1
U′−→W × F ′(U ′)

is W -constant. We denote by Cov projX the category of covering projections
and covering transformations of X.

Remark. If X is a locally connected space and p : E → X and p′ : E′ →
X are covering projections, then any continuous map f : E → E′ such that
p′f = p is a covering transformation. Therefore, in this case the category
Cov projX is equivalent to (EtaleX)cp, where (EtaleX)cp denotes the full
subcategory of EtaleX determined by covering projections.

If U is an open covering X, we denote by (Cov projX)U the subcategory
of Cov projX whose objects are those covering projections Φ which admit
an atlas on U . Given covering projections Φ and Φ′ with atlases A = {ϕU |
U ∈ U} and A′ = {ϕ′U | U ∈ U}, a morphism f : Φ→ Φ′ in (Cov projX)U is
a covering transformation f : Φ→ Φ′ in Cov projX such that for any U ∈ U
the map

U × F (U)
ϕU−→ p−1U

f−→ p′−1U
(ϕ′U )−1

−−−−→ U × F ′(U)

is U -constant. We note that if U refines V, then we have a faithful functor
(Cov projX)V → (Cov projX)U . One has the following result:

Proposition 2.1. Let Φ and Φ′ be two covering projections and let A =
{ϕU | U ∈ U} and A′ = {ϕU ′ | U ′ ∈ U ′} be two atlases of Φ and Φ′,
respectively. Then

HomCov projX(Φ,Φ′) ∼= colim
W≥U,W≥U ′

Hom(Cov projX)W (Φ,Φ′).

P r o o f. This follows directly from the definition of covering transforma-
tion.

In order to use locally constant sheaves to study the category Cov projX,
we recall and introduce some notions:

A family U of open subsets of the space X is called a sieve on X if for
every U ∈ U and every open subset V ⊂ U , we have V ∈ U . If moreover
X =

⋃
U∈U U , then U is called a covering sieve on X. We denote by O the

covering sieve of all open subsets of X.

Definition 2.3. Let U be a family of non-empty open subsets of X
such that if U ∈ U and ∅ 6= V ∈ O, V ⊂ U , then V ∈ U . We then say that
U is a reduced sieve on X and if X =

⋃
U∈U U , then U is a covering reduced

sieve on X.
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We note that if U is a covering sieve on X, then ∗U = U\{∅} is a covering
reduced sieve on X. Every open covering V of X generates a covering sieve
sV = {U ∈ O | there is V ∈ V such that U ⊂ V } and the corresponding
covering reduced sieve ∗sV = {U ∈ O | U 6= ∅ and there is V ∈ V such that
U ⊂ V }.

A (reduced) sieve U can be considered as a small category, denoted again
by U , where the set of morphisms from U to V is given by HomU (U, V ) = 1
if U ⊂ V , and HomU (U, V ) = ∅ otherwise. A functor P : Uop → Sets is said
to be a presheaf on U .

Definition 2.4. Given a covering reduced sieve U on X, a presheaf
P : Uop → Sets is said to be locally constant if P carries any arrow U ⊂ V
in U into an isomorphism P (V ) → P (U). We denote by SetsU

op

the cate-
gory of presheaves on U and by (SetsU

op

)lc the category of locally constant
presheaves on U .

Given a covering sieve U , the canonical inclusion Uop ⊂ Oop induces a
restriction functor re : SetsO

op → SetsU
op

. We also have an extension functor
ex : SetsU

op → SetsO
op

which for a given presheaf P : Uop → Sets is defined
by

exP (V ) = lim
U∈Uop

P (V ∩ U).

It is routine to check

Proposition 2.2. The functor re : SetsO
op → SetsU

op

is left adjoint to
ex : SetsU

op → SetsO
op

.

If U is a covering reduced sieve and P : Uop → Sets is a presheaf, we can
consider the covering sieve ′U = U ∪ {∅} and the presheaf ′P : ′Uop → Sets
defined by the unique extension of P such that P (∅) = 1. Therefore we
also have an extension functor ex′ : SetsU

op → SetsO
op

defined by ex′(P ) =
ex(′P ).

Let Λ : SetsO
op → EtaleX be the functor which carries a presheaf P :

Oop → Sets into the bundle ΛP of germs of P (see §1 and [M-M]). For a
covering reduced sieve U on X one has the composite

SetsU
op ex′−→ SetsO

op Λ−→ EtaleX.

If P : Uop → Sets is a presheaf and x ∈ X we have the set of germs of P
at x,

Px = colim
x∈U∈U

P (U),

and the canonical map germU
x : P (U)→ Px. We note that Λ ex′P = (q(P ) :

E(P )→ X), where
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E(P ) =
⊔

x∈X
Px, (q(P ))−1x = Px

and the topology of E(P ) is given by the base

B = {ṡU | s ∈ P (U), U ∈ U}, ṡU = {germU
x (s) | x ∈ U}.

For each U ∈ U , we consider the map

ϕU : U × P (U)→ (q(P ))−1U

defined by ϕU (x, s) = germU
x s for x ∈ U and s ∈ P (U). We note that for

a fixed s ∈ P (U), the restriction ϕU (−, s) : U × {s} → ṡU is a homeomor-
phism.

If P is a locally constant presheaf, then germU
x : P (U)→ Px is an isomor-

phism of discrete spaces. Therefore, in this case, ϕU is a homeomorphism.
Now we check that for a locally constant presheaf P : Uop → Sets,

A(P ) = {ϕU | U ∈ U} is an atlas on U for q(P ) : E(P ) → X. If U, V ∈ U
and W = U ∩ V , then the map

W × P (U)
ϕU−→ (q(P ))−1W

ϕ−1
V−→W × P (V )

is W -constant, because if x, y ∈W , s ∈ P (U) and t, t′ ∈ P (V ) are such that

germU
x s = germV

x t, germU
y s = germV

y t
′

then t|W = s|W = t′|W , hence t = t′ (t|W denotes the image of t ∈ P (V )
under the restriction map P (V )→ P (W )).

Therefore for a locally constant presheaf P : Uop → Sets, one has the
covering projection ΛP = (q(P ) : E(P )→ X, [A(P )]). In order to construct
a functor Λ : (SetsU

op

)lc → (Cov projX)U we recall that if f : P → P ′ is a
natural transformation of presheaves defined on U , then we have an induced
map Λf : E(P ) → E(P ′) defined by Λf(germU

x s) = germU
x (f(U)s), where

f(U) : P (U)→ P ′(U) are the “components” of f .
To show Λf is a morphism in (Cov projX)U we have to check that

U × P (U)
ϕU−→ (q(P ))−1U

Λ̄f−→ (q(P ′))−1U
(ϕ′U )−1

−−−−→ U × P ′(U)

is U -constant. If (x, s) ∈ U×P (U), then (ϕ′U )−1(Λf)ϕU (x, s) = (x, f(U)(s))
and f(U)(s) does not depend on x. This implies that the above map is
U -constant.

Thus we have constructed a functor Λ : (SetsU
op

)lc → (Cov projX)U .
Now we can prove that the category of covering projections and transforma-
tions which trivialise on U is equivalent to the category of locally constant
presheaves on U .

Theorem 2.1. Given a covering reduced sieve U on a space X, the func-
tor Λ : (SetsU

op

)lc → (Cov projX)U is an equivalence of categories.
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P r o o f. First, we show that Λ is a faithful functor. Suppose that f, g :
P → P ′ are natural transformations and P, P ′ are objects in (SetsU

op

)lc. If
Λf = Λg, then for each U ∈ U and s ∈ P (U), we have germU

x (f(U)s) =
Λf(germU

x s) = Λg(germU
x s) = germU

x (g(U)s). Since P and P ′ are locally
constant, the maps of the form germU

x are isomorphisms, hence f(U)s =
g(U)s for each s ∈ P (U). Therefore f(U) = g(U) for all U ∈ U . Thus Λ is
a faithful functor.

Now assume that h : E(P ) → E(P ′) is a covering transformation in
(Cov projX)U . Then the composite

U × P (U)
ϕU−→ (qP )−1U

h−→ (qP ′)−1U
(ϕ′U )−1

−−−−→ U × P ′(U)

is U -constant. Let f(U) : P (U) → P ′(U) be the unique map such that
idU × f(U) = (ϕ′U )−1hϕU . It is easy to check that if U, V ∈ U and U ⊂ V
then (P ′)VU f(V ) = f(U)PVU . Then f(U) : P (U) → P ′(U), U ∈ U , is a
natural transformation from P to P ′. The map Λf has the property that
for each U ∈ U , the corresponding restrictions are such that (ϕ′U )−1(Λ)fϕU
= (ϕ′U )−1hϕU . This implies that for any U , Λf |(qP )−1U = h|(qP )−1U , and
so that Λf = h. Thus we have shown that Λ is a full functor.

In order to check that Λ is an equivalence of categories, it suffices to prove
that if Φ = (p : E → X, [A]) is a covering projection in (Cov projX)U , then
there is a locally constant presheaf F : Uop → Sets such that ΛF ∼= Φ.

Suppose that A = {ψU : U×F (U)→ p−1U} is an atlas on U . If U ′ ⊂ U ,
then

U ′ × F (U ′)
ψU′−→ p−1U ′

ψ−1
U−→ U ′ × F (U)

is U ′-constant. Denote by FUU ′ : F (U) → F (U ′) the unique bijective map
such that idU ′ × FUU ′ = ψ−1

U ′ ψU . It is easy to check that FUU = idF (U) and
if U ′′ ⊂ U ′ ⊂ U , then FU

′
U ′′F

U
U ′ = FUU ′′ . Therefore F is a locally constant

functor from Uop to Sets. Now we can consider the map h : ΛF → Φ, where
h : E(F )→ E is defined by h(germU

x s) = ψU (x, s) for x ∈ U and s ∈ F (U).
We note that if U ′ ⊂ U and germU

x s = germU ′
x s′, then s′ = FUU ′s and

ψU (x, s) = ψU ′(x, FUU ′s). Therefore h is well defined. We also see that the
maps

U × F (U)
ϕU−→ (qF )−1U

h−→ p−1U
ψ−1
U−→ U × F (U)

satisfy hϕU (x, s) = h(germU
x s) = ψU (x, s). Then ψ−1

U hϕU = idU × idF (U)

is U -constant and h|(qF )−1U is an isomorphism. Thus h : ΛF → Φ is an
isomorphism in (Cov projX)U . Therefore Λ is an equivalence of categories.

Given a covering reduced sieve U , if we take the class Σ of all morphisms
in U , we have the corresponding category of fractions πU = U [Σ−1] which is
a groupoid. We note the existence of natural isomorphisms (πU)op ∼= π(Uop).
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Therefore we use the notation πUop. For locally constant presheaves on U ,
one has:

Lemma 2.1. Given a covering reduced sieve U on X, the category
(SetsU

op

)lc of locally constant presheaves on U is equivalent to the functor
category SetsπU

op

.

P r o o f. Denote by γ : Uop → πUop the projection functor. If P :
Uop → Sets is locally constant, then P carries each arrow of Uop into an
isomorphism. Therefore, P factors through πUop as P = Pγ. Conversely, if
F : πUop → Sets is a functor, then because πUop is a groupoid, F carries
every arrow of πUop into an isomorphism. Thus Fγ is a locally constant
functor.

We recall that if U and V are open coverings of a space X, then we say
that U refines V, U ≥ V , if for every U ∈ U , there is V ∈ V such that U ⊂ V .
We note that for a given U , in general it is possible to find various V ∈ V
such that U ⊂ V . It would be interesting to have a canonical way of finding
a V for each U . We solve this problem if we work only with covering reduced
sieves. We note that if U and V are two covering reduced sieves then U refines
V if and only if U ⊂ V. If U ∈ U , then there is V ∈ V such that U ⊂ V ,
but this implies that U ∈ V. If U ⊂ V, then there is an induced functor
πUV : πUop → πVop that again induces a functor SetsπV

op → SetsπU
op

.

Using the equivalence of categories SetsπU
op γ∗→ (SetsU

op

)lc we have a new
equivalence Λ′ obtained as the composite Λ′ = Λγ∗:

SetsπU
op γ∗→ (SetsU

op

)lc
Λ→ (Cov projX)U .

If U refines V one has the following:

Proposition 2.3. Let U and V be two covering reduced sieves on X. If
U ⊂ V, then the functor diagram

SetsπV
op

(Cov projX)V

SetsπU
op

(Cov projX)U

Λ′ //

²² ²²

Λ′
//

is commutative up to natural isomorphism.

P r o o f. If F is an object in SetsπV
op

, we have the presheaf P = γF ,
which satisfies

colim
x∈V ∈V

P (V ) ∼= colim
x∈U∈U

P (U).

This fact easily gives the existence of an isomorphism of functors in the
diagram above.
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Given a space X, we denote by COV(X) the set of open coverings U of
X directed by refinement. We denote by CRS(X) the set of covering reduce
sieves of X directed by refinement or equivalently by “inclusion”; that is, if
U ,V ∈ CRS(X) then U ≥ V if and only if U ⊂ V. Recall that Gpd denotes
the category of groupoids. Using the directed set CRS(X) as an indexing
category we can consider the pro-groupoid

π crs(X) : CRS(X)→ Gpd

defined by π crs(X)(U) = πUop. Associated with the pro-groupoid π crs(X)
we have the category pro(π crs(X),Sets) defined in §1. The main result of
this section is the following:

Theorem 2.2. The category Cov projX of covering projections and
transformations of a topological space X is equivalent to the category
pro(π crs(X),Sets).

P r o o f. For the groupoid π crs(X), consider the category (π crs(X), Sets)
defined in §1. Now we are going to define a functor

Λ′ : (π crs(X),Sets)→ Cov projX.

Suppose that (πUop, F ) and (πVop, G) are objects in (π crs(X), Sets) and
α = (U ⊂ V , θα : F → GπUV ) is a morphism in (π crs(X), Sets). The functor
Λ′ carries α : (πUop, F ) → (πVop, G) to Λ′α : Λ′(πUop, F ) → Λ′(πVop, G),
where Λ′(πUop, F ) = Λ(Fγ), Λ′(πVop, G) = Λ(Gγ) and if s ∈ Fγ(U) and
x ∈ U ∈ U , then Λ′α(germU

x s) = germU
x (θα ∗ γ(U)(s)).

It is easy to check that if α is in Σ, then Λ′α is an isomorphism, hence
there is an induced functor

Λ′ : pro(π crs(X), Sets)→ Cov projX.

We note that if U ,V ∈ CRS(X), then U ∩ V = {W | W ∈ U and
W ∈ V} ∈ CRS(X). We also see that the inclusion CRS(X)→ COV(X) of
directed sets is cofinal.

If (πUop, F ) and (πVop, G) are objects in pro(π crs(X), Sets), then

Hompro(π crs(X),Sets)((πUop, F ), (πVop, G))
∼= colim
W∈CRS(X),W⊂U∩V

HomSetsπWop (FπWU , Gπ
W
V )

∼= colim
W∈CRS(X),W⊂U∩V

Hom(Cov projX)W (Λ′(FπWU ), Λ′(GπWV ))

∼= colim
W∈CRS(X),W⊂U∩V

Hom(Cov projX)W (Λ′F,Λ′G)

∼= HomCov projX(Λ′F,Λ′G).

Thus we have shown that Λ′ : pro(π crs(X), Sets) → Cov projX is a full
faithful functor.
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On the other hand, if Φ = (p : E → X, [A]) is an object in Cov projX
and A is an atlas on a covering reduced sieve U , then by Theorem 2.1 and
Lemma 2.1, there is F : πUop → Sets such that Λ′(πUop, F ) ∼= Φ. Therefore
Λ′ : pro(π crs(X), Sets)→ Cov projX is an equivalence of categories.

3. The subdivision of the Čech nerve. The Čech nerve CX(U) of an
open covering U of X is defined to be the simplicial set whose q-simplexes
are given by

CX(U)q = {(U0, . . . , Uq) | U0, . . . , Uq ∈ U , U0 ∩ . . . ∩ Uq 6= ∅}.
The face and degeneracy operators are defined in the usual way. We note
that if U ≥ V, then we can choose a map ϕ : U → V such that U ⊂ ϕU . This
induces a simplicial map (U0, . . . , Uq) → (ϕU0, . . . , ϕUq), which is denoted
by Cϕ : CX(U) → CX(V), and we also have the corresponding realization
|Cϕ| : |CX(U)| → |CX(V)|. If we choose a different map ψ : U → V such
that U ⊂ ψU , we have

∅ 6= U0 ∩ . . . ∩ Uq ⊂ ϕU0 ∩ . . . ∩ ϕUq ∩ ψU0 ∩ . . . ∩ ψUq,
hence there is a simplex (ϕU0, . . . , ϕUq, ψU0, . . . , ψUq) having as faces (ϕU0,
. . . , ϕUq) and (ψU0, . . . , ψUq). Then |Cϕ| is contiguous to |Cψ|. Therefore
|Cϕ| is homotopic to |Cψ|, and we have Cϕ = Cψ in the category Ho(SS)
obtained by inverting the weak equivalences of the category of simplicial
sets. As a consequence of these facts, we have a functor

CX : COV(X)→ Ho(SS).

It is interesting to observe that if U and V are covering reduced sieves and
U ≥ V, then there is a canonical map U ⊂ V. In this case we have an induced
map CX(U)→ CX(V) and then we obtain a functor

CX : CRS(X)→ SS.

Let Cat denote the category of small categories and functors. There is a
functor l : ∆ → Cat which carries an ordered set [p] = {0 ≤ 1 ≤ . . . ≤ p}
to the small category l[p] = {0 ← 1 ← . . . ← p}. On the other hand, we
consider the Yoneda embedding y : ∆ → SS, [p] → ∆[p] = Hom∆(−, [p]).
Since Cat is a cocomplete category, we can apply [M-M, Th. I.5.2] to obtain
a pair of functors L : SS → Cat and Ner : Cat → SS such that L is left
adjoint to Ner and the diagram

∆

Cat SS

l

²²

y

DDDDDD!!
L

oo

is commutative up to isomorphism.
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Given a small category C, NerC is called the nerve of C; we note that
NerC0

∼= C0
∼= Objects of C and for q > 0,

(NerC)q = {(f0, . . . , fq−1) | fi is an arrow of C and

domain(fi) = codomain(fi+1)}.
If C is a category and X is an object of C, we denote by C↓X the category

which has as objects those morphisms u of C such that codomain(u) = X.
A morphism from u : A → X to v : B → X is a morphism f : A → B in C
such that vf = u. We note that a morphism g : X → X ′ induces a functor
C↓g : C↓X → C↓X ′ defined by C↓g(u) = gu.

In particular, for the category ∆, we have the functor ∆↓− : ∆ → Cat,
[q]→ ∆↓[q], and we can consider the composite

sd = Ner(∆↓−) : ∆→ Cat→ SS.

Now we can apply [M-M, Th. I.5.2] to the functors sd : ∆ → Cat and
y : ∆→ SS to obtain a pair of adjoint functors Sd : SS→ SS, Ex : SS→ SS
such that the diagram

∆

SS SS

sd
²²

y
BBBBBB!!

Sd
oo

is commutative up to isomorphism. The left adjoint Sd : SS → SS is called
the subdivision functor.

For each space X, we consider the functor NX : CRS(X)→ SS defined
by NX(U) = Ner(Uop), where Uop is the opposite category of U considered
as a small category. A typical q-simplex of NX(U)q is of the form U0 ⊂
U1 ⊂ . . . ⊂ Uq with U0, . . . , Uq ∈ U .

Next we prove that the subdivision SdCX of the Čech nerve is weakly
equivalent to NX.

Theorem 3.1. There is a natural transformation ψ from the functor
SdCX : CRS(X) → SS to the functor NX : CRS(X) → SS such that for
each U in CRS(X), ψ(U) : SdCX(U)→ NX(U) is a weak equivalence.

P r o o f. Using the notation of [M-M] (see also §0), we recall that for an
object U of CRS(X),

SdCX(U) = colim
( \
∆

CX(U)
pr1→ ∆

sd→ SS
)
.

Given an object ([n], (V0, . . . , Vn)) in
T
∆
CX(U), we have sd pr1([n], (V0, . . .

. . . , Vn)) = sd[n]. An element of (sd pr1([n], (V0, . . . , Vn)))q is determined by
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a diagram in ∆ of the form

[p0] [p1] . . . [pq−1] [pq]

[n]

α

²²

α0oo α1oo αq−1oo

and it will be denoted by α(α0, . . . , αq−1).
For each ([n], (V0, . . . , Vn)) we have the map

ψ([n], (V0, . . . , Vn))q : (sd pr1([n], (V0, . . . , Vn)))q → NX(U)q

defined by

ψ([n], (V0, . . . , Vn))q α(α0, . . . , αq−1)

= (Vα(0) ∩ . . . ∩ Vα(p0) ⊂ Vαα0(0) ∩ . . . ∩ Vαα0(p1) ⊂ . . .
⊂ Vαα0...αq−1(0) ∩ . . . ∩ Vαα0...αq−1(pq)).

These maps induce a map

ψ(U) : SdCX(U)→ NX(U).

Now we define a transformation ϕ(U) : NX(U) → SdCX(U). Given
an element U0 ⊂ . . . ⊂ Uq of NX(U)q, ([q], (U0, . . . , Uq)) is an object
of

T
∆
CX(U). Consider the element β(β0, . . . , βq−1) of (sd pr1([q], (U0, . . .

. . . , Uq)))q determined by the diagram

[q] [q − 1] [q − 2] . . . [1] [0]

[q]

β

²²

β0oo β1oo oo βq−1oo

where β = id[q] and βi : [q − i − 1] → [q − i] is defined by βi(j) = j + 1
for 0 ≤ j ≤ q − i − 1. The element β(β0, . . . , βq−1) represents an element
[β(β0, . . . , βq−1)] of SdCX(U)q. We define ϕ(U)q : NX(U)q → SdCX(U)q
by

ϕ(U)q (U0 ⊂ . . . ⊂ Uq) = [β(β0, . . . , βq−1)].
Because

ψ([q], (U0, . . . , Uq))q(β(β0, . . . , βq−1)) = (U0 ⊂ U1 ⊂ . . . ⊂ Uq)
we have ψ(U)ϕ(U) = idNX(U).

To see that ψ(U) is a weak equivalence, it is sufficient to show that
|ϕ(U)| |ψ(U)| is homotopic to the identity. We note the following facts:

If we consider the realization functor | − | : SS → Top, we find that for
every object Y in SS, |sdY | is homeomorphic to |Y |, and if y is an n-simplex
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of Y and α(α0, . . . , αq−1) is a q-simplex of (sd pr1([n], y))q which represents
a q-simplex [α(α0, . . . , αq−1)] of sdY , then |[α(α0, . . . , αq−1)]| ⊂ |y|, where
|[α(α0, . . . , αq−1)]| and |y| denote the realizations of the corresponding sim-
plexes.

For Y = CX(U), if [α(α0, . . . , αq−1)] is a q-simplex of SdCX(U) repre-
sented by the q-simplex α(α0, . . . , αq−1) of sd pr1([n], (V0, . . . , Vn)), then we
have

ψ(U)[α(α0, . . . , αq−1)] = (U0 ⊂ . . . ⊂ Uq),
ϕ(U)(U0 ⊂ . . . ⊂ Uq) = [β(β0, . . . , βq−1)].

Consider the (n+q+2)-simplex (V0, . . . , Vn, U0, . . . , Uq) of CX(U). The real-
izations |[α(α0, . . . , αq−1)]| and |[β(β0, . . . , βq−1)]| are contained in |(V0, . . . ,
Vn, U0, . . . , Uq)|. This implies that |ϕ(U)| |ψ(U)| is contiguous to id|SdCX(U)|
with respect to the simplicial decomposition given by |CX(U)| (recall that
|CX(U)| is homeomorphic to |SdCX(U)|). Therefore |ϕ(U)| |ψ(U)| is homo-
topic to id|SdCX(U)|.

Finally, we note that if U ,V ∈ CRS(X) and U ⊂ V, then the diagram

SdCX(U) NX(U)

SdCX(V) NX(V)

ψ(U) //

²² ²²

ψ(V)
//

is commutative. Therefore ψ : SdCX → NX is a natural transformation.

Lemma 3.1. Let C be a small category. Then the fundamental groupoid
πNer C is isomorphic to the category of fractions C[Σ−1], where Σ is the set
of all morphisms of C.

P r o o f. The arrow of πNer C represented by an arrow A0 ← A1 in C
is carried by the equivalence functor to the arrow of C[Σ−1] induced by
A0 ← A1. For details we refer the reader to [Go].

Remark. For a given covering reduced sieve U , the groupoid πNUop is
isomorphic to the category of fractions πUop.

Corollary 3.1. Given a space X, the category Cov projX of covering
projections of X is equivalent to the category pro(πCX, Sets).

P r o o f. For each U ∈ CRS(X),

ψ(U) : SdCX(U)→ NX(U)

is a weak equivalence. Since |CX(U)| is homeomorphic to |SdCX(U)|, we
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also have the weak equivalences

CX(U)→ Sing |CX(U)| → Sing |SdCX(U)| ← SdCX(U).

Therefore, one has the zig-zag weak equivalences of pro-groupoids

πCX(U)→ π Sing |CX(U)| → π Sing |SdCX(U)| ← π SdCX(U).

Now, by Lemma 2.1, we conclude that pro(πNX, Sets) is equivalent to
pro(πCX, Sets).

4. Covering projections for locally path-connected and semilo-
cally 1-connected spaces. In this section we prove that under “good”
local conditions of connectedness the pro-groupoid π crs(X) is equivalent
to the standard fundamental groupoid πX. In this way we obtain the well
known equivalence of the category of covering projections of a “good” space
and the functor category SetsπX (see [God]).

Given a space X, we denote by πX the fundamental groupoid of X.
The groupoid πX has as objects the points of X and for x0, x1 ∈ X an
arrow from x0 to x1 is represented by a path from x0 to x1 (up to relative
homotopy). If α is an arrow from x0 to x1 and β is an arrow from x1

to x2 the composite will be denoted by βα. Let S be a subspace of X;
then the inclusion S ⊂ X induces a canonical groupoid homomorphism
πS → πX. We say that πS → πX is trivial if any arrow α of πS such that
domain(α) = codomain(α) = s ∈ S is carried to the identity arrow by the
functor πS → πX.

We will consider open coverings U of X such that

(1) if U ∈ U , then U 6= ∅, U is path-connected and πU → πX is trivial,
(2) if V is a non-empty open subset of X such that V is path-connected,

πV → πX is trivial and there is U ∈ U such that V ⊂ U , then V ∈ U .

An open covering U of X which satisfies conditions (1) and (2) is said to
be a trivial covering of X. We denote by TCOV(X) the family of all trivial
coverings of X directed by refinement. We note that if U ,V ∈ TCOV(X),
then U ≥ V if and only if U ⊂ V.

Lemma 4.1. Let X be a locally path-connected and semilocally 1-con-
nected space. Then the map ∗s : TCOV(X) → CRS(X) defined by ∗sU =
{V | V 6= ∅, V is open, ∃U ∈ U such that V ⊂ U} is cofinal.

P r o o f. Let V be a covering reduced sieve on X. For each V ∈ V and
x ∈ V there is an open subset U(V, x) such that x ∈ U(V, x) ⊂ V , U(V, x) is
path-connected and πU(V, x)→ πX is trivial. Let U = {U ∈ O(X) | U 6= ∅,
∃U(V, x) such that U ⊂ U(V, x), U is path-connected and πU → πX is
trivial}. Since X is locally connected and semilocally 1-connected, it follows
that U ∈ TCOV(X), and from the definition of U we have ∗sU ⊂ V.
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Corollary 4.1. Let X be a locally path-connected and semilocally 1-
connected space. Then the category Cov projX is equivalent to the category

pro({π(∗sUop) | U ∈ TCOV(X)}, Sets).

P r o o f. By Lemma 4.1, π crs(X) = {πUop | U ∈ CRS(X)} is isomorphic
to {π(∗sUop) | U ∈ TCOV(X)} in pro Gpd. By Lemma 1.1, pro(π crs(X),
Sets) is equivalent to pro({π(∗sUop) | U ∈ TCOV(X)},Sets). Now from
Theorem 2.2, it follows that Cov projX is equivalent to pro({π(∗sUop) |
U ∈ TCOV(X)}).

If a space X satisfies the usual connectedness conditions of this section,
we can consider the following “maximal” open covering in TCOV(X):

U0 = {U ∈ O(X) | U 6= ∅, U is path-connected and πU → πX is trivial}.
Now we can take a map η : ∗sU0 → X such that η(U) = xU ∈ U ∈ ∗sU0.
If U, V ∈ U0 and U ⊂ V , we can take in V a path α from xV to xU . We
note that a different path α′ determines the same arrow in πX. It is routine
to check that this construction gives an equivalence η : π(∗sUop

0 ) → πX. If
U ∈ TCOV(X), the inclusion U ⊂ U0 induces the composite π(∗sUop) →
π(∗sUop

0 )
η→ πX, which is also an equivalence of groupoids. Since the pro-

groupoid {π(∗sUop) | U ∈ TCOV(X)} and the constant pro-groupoid πX
satisfy the conditions of Lemma 1.2, we deduce that pro({π(∗sUop) | U ∈
TCOV(X)}, Sets) is equivalent to pro(πX, Sets). Therefore one has:

Theorem 4.1. Let X be a locally path-connected and semilocally 1-con-
nected space. Then the category of covering projections of X is equivalent
to SetsπX , the category of functors from πX to Sets.

5. Covering projections of compact metrisable spaces. The ob-
jective of this section is to reduce the pro-groupoid G of the category
pro(G, Sets) to a pro-group, a tower of groups or even a pro-discrete topo-
logical group. For this purpose, we use compact metrisable spaces in order
to obtain tower of groupoids, connectedness conditions to have a tower of
groups, and finally pointed movability conditions to have a surjective tower
of groups or a topological group.

In order to reduce a pro-groupoid to a tower of groupoids, we suppose
that X is a compact metrisable space. Using the Lebesgue Lemma, we can
construct a sequence

. . . ≥ Vn+1 ≥ Vn ≥ . . . ≥ V0

of open coverings which is cofinal in COV(X). This implies that

. . . ⊆ ∗sVn+1 ⊆ ∗sVn ⊆ . . . ⊆ ∗sV0

is cofinal in CRS(X). Therefore:
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(1) πCX is isomorphic to {πCX(∗sVn)} in pro Gpd,
(2) {πCX(∗sVn)} is isomorphic to {πCX(Vn)} in tow π0Gpd.

From Lemma 1.1, Proposition 1.1 and Corollary 3.1, we obtain the fol-
lowing:

Theorem 5.1. Let X be a compact metrisable space and suppose that
. . . ≥ Vn+1 ≥ Vn ≥ . . . ≥ V0 is a cofinal sequence in COV(X). Then the
category Cov projX is equivalent to pro({πCX(Vn)}, Sets).

If X is a connected compact metrisable space and U is an open cover-
ing, then |CX(U)| is 0-connected. We can check this fact as follows: For
x, y ∈ X, a U-path from x to y is a finite family U0, . . . , Um such that
x ∈ U0, y ∈ Um and U0 ∩U1 6= ∅, . . . , Um−1 ∩Um 6= ∅. If U,U ′ ∈ U , a U-path
from U to U ′ is a finite family U0, . . . , Um such that U = U0, U ′ = Um
and U0 ∩ U1 6= ∅, . . . , Um−1 ∩ Um 6= ∅. For x0 ∈ X it is easy to check that
C0 = {x | there is a U-path from x0 to x} is open and closed in X, and since
X is connected it follows that C0 = X. Now for a given U0 ∈ U if U is also
in U we can choose x0 ∈ U0 and x ∈ U . Because C0 = X there is a U-path
V0, . . . , Vm from x0 to x. Therefore U0, V0, . . . , Vm, U is a U-path from U0 to
U . This implies that the groupoid πCX(U) is connected. For a connected
groupoid π and an object U in π let π1 be the group of endomorphisms
of U . Then if π1 is considered as a groupoid with one object, the inclusion
π1 → π is an equivalence of groupoids or equivalently an isomorphism in
π0Gpd.

Suppose that X is a connected compact metrisable space and we have
a given point x ∈ X. Then there exists a sequence . . . ≥ Vn+1 ≥ Vn ≥ . . .
of open coverings; we can also assume that there are open subsets Vn ∈ Vn
such that x ∈ Vn ⊂ Vn+1. Denote by π1CX(Vi, Vi) the fundamental group
of the groupoid πCX(Vi) based at the object Vi. In this way, the sequence
of pointed open coverings induced by the pointed space (X,x) determines
a tower {π1CX(Vi, Vi)} of groups that will be denoted by π1C(X,x). Then
π1C(X,x) is isomorphic to {πCX(Vi)} in tow π0Gpd. From Proposition 1.1
and Theorem 5.1, we have:

Theorem 5.2. Let (X,x) be a pointed connected compact metrisable
space. Then Cov projX is equivalent to pro(π1C(X,x),Sets).

The category G-Sets for G a group (see §0) can be generalised for a
pro-group G as follows: Objects are morphisms η : G→ Aut(F ) in pro Gps,
where F is a set and Aut(F ) is the group of automorphisms, which can
be considered as a pro-group. A morphism f : η → η′ is given by a map
f̂ : F → F ′ and a morphism ηf : G→ Aut(f̂) such that the diagram
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Aut(F )

G Aut(f̂)

Aut(F ′)

η

xxxxxxx<<

ηf
//

η′

FFFFFFF"" ²²

OO

is commutative.
Recall that in §1 for a pro-group G we have constructed the category

pro(G, Sets) as a category of right fractions (G, Sets)Σ−1. An object
(G(i), F ) in (G, Sets) is determined by a homomorphism F : G(i) →
Aut(F (∗)), where F (∗) is the set obtained by the functor F : G(i) → Sets
when it is applied to the unique object ∗ of the category G(i) (we denote by
F both the functor and the homomorphism). It is clear that F represents
a unique morphism ηF : G → Aut(F (∗)), which is an object in G-Sets. On
the other hand, a morphism α = (i → j, θα : F → HGij) from (G(i), F )
to (G(j), H) induces a map (θα)∗ : F (∗) → H(∗) and a homomorphism
(F,HGij) : G(i)→ Aut((θα)∗) which represents a morphism ηα : ηF → ηH .
This functor factorizes to pro(G, Sets) and one can check the following result:

Proposition 5.1. For a given pro-group G the category pro(G, Sets) is
equivalent to the category G-Sets.

As a consequence of this description and Theorem 5.2, for a finite set
{1, . . . , d} one has the following version of the fundamental theorem of over-
lay theory proved by Fox [F1, F2].

Corollary 5.1. Let X be a connected compact metrisable space X and
let x be a point of X. Then the d-fold covering projections X are in bi-unique
correspondence with the representations up to conjugation of the fundamen-
tal pro-group π1C(X,x) in the symmetric group Σd of degree d.

P r o o f. Two d-fold covering projections p, p′ are isomorphic in the cate-
gory Cov projX if and only if the corresponding objects η, η′ : π1C(X,x)→
Σd are isomorphic in the category π1C(X,x)-Sets. If f : η → η′ is an
isomorphism given by f̂ ∈ Σd and ηf : π1C(X,x) → Aut(f̂), then for
some pointed open covering (Vi, Vi) and each element g ∈ π1CX(Vi, Vi), we
have ηf (g) = (η(g), η′(g)); that is, the following diagram commutes, where
F = {1, . . . , d}:

F F

F F

η(g) //

f̂

²²
f̂

²²η′(g) //
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This implies that the representations η and η′ are conjugate. Conversely, if
η and η′ are conjugate, then they are isomorphic in the category G-Sets.

Remark. Notice that in this corollary we have considered connected
compact metrisable spaces instead of connected separable metrisable spaces
of Fox’s overlay theorem (see [F1]). The notion of fundamental pro-group in
the corollary corresponds to the one of the fundamental tropes of the space
considered by Fox. It is not hard to give a version of our main Theorem
2.2 for a connected space with a base point. In this case the pro-groupoid
reduces to a pro-group and a version of Fox’s theorem can be obtained for
covering projections over a pointed connected space with a fibre F . That is,
we can avoid the separable metrisable condition and we can consider infinite
fibres.

For an object G in tow Gps, limG can be provided with the inverse limit
topology and we have the category of continuous limG-sets defined in §0.
The canonical map θ : limG→ G induces a functor θ∗ : G-Sets→ limG-Sets
as follows:

If f : η → η′ is a morphism in G-Sets represented by a map f̂ : F → F ′

and a commutative diagram

Aut(F )

G Aut(f̂)

Aut(F ′)

η

xxxxxxx<<

ηf
//

η′

FFFFFFF"" ²²

OO

we consider θ∗(f) = fθ : ηθ → η′θ represented by the diagram

Aut(F )

limG Aut(f̂)

Aut(F ′)

ηθ

uuuuuuuu::

ηfθ
//

η′θ

IIIIIIII$$ ²²

OO

If the bonding maps, G(i+1)→ G(i), are surjective, the map θ : limG→
G is an epimorphism in tow Gps. Then if θ∗(f) = θ∗(g), we have ηfθ = ηgθ.
Therefore ηf = ηg and this implies that f = g.

On the other hand, if η : limG→ Aut(f̂) is a continuous homomorphism,
since Aut(f̂) has the discrete topology, η−1{1} is an open neighbourhood
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of 1, and so there is θ(i) : limG→ G(i) such that Ker θ(i) ⊂ η−1{1}. Hence
η factors as

limG Aut(f̂)

G(i)

η //

θ

EEEEEEE""
ηfwwwwwww;;

And ηf defines a morphism (ηf , f̂) : η → η′ such that θ∗(ηf , f̂) = (η, f̂).
Therefore one has:

Proposition 5.2. Let G be an object in tow Gps such that the bonding
morphisms of G are surjective maps. Then the category G-Sets is equivalent
to the category limG-Sets, where limG is provided with the inverse limit
topology.

Remark. The proof given above only works for surjective towers of
groups. For a more general surjective pro-group G, limG can be trivial
(see [M]). In this case, Moerdijk notes that a similar result is obtained by
taking the inverse limit in the category of localic groups.

In order to obtain pro-groups it is convenient to work with pointed spaces
and if we want to have surjective pro-groups, it will be useful to recall some
notion of pointed movability. A pointed open covering is a pair (U , U0) where
U0 ∈ U ; (V, V0) refines (U , U0) if V ≥ U and V0 ⊂ U0.

Definition 5.2. A pointed space (X,x) is said to be 1-movable if for
every pointed open covering (U , U0) there is a finer pointed open cover-
ing (V, V0) ≥ (U , U0) such that for any pointed open covering (W,W0) ≥
(U , U0), and for any pointed map h : (P, ∗) → (|CX(V)|, ∗), where P is
a CW -complex with dimP ≤ 1, there exists a pointed map r : (P, ∗) →
(|CX(W)|, ∗) such that |CX|WU r is homotopic to |CX|VUh relative to the
base point.

Now we refer the reader to Theorem 2 of [M-S, Ch. II, §8.1] to deduce that
if (X,x) is 1-movable, then the pro-group π1C(X,x) satisfies the Mittag-
Leffler condition, and by Theorem 7 of [M-S, Ch. II, §6.2], π1C(X,x) is
isomorphic to a pro-group G whose bonding maps are surjective. Moreover,
if π1C(X,x) is isomorphic to a tower, then we can suppose that G is a tower.

Theorem 5.3. Let X be a connected compact metrisable space and let
x be a point of X. Suppose that (X,x) is 1-movable and denote by π̌1(X,x)
the Čech fundamental group of (X,x), π̌1(X,x) = limπ1C(X,x), provided
with the inverse limit topology. Then the category of covering projections of
X is equivalent to the category of continuous π̌1(X,x)-sets.

P r o o f. This follows from Theorem 5.2 and Propositions 5.1 and 5.2.



30 L. J. Hernández-Paricio

Remarks. (1) Let X be a pointed connected, compact and metrisable
space and let π1CX denote its fundamental pro-group. For a set F , the
Brown P functor (see [H]) carries a morphism η : π1CX → AutF to a mor-
phism of the form Pη : Pπ1CX → P AutF and then we have the composite
Pπ1CX → P AutF → AutPF . Since Pπ1CX is isomorphic to the Quigley
inward group IπQ1 (X), the category of covering projections of X with fibre
F is also equivalent to a category of “distinguished” representations of the
Quigley inward group IπQ1 (X) with “fibre” PF . In [H], we have constructed
a space PRCX whose fundamental group is isomorphic to the Quigley in-
ward group IπQ1 (X). Thus the category of covering projections of X with
fibre F is equivalent to a category of “distinguished” covering projections of
PRCX with fibre PF .

(2) If the pointed spaceX of remark (1) is also 2-movable (see [M-S]) then
the fundamental group of the homotopy limit limR CX is isomorphic to the
Čech fundamental group ofX. Therefore the category of covering projections
of X is equivalent to a category of “distinguished” covering projections of
limR CX.

(3) Some additional results about classification of principal G-bundles of
a space X can be obtained in terms of morphisms of the form πCX → G, or
limπCX → G, even in the case where G is a pro-discrete group. This is also
connected with the first cohomology set of a pro-groupoid or a topological
group with coefficients in a discrete or pro-discrete group.
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