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Dedicated to Professor Mark Mahowald on the
occasion of his retirement from teaching calculus

Abstract. We prove that the integral Hurewicz image of the cokernel J spectrum
detects precisely the Kervaire invariant one elements and nothing else, which may be
viewed as an analogue of the Curtis–Madsen conjecture on the unstable mod 2 Hurewicz
image of Q0S

0.

1. Introduction. Ever since Browder’s paper [Bro], the Kervaire invari-
ant one problem [Ker], [KM] has been very influential in homotopy theory
(see [Mah2], [BJM1], [BJM2], [Min2], [Min4] for instance). One of the related
problems is the Curtis–Madsen conjecture [Cur], [Mad] which predicts that
the mod 2 unstable Hurewicz map of Q0S

0 detects precisely the Hopf in-
variant one elements, the Kervaire invariant one elements, and nothing else.
However, the Curtis–Madsen conjecture still appears to be an extremely
difficult problem, as is the Kervaire invariant problem itself (cf. [Wel]).

Now the purpose of this paper is to prove an analogue of Madsen’s
conjecture. To motivate our result, we note that Madsen’s conjecture can
be reduced to the conjecture that the mod 2 unstable Hurewicz map of
CokerJ detects precisely the Kervaire invariant one elements and nothing
else. This reduction follows from the Quillen–Tornehave splitting Q0S

0 '
CokerJ × Im J (cf. [May]; see [Min5, §5] for a discussion), with Im J well
understood [Qui2], [Sul], [May], [Mah4]. Then our main result, Theorem 4.1,
is that the integral Hurewicz image of the spectrum coker j, whose associ-
ated infinite loop space is CokerJ , detects precisely the Kervaire invariant
one elements and nothing else.
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Our approach consists of a study of the j-Hurewicz image of the HZ(p)
(§3) and a “trick” of a commutative diagram (see the proof of Theorem 4.1).
The former gives us a very short proof of the Barratt–Jones–Mahowald
conjecture [BJM2] concerning the j-Hurewicz image of RP∞, which was
also proved by Knapp [Kna]. While Knapp’s approach is longer for the
Barratt–Jones–Mahowald conjecture itself, we may interpret a pay-off of
Knapp’s approach, using our “trick” (see Theorem 4.5(ii)).

Our results and approach were announced in [Min1].

The author would like to express his gratitude to Karlheinz Knapp and
Erich Ossa for their hospitality during his visits to the University of Wup-
pertal.

Also, the author would like to express his gratitude to the referee for his
careful reading of a preliminary version of this paper.

Notations and conventions. As usual, we set q = 2(p − 1), and Z/p{g}
stands for a cyclic group with g as its generator. For simplicity, we set
P = Σ∞BΣp. HZ/p∗ and HZ(p)∗ stand for the mod p and mod Z(p) ho-
mology theories, respectively.

BP is the Brown–Peterson spectrum [BP], [Qui1] with

BP∗ = Z(p)[v1, v2, . . .],

where vn is the Hazewinkel generator [Haz]. For a multi-index I=(i1, . . . , in),
we write |I| = i1 + . . . + in and vI = vi11 . . . vinn . BP 〈1〉 is the Johnson–
Wilson spectrum [JW] with BP 〈1〉∗ = Z(p)[v1], which is equipped with the
canonical map % : BP → BP 〈1〉 characterized in homotopy by v1 7→ v1,
vi 7→ 0 if i ≥ 2.

In the following, k is chosen to be 3 (resp. to generate (Z/p2)∗) if p = 2
(resp. if p is odd), and ψk is the corresponding Adams operation (cf. [Nov],
[Ara]). For E = BP or BP 〈1〉, JE = fiber of ψk − 1 : E → E.

Furthermore, we set

jC = fiber of ψk − 1 : BP 〈1〉 → ΣqBP 〈1〉,

j =
{

fiber of ψk − 1 : bo→ Σ4bsp if p = 2,

jC if p > 2.

These various J spectra are related by the following commutative diagrams
of cofiber sequences:

Σ−1BP JBP BP BP

Σ−1BP 〈1〉 JBP 〈1〉 BP 〈1〉 BP 〈1〉

m //

%

²²

//

%′

²²

ψk−1 //

%

²²
%

²²
m′ // // ψk−1 //
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Σq−1BP 〈1〉 jC BP 〈1〉 ΣqBP 〈1〉

Σ−1BP 〈1〉 JBP 〈1〉 BP 〈1〉 BP 〈1〉

m′′ //

×v1

²²

//

γ

²²

ψk−1 //
�����

����� ×v1

²²
m′ // // ψk−1 //

Let E be a spectrum with a specified “unit” map S0 → E (e.g. a ring
spectrum). Then we denote the fiber of S0 → E by E. However, for j = E,
we write

coker j = j

to emphasize that it is the cokernel J spectrum. For an arbitrary spec-
trum X, we write

HE : π∗(X)→ E∗(X)

for the stable E-Hurewicz map induced by S0 → E, and Es,t2 (X,E) = E2

for the second term of the Adams spectral sequence based on E abutting to
πt−s(X).

When E = BP , we may make the usual homological algebra interpreta-
tion [Rav3]:

Exts,tBP∗BP (BP∗, BP∗(X)) = Es,t2 (X,BP ),

PBP∗(X) = Ext0,∗
BP∗BP (BP∗, BP∗(X)).

Furthermore, for a BP∗BP -comodule M , we may use either one of

Hs,t(M) = Exts,t(M)

to stand for Exts,tBP∗BP (BP∗,M), when there is no danger of confusion.

2. Chromatic spectral sequence. We first recall the fundamental
concept of the chromatic spectral sequence due to Miller–Ravenel–Wilson
[MRW]. Set N0 := BP∗; define BP∗BP -comodules Nn and Mn inductively
by the short exact sequence 0 → Nn → Mn → Nn+1 → 0, where Mn =
v−1
n BP∗ ⊗BP∗ Nn. By the standard argument, these short exact sequences

give us the chromatic spectral sequence converging to Ext(BP∗) with En,s1 =
Exts(Mn).

As noticed by Ravenel [Rav4], [Rav2], the chromatic spectral sequence
may be realized geometrically. Set N0 := S0; define spectra Nn and Mn

inductively by the cofiber sequence Nn →Mn → Nn+1, where Mn = LnNn.
(Here Ln is the Bousfield localization [Bou] with respect to the spectrum
v−1
n BP .) Applying BP∗(−) to this cofiber sequence, we recover the short

exact sequence above.
We now recall the determination of Ext0(N2) by Miller–Ravenel–Wilson

[MRW, Th. 6.1, L. 7.2] (for p odd) and Shimomura [Shi, Th. 3.4] (for p = 2).
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Theorem 2.1 [MRW]. For an odd prime p, Ext0(N2) is the direct sum
of cyclic p-groups generated by

(1) (a) x2,i/(pv
j
1) for i ≥ 0, j ≥ 1 such that j ≤ pi and either p - j or

a2,i−1 < j;
(b) x2,i/(pk+1vj1) for i ≥ 0, j ≥ 1, k ≥ 1 such that pk | j ≤ a2,i−k

and either pk+1 - j or a2,i−k−1 < j;
(c) xs2,i/(p

k+1vj1) for p - s ≥ 2, i ≥ 0, j ≥ 1, k ≥ 0, such that pk | j ≤
a2,i−k and either pk+1 - j or a2,i−k−1 < j; and

(2) 1/(pk+1vj1) for k ≥ 0, pk | j, and j ≥ 1.

Here, a2,i’s are defined by a2,0 = 1, a2,i = pi + pi−1− 1 for i ≥ 1; and x2,i’s
are defined inductively by x2,0 = v2, x2,1 = vp2 − vp1v

−1
2 v3, x2,2 = xp2,1 −

vp
2−1

1 vp
2−p+1

2 − vp2+p−1
1 vp

2−2p
2 v3, x2,i = xp2,i−1− 2v(p+1)(pi−1−1)

1 v
(p−1)pi−1+1
2

for i ≥ 3.

Theorem 2.2 [Shi]. For p = 2, Ext0(N2) is the direct sum of cyclic
2-groups generated by

(1) (a) vs2/(2v1) for s odd and ≥ 1;
(b) xs2,1/(2v

j
1) for s odd and ≥ 1, and j = 1 or 2;

(c) x2,2/(2vk1 ) for k = 1, 3, 4;
(d) xs2,2/(2v

k
1 ) for s odd and ≥ 3, and k = 1, 3, 4, 5, or 6;

(e) x2,2/(4x1,1); and
(f) xs2,2/(8x1,1) for s odd and ≥ 3;

(2) (a) x2,i/(2v
j
1) for i ≥ 3, j ≤ 2i, and either j is odd or a2,i−1 < j;

and
(b) xs2,i/(2v

j
1) for s odd and ≥ 3, i ≥ 3, j ≤ a2,i, and either j is odd

or a2,i−1 < j;

(3) xs2,i/(2
k+1vj2

k

1 ) for s odd and ≥ 1, j, k ≥ 1, i ≥ 3, and a2,i−k−1 <

j2k ≤ a2,i−k;
(4) xs2,i/(2

k+2xj1,k) for s odd and ≥ 1, i ≥ 3, k ≥ 1, j odd and ≥ 1, and
j2k ≤ a2,i−k−1; and

(5) 1/(2vj1), 1/(2k+2xj1,k) for j odd and ≥ 1 and k ≥ 1.

Here, a2,i’s are defined by a2,0 = 1, a2,1 = 2, a2,i = 3 · 2i−1 for i ≥ 2;
x2,i’s are defined inductively by x2,0 = v2, x2,1 = v2

2 − v2
1v
−1
2 v3, x2,2 =

x2
2,1− v3

1v
3
2 − v5

1v3, x2,i = x2
2,i−1 for i ≥ 3; and x1,i’s are defined inductively

by x1,0 = v1, x1,1 = v2
1 + 4v−1

1 v2, x1,i = x2
1,i−1 for i ≥ 2.

For our purpose, we must slightly modify the chromatic object. We first
recall (cf. [Rav3, p. 188]) that the I∞-adic filtration for elements in Mn or
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Nn is defined by
vI

vJ
∈ F k ⇔ |I| − |J | ≥ k.

Then, just as before, we have a short exact sequence

0→ F kNn → F kMn → F kNn+1 → 0

for any k ∈ Z and n ≥ 0. Notice that the case k = n = 0 is induced
by the cofiber sequence S0 → HZ(p) → ΣHZ(p), because BP∗HZ(p) =
Z(p)[v1/p, v2/p, . . .]. By an analogy with the construction of N2, we define
Ñ2 to be the cofiber of HZ(p) → L1HZ(p), which leads to a commutative
diagram of cofiber sequences

ΣHZ(p) L1ΣHZ(p) Ñ2

ΣHQ = N1 L1ΣHQ = M1 N2.

//

²²

//
�����

�����
²²

// //

Here the right hand side vertical map induces a surjective BP∗BP -comodule
map e : Ñ2 ³ N2, where Ñ2 = BP∗(Ñ2) and N2 = BP∗(N2).

We now analyze the corresponding algebraic situation in detail.

Lemma 2.3. Consider a commutative diagram of exact sequences

0 F 0N1 F 0M1 F 0N2 0

0 F 0N1 M1 Ñ2 0

0 N1 M1 N2 0

// //�����

�����

//

²²

//

i

²²
// //

²²

//�����

�����

//

e

²²
// // // //

where unnamed maps are the obvious ones, i and e are the induced maps,
and the composite e ◦ i is the canonical inclusion of the filtration. Then:

(i) e∗ : H0,t(Ñ2)→ H0,t(N2) is an isomorphism, except for t = 0.
(ii) For t > 0, the inclusion i∗ : H0,t(F 0N2)→ H0,t(Ñ2) is onto except

for the elements which are sent to one of x2,i/(pv
pi

1 ) ∈ Ext(N2) by the
isomorphism e∗.

P r o o f. (i) It suffices to show that Hs,t(Ker e) = 0 except for s = t = 0.
For this, note that Ker e ∼= N1/F 0N1 ∼= M0/F 0M0, where the latter iso-
morphism follows from F 0N0 = N0 = BP∗. However, F 0M0 = BP∗(HZ(p))
and M0 = BP∗(HQ), where both HZ(p) and HQ are BP -module spectra.
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Thus, Hs,t(F 0M0) ∼= Hs,t(M0) ∼= 0, except for s = t = 0. Now the claim
follows immediately.

(ii) Having established (i), this follows immediately by looking at the
I∞-adic filtration of the generators of Ext0(N2), which can be read off from
Theorems 2.1 and 2.2. Just notice that all the positive dimensional ele-
ments listed in Theorem 2.1 and Theorem 2.2 are contained in F 0N2 except
x2,i/(pv

pi

1 ) (which in turn implies x2,i/(pv
pi

1 ) is not hit because of the left
exactness of H0). (We do not have to consider Theorems 2.1(2) and 2.2(5),
because they are in the negative dimensions.) Similar analysis showed up
during the study of the Thom reduction ([Rav3, 5.4.6]).

Remark 2.4. The previous lemma distinguishes x2,j/(pv
pj

1 ), which es-
sentially corresponds to the Kervaire invariant one elements for j ≥ 1 (resp.
j ≥ 0) when p = 2 (resp. p odd) [Rav1], [Rav3]. For this, we first note that,
from Theorems 2.1 and 2.2, we can easily see (cf. [Rav3, 5.4.6])

H0,t(N2) = (e ◦ i)∗H0,t(F 0N2)⊕ Z/p
{
x2,j

pvp
j

1

}
,

where the second factor shows up only if t = qpj+1. Then, as discussed in
[Rav3, 5.4.6], the following composite of the boundary homomorphisms and
the Thom reduction

H0,qpj+1
(N2)→ H1,qpj+1

(N1)→ H2,qpj+1
(N0)

= Ext2,qpj+1

BP∗BP (BP∗, BP∗)→ Ext2,qpj+1

A∗ (Z/p,Z/p)

is characterized by the following two properties:

(1) (e ◦ i)∗H0,qpj+1
(F 0N2) goes to 0;

(2) x2,j/(pv
pj

1 ) goes to h2
j+1 (resp. −bj) if p = 2 (resp. if p is odd).

Furthermore, if there is a Kervaire invariant one element in πsqpj+1−2(S0)
for j ≥ 1 (resp. j ≥ 0) when p = 2 (resp. p odd), then it is detected in
H0,qpj+1

(N2) because such an element should come from πs∗(coker j). From
this discussion, any element in H0,qpj+1

(N2) \ (e ◦ i)∗H0,qpj+1
(F 0N2) ∼=

H0,qpj+1
(Ñ2) \ i∗H0,qpj+1

(F 0N2) may be called a Kervaire invariant one
element.

For our purpose, x2,j/(pv
pj

1 ) is rather difficult to deal with because of the
complicated definition of x2,j . Now the following lemma provides us with a
simpler substitute.

Lemma 2.5. (i) (cf. [Rav1]) vp
j

2 /(pvp
j

1 ) ∈ F−1 \ F 0 is primitive in N2,
but not so in Ñ2.
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(ii) vp
j

2 /(pvp
j

1 )− vpj+1

1 /(pp
j+1+1) ∈ F−1 \F 0 is primitive in Ñ2 and sent

to vp
j

2 /(pvp
j

1 ) by the isomorphism e∗.

P r o o f. (i) Since ηR(v2) ≡ v2 + v1t
p
1 − vp1t1 mod p, we have

ηR(vp
j

2 ) ≡ vpj2 + vp
j

1 tp
j+1

1 (mod (p, vp
j+1

1 )).

Also, since ηR(v1) = v1 + pt1, ηR(v−1
1 ) ≡ v−1

1 (mod p). Thus,

ηR

(
vp

j

2

pvp
j

1

)
≡ vp

j

2

pvp
j

1

+
tp
j+1

1

p
,

where tp
j+1

1 /p = 0 in N2, but not so in Ñ2.
(ii) Since ηR(v1) = v1 + pt1, we have

ηR(vp
j+1

1 ) ≡ vpj+1

1 + pp
j+1
tp
j+1

1 ,

modulo elements in filtration ≥ pj+1 + 1. Thus,

ηR

(
vp

j+1

1

ppj+1+1

)
≡ vp

j+1

1

ppj+1+1
+
tp
j+1

1

p
,

from which the claim follows.

Finally, we have arrived at the main result of this section:

Corollary 2.6. For t > 0, we have

H0,t(Ñ2) = i∗H0,t(F 0N2)⊕ Z/p
{
vp

j

2

pvp
j

1

− vp
j+1

1

ppj+1+1

}
,

where the second factor shows up only if t = qpj+1.

3. Hj : π∗(HZ(p)) → j∗(HZ(p)). Consider the following commutative
diagram of cofiber sequences:

S0 BP ΣBP

JBP BP BP ΣJBP ,

u //

²²

c //������

������ l

²²
// ψk−1 // m //

where u is the unit map, c is the induced cofiber map, m is the cofiber
map induced by ψk − 1, and the induced map l factorizes as ΣBP u∧1−→
BP ∧ΣBP l′→ BP . From this, we see ψk − 1 factorizes as

BP
d1→ BP ∧ΣBP l′→ BP,
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where d1 := (u ∧ 1) ◦ c induces the first differential in the canonical BP -
based Adams–Novikov spectral sequence. This fact clearly indicates that
m ◦ l′ induces a natural transformation

L : Ext1(BP∗(X))→ JBP (X)

and we have a commutative diagram

π∗(BP ∧X) Ext1(BP∗(X))

π∗(X) JBP (X),

//

²²
L

²²HJBP //

where the unnamed maps are the obvious ones.

Lemma 3.1. Let W
f→ X

g→ Y
h→ ΣW be a cofiber sequence with

BP∗(h) = 0. Then we have a commutative diagram

π∗(Y ) π∗(ΣW )

PBP∗(Y ) JBP ∗(ΣW )

π∗(h) //

HBP

²²
HJBP

²²
δ //

where δ is the composition of the connecting homomorphism associated with

0 BP∗(W ) BP∗(X) BP∗(Y ) 0

0 BP∗(W ) BP∗(X) BP∗(Y ) 0

// //

ψk−1
²²

//

ψk−1
²²

//

ψk−1
²²

// // // //

and the canonical map BP∗(W ) → JBP ∗(ΣW ) induced by m : Σ−1BP
→ JBP .

P r o o f. Let α ∈ π∗(Y ). Set a := HBP (α) ∈ PBP∗(Y ) j Ker(ψk − 1).
Then, since BP∗(h) = 0, the geometric connecting homomorphism theorem
([JMWZ], [Rav, 2.3.4]) implies that π∗(h)(α) is detected in BP∗(ΣW ) by
δ′(a), where δ′ is the connecting homomorphism associated with

0 BP∗(W ) BP∗(X) BP∗(Y ) 0

0 BP∗(ΣBP ∧W ) BP∗(ΣBP ∧X) BP∗(ΣBP ∧ Y ) 0

// //

²²

//

²²

//

²²
// // // //
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where vertical maps are induced by d1. Since ψk − 1 = l′ ◦ d1, the claim
follows.

Proposition 3.2. Suppose t > 0. Then the composite

H0,t(Ñ2) = PBPt(Ñ2) δ→ JBP t−1(ΣHZ(p))
%′→ JBP 〈1〉t−1(ΣHZ(p))

is characterized by :

(i) The precomposition with i∗ : H0,t(F 0N2)→ H0,t(Ñ2) is trivial.

(ii) vp
j

2 /(pvp
j

1 )−vpj+1

1 /(pp
j+1+1) goes non-trivially to an order p element

in JBP 〈1〉qpj+1−2(HZ(p)).

P r o o f. We first examine this composite %′◦δ in detail. Let x ∈ H0,t(Ñ2).
We can define a canonical lift x̃ ∈ M1 with respect to the short exact se-
quence 0→ F 0N1 →M1 → Ñ2 → 0. In fact, we can do so by regarding our
representatives of H0,t(Ñ2) (t 6= 0), given by Theorems 2.1, 2.2, and Corol-
lary 2.6, as elements of M1. Then calculate (ψk−1)x̃, which is (kn−1)x̃ if x ∈
H0,2n(Ñ2) [Ara]. This element turns out to be in F 0N1 = BP∗(ΣHZ(p)).
Now the desired value %′ ◦ δ(x) is calculated as the image of (ψk−1)x̃ under

the composite BPt(ΣHZ(p))
%→ BP 〈1〉t(ΣHZ(p))

m′→ JBP 〈1〉t−1(ΣHZ(p)),
where we have used the notations and the commutativity of the diagram at
the end of Section 1. We also notice that

BP∗(ΣHZ(p)) ∼= (Z(p)[v1/p, v2/p, . . .])/(Z(p)[v1, v2, . . .]),

BP 〈1〉∗(ΣHZ(p)) ∼= (Z(p)[v1/p])/(Z(p)[v1])⊕ (sum of Z/p’s)

(cf. [MM]), and % : BP∗(ΣHZ(p)) → BP 〈1〉∗(ΣHZ(p)) is characterized by
v1/p 7→ v1/p, vl/p 7→ 0 (l ≥ 2).

For (i), the claim follows from the fact that every positive-dimensional
element in H0,t(Ñ2) that is in the image of i∗ is i∗ of a fraction that become
0 when vl is set to 0 for l ≥ 2 (cf. Theorems 2.1 and 2.2.). In fact, if x has such
a property, then (ψk − 1)x̃ has the same property. Thus, %((ψk − 1)x̃) = 0,
which verifies the claim.

For (ii), we notice

BP 〈1〉qpj+1−1(HZ(p)) = Z/pp
j+1
{(

v1

p

)pj+1}
⊕ (sum of Z/p’s),

and choose e so that k(p−1)pj+1 − 1 = u · pe with p - u. Then pj+1 − e ≥ 0,
because e = j+ 3 (resp. e = j+ 2) if p = 2 (resp. if p is odd) [Ada2, (2.12)].
Now let

x =
vp

j

2

pvp
j

1

− vp
j+1

1

ppj+1+1
.
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Then

%(ψk − 1)x̃ = −u · vp
j+1

1

ppj+1−e+1

becomes a nonzero element of order pp
j+1−e+1 in BP 〈1〉qpj+1−1(HZ(p)).

Thus, to show that %′ ◦ δ(x) is a nontrivial element of order p, it suffices

to show that −u · vpj+1

1 /pp
j+1−e+1 is not in the image of ψk − 1, in view of

the exact sequence

BP 〈1〉qpj+1−1(HZ(p))
ψk−1−→ BP 〈1〉qpj+1−1(HZ(p))

m′→ JBP 〈1〉qpj+1−2(HZ(p)).

For this purpose, since ψk − 1 acts on Z/ppj+1 ⊂ BP 〈1〉qpj+1−1(HZ(p)) as
multiplication by u · pe (recall that this cyclic group is the image of %), it
suffices to show ψk respects the direct sum decomposition BP 〈1〉∗(ΣHZ(p))∼= Z(p)[v1/p]/Z(p)[v1] ⊕ (sum of Z/p’s). However, this immediately follows
by noticing that the canonical map

BP 〈1〉∗(ΣHZ(p))→ E(1)∗(ΣHZ(p))

commutes with ψk, maps the factor Z(p)[v1/p]/Z(p)[v1] injectively, and kills
the other factor consisting of Z/p’s.

Remark 3.3. (i) Proposition 3.2 immediately solves the Barratt–Jones–
Mahowald Conjecture [BJM2], which claims any lift of a Kervaire invariant
one element is detected by the j-Hurewicz map Hj : π∗(P )→ j∗(P ).

(ii) We have another similar decomposition of BP 〈1〉∗(ΣHZ(p)). In fact,
let λ : P → HZ(p) be the lift of a Kahn–Priddy map, then BP 〈1〉∗(λ)
becomes injective and induces a direct sum decomposition

BP 〈1〉∗(HZ(p)) ∼= BP 〈1〉∗(P )⊕ (sum of Z/p’s).

By exactly the same argument as the one given at the end of the proof of
Proposition 3.2(ii), we find ψk respects this decomposition. In particular,
this implies JBP 〈1〉∗(λ) : JBP 〈1〉∗(P )→ JBP 〈1〉∗(HZ(p)) is an embedding.

Proposition 3.4. For ∗ > 0, the composite

π∗(S0) ∼= π∗(HZ(p))
HjC−→ jC(HZ(p))

detects precisely the BP∗-Adams–Novikov filtration one elements and the
Kervaire invariant one elements, and nothing else.

P r o o f. We first prove the same detection property for the composite

HJBP〈1〉 : π∗(HZ(p))
HjC−→ jC∗(HZ(p))

γ→ JBP 〈1〉∗(HZ(p)).

For this, applying Lemma 3.1 to the cofiber sequence ΣHZ(p) → L1ΣHZ(p)

(= M1)→ Ñ2 → Σ(ΣHZ(p)), we get the following commutative diagram:
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πs∗(Ñ2) πs∗−1(ΣHZ(p)) πs∗−1(M1)

PBP∗(Ñ2) JBP ∗−1(ΣHZ(p)) JBP 〈1〉∗−1(ΣHZ(p)).

//

²²

//

²²
δ // %′ //

From this, Remark 2.4, and Proposition 3.2, all the v1-torsion elements, i.e.
those annihilated in πs∗−1(M1), which are detected in JBP 〈1〉∗−1(ΣHZ(p))
are precisely the Kervaire invariant one elements in πsqpj+1−2(S0) for j ≥ 1
(resp. j ≥ 0) when p = 2 (resp. p odd), and nothing else. Thus, it suffices to
show that the set of the BP -Adams filtration 1 permanent cycle elements
is the same as, possibly modulo Kervaire invariant one elements, the set
of v1-local elements, i.e. those detected in π∗(M1), which are detected in
JBP 〈1〉∗−1(ΣHZ(p)). (When p = 2, it is easy to check the Kervaire invariant

one element η2 ∈ πs2(S0) is detected in jC(HZ(p)).)
Notice that this is trivial when p is odd, since all the v1-local elements are

of BP -Adams filtration 1 and they are all detected in BP 〈1〉∗−1(ΣHZ(p)).
However, we have to work extra for p = 2, because there are v1-periodic

elements of BP -Adams filtration ≥ 2. Since no element of BP -Adams filtra-
tion ≥ 3 is detected in JBP ∗−1(ΣHZ(p)) (cf. the diagram just before Lemma
3.1), it suffices to show no v1-periodic element of BP -Adams filtration 2 is
detected in JBP 〈1〉∗−1(ΣHZ(p)). Then, as is well known ([Rav3, 5.1]), any
v1-periodic BP -Adams filtration 2 (permanent cycle) element is of the form
ηp2n−1, where η ∈ πS1 (S0) is the usual generator and p2n−1 ∈ Ext1,2n(BP∗)
is some BP -Adams permanent cycle. Therefore, together with the Kahn–
Priddy theorem, it suffices to show that the η action on JBP 〈1〉2n−1(P ) is
trivial for relevant n.

For this purpose, we remark that, given p ∈ JBP 〈1〉2n−1(P ), ηp ∈
JBP 〈1〉2n(P ) is calculated via the geometric boundary theorem associated

with S1 η→ S0 → S0∪η e2 → S2, smashed with P . In fact, let BP 〈1〉∗(S0∪η
e2) = BP 〈1〉∗{x0, x2}, where the generators x0 ∈ BP 〈1〉0, x2 ∈ BP 〈1〉2 are
chosen so that ψ3x2 = x2 + v1x0. Now recall ψ3|BP 〈1〉2n−1(P ) = multipli-
cation by 3n (cf. the proof of Proposition 3.2). Then, regarding x2 ⊗ p ∈
BP 〈1〉∗((S0 ∪η e2) ∧ P ) and using (ψ3 − 1)(p) = 0, we calculate

(ψ3− 1)(x2 ⊗ p) = (ψ3x2)⊗ (ψ3p)−x2 ⊗ p= (x2 + v1x0)⊗ (ψ3p)−x2 ⊗ p
= x2⊗ (ψ3− 1)p+x0⊗ (3nv1p) = x0⊗ (3nv1p),

from which we see
ηp = m′(3nv1p),

where m′ : BP 〈1〉2n+1(P )→ JBP 〈1〉2n(P ). Thus, to show ηp = 0, it suffices
to show v1p ∈ (ψ3 − 1)(BP 〈1〉2n+1(P )).
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This is certainly the case for n even, since v1p ∈ v1BP 〈1〉2n−1(P ) =
2BP 〈1〉2n+1(P ) and (ψ3−1)|BP 〈1〉2·odd−1(P ) = 2 · (odd), where we have used

ν2(3n − 1) =
{
ν2(n) + 2 if n is even,
1 if n is odd.

For n odd, (ψ3 − 1)|BP 〈1〉2·odd−1 = 2 · (odd) implies 2p = 0, and so
2v1p = 0 in BP 〈1〉2n+1(P ). Since BP 〈1〉2n+1(P ) ∼= Z/2n+1, we see v1p ∈
2nBP 〈1〉2n+1(P ) ⊂ BP 〈1〉2(n+1)−1(P ). So this element is in the (ψ3 − 1)
image as far as

n ≥ ν2(n+ 1) + 2.
This is certainly the case for any odd n ≥ 5. Furthermore, the cases n = 3
and n = 1 are irrelevant, for πs5(S0) ∼= 0 and πs2(S0) ∼= Z/2 is generated by
the Kervaire invariant one element θ1.

Thus, the above discussion completes the proof of the detection property
of the composite

π∗(S0) ∼= π∗(HZ(p))
HjC−→ jC∗(HZ(p))

γ→ JBP 〈1〉∗(HZ(p)).

Finally, to complete the proof of Proposition 3.4, we must show γ is
injective on the image of HjC. For this, consider the following commutative
diagram:

π∗(P ) jC∗(P ) JBP 〈1〉(P )

π∗(HZ(p)) jC∗(HZ(p)) JBP 〈1〉(HZ(p))

//

π∗(λ)
²²

γ(P ) //

jC∗(λ)
²²

JBP〈1〉∗(λ)

²²
// γ(HZ(p)) //

Since π∗(λ) is surjective by the Kahn–Priddy theorem [KP] and JBP 〈1〉∗(λ)
is injective by Remark 3.3(ii), it suffices to show γ(P ) is injective. But,
this immediately follows from the following commutative diagram of exact
sequences:

0 jCqi−1(P ) Z/pi Z/pi−1 jCqi−2(P ) 0

0 JBP 〈1〉qi−1(P ) Z/pi Z/pi JBP 〈1〉qi−2(P ) 0

// //

²²

ψk−1//
������

������

//

injection

²²

//

²²
// // ψk−1 // // //

For our purpose, we need to prove a statement for the j-Hurewicz map,
rather than the jC-Hurewicz map. With Proposition 3.4 at hand, we may
restrict ourselves to the case p = 2. Now, up to the Barratt–Jones–Mahowald
conjecture, the fundamental work of Mahowald [Mah4, Th. 7.10] implies,
when p = 2, Hj : π∗(P ) → j∗(P ) detects precisely the v1-local elements,
i.e. the image J related elements, the Kervaire invariant one elements, and
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some Kahn–Priddy lifts of the Mahowald ηj-elements (we call any image
J unrelated element in πs2j (S

0) detected by h1hj a Mahowald ηj-element ,
which exists by [Mah3]; we also assume j ≥ 4, for otherwise it would become
an image J related element), and nothing else.

Thus, we must determine the fate of the image of the Mahowald ηj-
elements under the map j∗(λ) : j∗(P ) → j∗(HZ(2)). For this, recall from
[Mah4, pp. 97–98] that, for j ≥ 3, j2j (P ) ∼= Z/2⊕ Z/2, where the first fac-
tor gives the stable Hopf invariant ν and the second factor corresponds
to the Adams µ2j -element. When we consider the composite j2j (P ) →
j2j (HZ(2)) → j2j (S0) ∼= Z/2, the second factor goes isomorphically to the
target, while the first factor is annihilated. Note that from our assumption
that ηj is not detected in πs∗(S

0) by the image of J , if any of its Kahn–Priddy
lifts is detected in j2j (P ), then the image should be the generator of the first
factor. Let us denote this generator of the first factor by gj ∈ j2j (P ). We
now prove the following:

Lemma 3.5. (i) For any j, there is a choice of ηj which has two distinct
Kahn–Priddy lifts kj and lj such that Hj(kj) = gj and Hj(lj) = 0, where
Hj : π∗(P )→ j∗(P ).

(ii) No ηj is detected by π∗(S0) ∼= π∗(HZ(2))
Hj→ j∗(HZ(2)).

P r o o f. (i) (cf. [CLM]) As was discussed in [CJM, (4.10)], there exists a
Kahn–Priddy lift lj of some ηj such that lj : S2j → P 2j−1 ⊂ P is detected

by the functional Sq2j -operation. So, this element is detected by h1hj in the
Adams spectral sequence of the sphere and, for dimensional reasons, this
element does not have ν as its stable Hopf invariant. Thus, by adding µ2j if
necessary to make it image J unrelated, we may assume lj is a Kahn–Priddy
lift of some ηj such that Hj(lj) = 0.

To construct kj , we recall [Seg], [Kuh] that an inverse of the Kahn–Priddy

map may be provided by the composite Q0S
0 s' Q0S

0 JH→ QBZ/2, where
JH is the James–Hopf map associated with the Kahn–Snaith splitting [Kah],
[Sna] and s is a self homotopy equivalence used to make λ◦JH ◦s homotopic
to the identity. Now, we set kj : S2j → P to be the lift of ηj (which is the
Kahn–Priddy image of lj as above), obtained by applying JH ◦ s to (the
unstable adjoint of) ηj . Since the James–Hopf invariant converts the EHP -
sequence to the stable EHP -sequence [CMT], [Kuh], the claim follows from
[Mah1] (see [Min3] for a simpler treatment of this fact), which claims that
the Hopf invariant of any ηj is ν. We note that from the image J unrelated
assumption on ηj , kj is detected by gj , the generator of the first factor of
j2j (P ) ∼= Z/2⊕ Z/2, as was discussed just prior to Lemma 3.5.

(ii) Let η̃j be any ηj , i.e. an image J unrelated element detected by
h1hj , and let pj be its Kahn–Priddy lift. If Hj(pj) = 0 then the claim is
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trivial; we may assume Hj(pj) 6= 0. Then, from part (i) and the explanation
just before Lemma 3.5, Hj(pj) = gj = Hj(kj). This implies the composite

π∗(S0) ∼= π∗(HZ(p))
Hj→ j∗(HZ(p)) sends λ(pj) = η̃j and λ(kj) = ηj to the

same element. However, ηj is annihilated by this composite for ηj = λ(lj)
and Hj(lj) = 0. Thus, η̃j is also annihilated as desired.

Now, we have the main result of this section.

Theorem 3.6. For ∗ > 0, the composite

π∗(S0)
∼=→ π∗(HZ(p))

Hj→ j∗(HZ(p))

detects precisely the image J related elements and the Kervaire invariant
one elements, and nothing else.

P r o o f. The claim for the case p > 2 follows from Proposition 3.4. For
the case p = 2, by the above result of Mahowald [Mah4] and Lemma 3.5, this
composite detects at most the image J related elements and the Kervaire
invariant one elements. Of course, the image J related elements are detected
because they are the elements detected in j∗(S0) (via the map j∗(HZ(p))→
j∗(S0)). On the other hand, the Kervaire invariant one elements are detected
by Proposition 3.2 (see Remark 3.3(i)). Thus the claim follows.

4. Stable Hurewicz image of the cokernel J spectrum

Theorem 4.1. HZ(p) : π∗(coker j) → (HZ(p))∗(coker j) detects precisely
the Kervaire invariant one elements in πsqpj+1−2(S0) for j ≥ 1 (resp. j ≥ 0)
when p = 2 (resp. p odd), and nothing else.

P r o o f. Let i : coker j → S0 and i′ : HZ(p) → S0 be the fiber of the unit
maps of j and HZ(p), respectively. Then, in view of Theorem 3.6, it suffices
to show, for x ∈ π∗(coker j) (∗ > 0),

HZ(p)(x) 6= 0⇔ Hj(i′
−1
∗ (i∗(x))) 6= 0.

However, since i∗ is injective, this easily follows from the following commu-
tative diagram of exact sequences:

π∗(coker j ∧HZ(p)) π∗(HZ(p)) j∗(HZ(p))

π∗(coker j) π∗(S0)

(HZ(p))∗(coker j)

(i∧1)∗ //

1∧i′∗
²²

Hj //

i′∗ ∼=
²²

i∗ //

HZ(p)

²²
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As was mentioned in Section 1, this gives an analogue of Madsen’s con-
jecture about the unstable Hurewicz image of Q0S

0, when p = 2. For p ≥ 5,
Theorem 4.1 and the result of Ravenel [Rav1] implies the stable Hurewicz
image is nontrivial only for the bottom class element which corresponds to
β1 (= θ0 for p odd).

Corollary 4.2. For p ≥ 5, HZ(p) : π∗(coker j) → (HZ(p))∗(coker j)
detects only the bottom class element , i.e. a nonzero multiple of β1.

Actually, such a property is available for any prime p, if we consider the
mod p Hurewicz map instead.

Theorem 4.3. HZ/p : π∗(coker j) → (HZ/p)∗(coker j) detects only the
bottom class element , i.e. ν2 (resp. a nonzero multiple of β1) if p = 2 (resp.
if p is odd).

P r o o f. Since we may apply the same argument as the one given
in the proof of Theorem 4.1, it suffices to show that the obvious map
jqpj+1−2(HZ(p)) → jqpj+1−2(HZ(p)p) kills higher Kervaire invariant one el-
ements. Here, by higher Kervaire invariant one element, we mean θj for
j ≥ 4 (resp. j ≥ 1) when p = 2 (resp. when p is odd). For this, consider the
following commutative diagram of cofiber sequences:

Σ−1HZ(p) Σ−1HZ(p) Σ−1HZ/p

Σ−1HZ(p) HZ(p) HZ/p

∗ S0 S0

×p //
�����

�����

//

²² ²²
//

²²

//

²² ²²
// ________________________

First, we claim that the middle upper vertical map induces an isomorphism

jqpj+1−2(Σ−1HZ(p)) ∼= jqpj+1−2(HZ(p)).

In fact, this follows from jqpj+1−2(S0) = 0 and the surjectivity of j∗(HZ(p))
→ j∗(S0) (∗ > 0), which is induced by the middle lower vertical map.

Then, from an easy diagram chase, it suffices to show that the higher
Kervaire invariant one elements are detected in jqpj+1−2(HZ(p)) by a p-
divisible element. But this is actually the case for p = 2 by [Mah4, p. 98],
which claims that the image of Hj : πs2j+1−2(P ) → j2j+1−2(P ) ∼= Z/2j is
contained in Z/2 (j Z/2j) for j ≥ 1. For p odd, we can easily check this by
slightly modifying the calculation in the proof of Proposition 3.2(ii), using
the last commutative diagram in the proof of Proposition 3.4.
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From the proof of Theorem 4.3, we see that for any n the mod pn

Hurewicz image of cokernel J spectrum detects just finitely many Kervaire
invariant one elements and nothing else.

In [Kna], Knapp has also proved the Barratt–Jones–Mahowald conjec-
ture by a different method. To motivate his approach, we notice that, for
∗ 6= 0, π∗(BP 〈1〉) ∼= π∗(S0) ⊕ π∗+1(BP 〈1〉), where π∗(S0) is embedded
as the torsion part of π∗(BP 〈1〉); we let t : π∗(S0) → π∗(BP 〈1〉) be the
corresponding embedding. Now the main result of Knapp is the following.

Theorem 4.4 [Kna]. For ∗ > 1, the composite

π2∗−2(S0) t→ π2∗−2(BP 〈1〉) HjC−→ jC2∗−2(BP 〈1〉)
detects precisely the Kervaire invariant one elements and nothing else.

Warning : In [Kna], E stands for the cofiber of the unit map, not the
fiber of the unit map. Of course, our convention, including Theorem 4.4,
stands for the latter.

Knapp’s approach is a more complicated way of proving the Barratt–
Jones–Mahowald conjecture, but his result (quoted as Theorem 4.4) gives
an interesting corollary using a diagram like the one in the proof of Theo-
rem 4.1.

Theorem 4.5. Suppose p is odd. Then we have

(i) The BP -Hurewicz map of the cokernel J spectrum detects precisely
the Adams–Novikov 2-line elements and nothing else.

(ii) The BP 〈1〉 Hurewicz image of the cokernel J spectrum detects pre-
cisely the Kervaire invariant one elements and nothing else.

P r o o f. (i) First, we claim that, for any x ∈ πn(coker j),

HBP (x) 6= 0⇔ Hj(t(i∗(x))) 6= 0.

In fact, this immediately follows from the analogous commutative diagram of
exact sequences as the one in the proof of Theorem 4.1, because πn+1(coker j
∧ BP ) is torsion. Next, since p is odd, any x ∈ πn(coker j) is detected in
the BP -Adams–Novikov (for π∗(S0)) 2-line or higher. Now the claim follows
immediately, as the Hattori–Stong theorem [Hat], [Sto] implies

Ext2,∗
BP∗BP (BP∗, BP∗) = Ext1,∗

BP∗BP (BP∗, BP∗(BP ))→ jC∗(BP )

is injective, for BP is torsion free (cf. [Kna]).
(ii) This is proved exactly as (i), using Knapp’s result (Theorem 4.4).
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