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Period doubling, entropy, and renormalization

by

Jun H u (Newark, N.J.) and
Charles T r e s s e r (Yorktown Heights, N.Y.)

Abstract. We show that in any family of stunted sawtooth maps, the set of maps
whose set of periods is the set of all powers of 2 has no interior point. Similar techniques
then allow us to show that, under mild assumptions, smooth multimodal maps whose set
of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of
all periodic intervals going to zero as the period goes to infinity.

1. Introduction. The present work is motivated by the following folk-
lore conjecture (see also [OT]):

Conjecture A. A real polynomial map f with set of periods (of its
periodic orbits)

P (f) = {2i : i ∈ N}
can be approximated by polynomial maps with positive entropy and by poly-
nomial maps with finitely many periodic orbits.

This conjecture is now established for quadratic polynomials (as a con-
sequence of [Su] or [La]) and work is in progress toward generalization for
higher degree polynomials [Hu]. The interest in such a conjecture comes
from Theorems A and B below (see Section 2.1) and the fact that topo-
logical entropy (conceived as an invariant of topological conjugacy [AKM])
is also one way to measure the complexity of the dynamics of a map (see
Section 2.1): one is trying to describe how maps with simple dynamics can
be deformed to maps with complicated dynamics, or, as one says, chaotic
maps. Tradition, as well as the availability in this framework of a greater set
of techniques, has put some emphasis on the particular case of polynomial
maps, as in Conjecture A. However, the problem of the transition to chaos
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is more generally interesting in the category of smooth maps, in particular
smooth endomorphisms of the interval, for which we recall the following:

Conjecture B. All endomorphisms of the interval f ∈ Ck(I), k ≥ 1,
with P (f) = {2i : i ∈ N} are on the boundary of chaos and on the boundary
of the interior of the set of zero entropy.

The C1 version of this conjecture is formulated in [BH]. The C0 version
has recently been proved to hold true: more precisely, the chaotic side of
it is contained in [Kl] (in fact, it is easy to prove that infinite topological
entropy is a generic property in C0(I), compare [Ya]) and the zero entropy
side is in [JS2].

We first show that any stunted sawtooth map (see Section 2.2) whose
set of periods is the set of all powers of 2 can be approximated by stunted
sawtooth maps with positive entropy and by stunted sawtooth maps with
only finitely many periodic orbits (see Section 2.3). This result verifies the
symbolic dynamic version of the above conjectures in the sense that stunted
sawtooth maps carry all possible kneading data (see Section 2.2) of multi-
modal maps.

We also make a second step toward Conjecture A by proving that maps
with P (f) as above which satisfy some smoothness conditions (and in par-
ticular polynomial maps) are infinitely renormalizable (see Section 2.4).

Sections 3 and 4 contain proofs of the results formulated in Section 2.

Acknowledgements. After we proved Theorem 1, several colleagues
suggested we also provide proofs for the long overdue results in Theorems 2,
3, and 4. These results, which, as we shall see, are reasonably easy conse-
quences of Theorems A to G, do not seem to have appeared in print. To the
contrary, most if not all auxiliary results might be found, implicitly in the
work of Sharkovskĭı and Misiurewicz, and in some explicit form in a combi-
nation of [BC], [Ge], [JS1], [JS2], and [Sm] (to just mention a few; see also
the discussion at the beginning of §2.4). Both authors would like to specially
thank Dennis Sullivan and Jean Marc Gambaudo for their constant interest
and encouragement in this work. We thank the referee of an early version of
this paper (which was circulated as Stony Brook Preprint 95/13) and Louis
Block for pointing out some relevant references. We also thank this referee
and Michał Misiurewicz for suggesting several improvements. The first au-
thor is grateful to the IMS at Stony Brook, the second one to IMPA, for
their support and hospitality while part of this work was being done.

2. Preliminary definitions and results

2.1. Topological entropy of one-dimensional maps. A point x is a periodic
point of period n of a map f if f i(x) 6= x, 0 < i < n, and fn(x) = x. The
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orbit of x is then called a periodic orbit (of period n). If n = 1, then x is
also called a fixed point. If the orbit of x contains a periodic orbit but x is
not a periodic point, we say that x is pre-periodic.

The topological entropy h(f) of a continuous map f on a compact metric
space X with metric d can be defined as follows [Bo]. Given ε > 0, n ∈ N,
we say a subset S ⊂ X is (n, ε)-separated if

x, y ∈ S, x 6= y ⇒ ∃m : 0 ≤ m < n such that d(fm(x), fm(y)) > ε.

Set H(f, n, ε) to be the maximal cardinality of (n, ε)-separated sets. Then

h(f) = lim
ε→0

lim sup
n→∞

1
n

logH(f, n, ε).

For maps on an interval, the following result gives a necessary and suf-
ficient condition for the positivity of topological entropy.

Theorem A ([BF], [M1]). A map f ∈ C0(I) has positive topological
entropy if and only if it has a periodic point whose period is not a power
of 2.

Remark 1. The “if” part is from [BF], the “only if” part from [M1].

From Theorem A and Theorem 3 of [BH], one gets the following (see
also the discussion following Theorem 3 in [BH]):

Theorem B. In the space Ck(I), k ≥ 1, of Ck endomorphisms of an
interval I, if a map f is on the boundary of positive topological entropy then
the set P (f) of its periods is {2i : i ∈ N}. The same is true for f on the
boundary of the interior of the set of maps with zero topological entropy.

Remark 2. Conjectures A and B are about the converse of Theorem B.

We next give two other necessary and sufficient conditions for the pos-
itivity of topological entropy, which will be important tools for us. This
requires some more terminology.

So let f ∈ C0(I) and p be a fixed point of f . A point x of I belongs
to the unstable manifold Wu(p, f) of p if, for every neighborhood V of p,
x ∈ fn(V ) for some positive integer n. It is easy to check that Wu(p, f) is
connected and invariant under f . A point x ∈ I is a homoclinic point of f
if there is a periodic point p of f of period n such that x 6= p, x ∈Wu(p, fn)
and fmn(x) = p for some m ∈ N (see [Bl1]).

Theorem C ([Bl1]). A map f ∈ C0(I) has positive topological entropy
if and only if it has a homoclinic point.

Let O be a periodic orbit of f ∈ C0(I) of period m ≥ 2, with m a power
of 2. Block calls O simple if for any subset {q1, . . . , qn} of O, where n divides
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m and n ≥ 2, and any positive integer r which divides m and is such that
{q1, . . . , qn} is a periodic orbit of fr with q1 < . . . < qn, we have

fr({q1, . . . , qn/2}) = {qn/2+1, . . . , qn}.
Theorem D ([Bl2]). A map f ∈ C0(I) has zero topological entropy if

and only if all its periodic orbits are simple.

Remark 3. For a simple periodic orbit and any i ∈ {1, . . . , n}, if s is a
power of 2, then fs(qi) cannot belong to the open interval bounded by qi
and f2s(qi). When s = 1 this is a direct consequence of the definition; the
general case follows inductively from the fact that any simple periodic orbit
of f of period m ≥ 2 splits into two simple periodic orbits of f2 of period
m/2.

2.2. Multimodal and stunted sawtooth maps. Consider a continuous map
f : I → I where I = [c0, cd+1]. For d ≥ 0, assume there are points ci,
0 < i < d + 1, with cj < cj+1 for 0 ≤ j ≤ d such that f is monotone on
each lap [cj , cj+1], and not monotone on any segment of the form [cj , cj+2].
Such a map is then called d-modal or multimodal with modality d (one says
amodal if d = 0, unimodal if d = 1, and then bimodal , and so on). The
maximal interval [ai, bi] (i ∈ 1, . . . , d) containing ci on which f is constant
is called a turning interval and, more precisely, a plateau if ai < bi, and a
turning point if ai = bi. The map f being given, one may prefer to choose
the points ci such that, for all i ∈ 1, . . . , d, ci = (ai + bi)/2.

The shape of a d-modal map is the alternating sequence of d + 1 signs,
starting with either +1 or −1 according as the map is increasing or decreas-
ing on its initial lap. The i-ordered collection of signs

sign(fn(ci)− cj) ∈ {−1, 0, 1}
for n > 0 and 1 ≤ i, j ≤ d with j fixed is the j th kneading sequence of
f . The j-ordered collection of kneading sequences is the kneading invariant
of f . By the kneading data associated with a d-modal map f we mean its
shape together with its kneading invariant (for more on kneading theory, we
refer to [MiT], [BORT] and [MiTr]). One might wish to first understand at
the symbolic level some questions one formulates for polynomials or smooth
maps. It is in fact more practical to consider continuous families of d-modal
maps rich enough to exhibit all possible kneading data for d-modal maps,
yet significantly easier to be studied than smooth maps. Such families exist,
and we next recall the construction of one of them.

By the sawtooth map of shape s1 . . . sd+1, si ∈ {+1,−1}, si+1 = −si,
d ≥ 1, we mean the unique map Sd : I → I which is piecewise linear with
slopes s1(d+ 1), s2(d+ 1), . . . , sd+1(d+ 1) (d+ 1 alternate values). This is a
d-modal map with topological entropy log(d+ 1), the largest possible value
for d-modal maps.
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Given any critical value vector w = (w1, . . . , wd) satisfying

(wj − wj+1) · sj+1 < 0, wj ∈ I, j = 1, . . . , d− 1,

we obtain the stunted sawtooth map Sw from Sd as follows: on the pair of
intervals of monotonicity of Sd separated by cj , for j = 1, . . . , d, we set
Sw = min(Sd, wj) if cj is a maximum, and Sw = max(Sd, wj) if cj is a
minimum. In particular, every turning point of Sw is also a turning point of
Sd, and Sw and Sd coincide at such points.

Remark 4. The endpoints of I are periodic or pre-periodic points of Sd
and of Sw, hence all turning points of Sd and of Sw are pre-periodic.

The d-parameter family of stunted sawtooth maps Sw is complete in the
following sense:

Theorem E ([DGMT], [MiTr]). For any d-modal map f there is a canon-
ical d-modal stunted sawtooth map Sw which has exactly the same kneading
data as f .

2.3. The first main result

Theorem 1. Suppose Sw is a stunted sawtooth map with P (Sw) = {2i :
i ∈ N}. Then for any ε > 0, there exist w′ and w′′ with |w′ − w| < ε and
|w′′ − w| < ε such that h(Sw′) > 0 and Sw′′ has only finitely many periods.

Corollary 1. The set {w : P (Sw) = {2i : i ∈ N}} has no interior
point.

Remark 5. Let fi, i ∈ {1, 2, 3}, be three d-modal maps of same shape
with kneading invariants

Ki = {Ki,1, . . . ,Ki,d}.
Assume that P (f2) = {2n : n ∈ N} and that, with the usual order on
kneading sequences (see, e.g., [BORT]),

K1,j < K2,j < K3,j if sj = +,

K1,j > K2,j > K3,j if sj = −,
for 1 ≤ j ≤ d. The proof of Theorem 1 implies that f1 has only finitely
many periods and that f3 has positive topological entropy: this follows from
Theorem E and the fact that any permutation allowed by some kneading
data is realized by some periodic orbit of any stunted sawtooth map with
the same kneading data (such matter is discussed, e.g., in [MiTr]).

2.4. Renormalization. Another purpose of this paper is to prove that, un-
der some mild smoothness assumptions, the maps f with P (f) = {2i : i ∈ N}
are infinitely renormalizable. More precisely, we prove here the infinite renor-
malizability property needed for the description of the boundary of chaos in
[Hu] and the definitions are formulated accordingly.
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Let I be an interval. A map f : I → I is called renormalizable if there
exists a proper subinterval J of I and an integer p such that

(1) f i(J), i = 0, 1, . . . , p− 1, have no pairwise interior intersection,
(2) fp(J) = J .

Then fp|J : J → J is called a renormalization of f . A map f : I → I is
weakly infinitely renormalizable if there exists an infinite sequence {In}∞n=1
of nested intervals and a strictly increasing sequence {u(n)}∞n=1 of integers
such that fu(n)|In : In → In are renormalizations of f . A map f : I → I
is infinitely renormalizable if it is weakly infinitely renormalizable and the
maximal diameter of the intervals In, f(In), . . . , fu(n)−1(In) tends to zero
as n→∞.

Chapter VI of [BC] contains a discussion which seems close to what we
need to prove, in the general case of continuous maps. With that much
generality the diameter condition is not necessarily true. Furthermore, the
techniques of Block and Coppel allow one to impose u(n) = 2n but the
equality of (2) is replaced by

(2′) fp(J) ⊃ J .

To the contrary, the methods in [Su] and [Hu] require

(2′′) fp(J) ⊆ J ,

and that the diameters of the intervals In, f(In), . . . , fu(n)−1(In) tend to
zero as n→∞.

The referee of the first version of the present paper suggested that mul-
timodal maps with P (f) = {2i : i ∈ N} are weakly infinitely renormaliz-
able with u(n) = 2n in the above notations; during the Spring of 1997, we
became aware that this result appears in Theorem 3.5 of [Sm]. Knowing
this result would have spared us from proving Lemma 2 and Corollary 3.
Discussions with several colleagues seem to prove that Smı́tal’s result was
unfortunately overlooked by many of us: it was called to our attention by
Jean Marc Gambaudo after one of his students gave a very elementary proof
of it [So] (Smı́tal, like us, uses the full strength of [M2]). Our methods show
the weak infinitely renormalizable property and the diameter condition si-
multaneously but only allow us to have u(n) = 2n+k for some k ≥ 0. This is
all that is needed in [Su] or [Hu]. Nevertheless, it is worth mentioning that,
combined with the result of [Sm] (see also [So]), our Theorems 2, 3, and 4
also remain true with the stronger specification that the sequence {u(n)}∞n=1
is taken as u(n) = 2n.

Let f ∈ C0(I). An open interval J ⊂ I is called a wandering interval of
f if

1. fn(J) ∩ fm(J) = ∅ for any n 6= m, n,m ∈ N, and
2. fn(J) does not converge to a periodic orbit.
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We shall get the results we seek for smooth maps as corollaries of the
following abstract result:

Theorem 2. Assume the multimodal map f : I → I with P (f) =
{2i : i ∈ N} has no wandering intervals and no plateaus. Then f is in-
finitely renormalizable.

Let f : I → I be a map which is not constant on any open set. We say
that f belongs to Γ (2) if

(a) f is C2 away from the critical points;
(b) for every critical point x0 of f there exists α > 1, a neighborhood

U(x0) of x0 and a C2-diffeomorphism φ : U(x0) → (−1, 1) such that φ(x0)
= 0 and

f(x) = f(x0)± |φ(x)|α, ∀x ∈ U(x0).

Notice that any map in Γ (2) is necessarily multimodal.

Theorem F ([MMS]). Any f ∈ Γ (2) has no wandering interval.

Combining this result with Theorem 2 yields:

Theorem 3. Any map f ∈ Γ (2) with P (f) = {2i : i ∈ N} is infinitely
renormalizable.

In particular, we also have:

Theorem 4. Any real polynomial map f with P (f) = {2i : i ∈ N} is
infinitely renormalizable.

Remark 6. Using results from [HS], the smoothness condition in The-
orem F can be relaxed, which allows a proof of Theorem 3 with relaxed
smoothness condition for multimodal maps.

Using more language from kneading theory, one could formulate a conjec-
ture corresponding to Theorems 2 to 4 for general renormalizations (not just
those at the boundary of chaos). Such a generalization completely escapes
the methods of the present paper.

3. Proof of Theorem 1. For any f ∈ C0(I) with P (f) = {2i : i ∈ N},
we let ∆j(f) be the set of accumulation points of the periodic points of f
with period greater than or equal to 2j , and set ∆(f) =

⋂∞
j=0∆j(f). Clearly,

∆(f) is not an empty set. Furthermore, we have:

Lemma 1. Let f : I → I be a multimodal map with P (f) = {2i : i ∈ N}.
Then no point in ∆(f) is periodic and hence ∆(f) is not a finite set.

P r o o f. Let p ∈ ∆(f) be a periodic point of period 2n. Define g = f2n .
Then p is a fixed point of g. Look at the map g near p. Because f has
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isolated turning intervals, so does g. Hence there are only three types of
local behaviors for g near p:

1. g is monotone in a small neighborhood of p; if g is monotone reversing
then g2 is monotone preserving in a small neighborhood of p and we rename
g the map g2.

2. p is in the interior or at the end of one of the plateaus of g.
3. p is a turning point of g.

Let x 6= p be close enough to p. Either g(x) = p or g(x) belongs to the
open interval bounded by x and g2(x). From Theorem D and Remark 3
we conclude that x cannot belong to a periodic orbit with period greater
than 2n.

Remark 7. Lemma 1 is false in C0(I): examples with ∆(f) reduced to
a point are easily provided if f is allowed to have infinitely many turning
points.

Let Σ = {0, 1}N and let σ stand for the adding machine, i.e., the map
σ : Σ → Σ defined by σ(xi)∞i=0 = (yi)∞i=0, where yi = 1− xi if xj = 1 for all
j < i and yi = xi otherwise. The following result is proved in [M2].

Theorem G ([M2]). Let f ∈ C0(I) be a continuous map with P (f) =
{2i : i ∈ N}. Suppose that K is an infinite closed invariant set of f which
supports an ergodic f -invariant non-atomic probability measure. Then there
exists a continuous map h : K → Σ such that

h ◦ f = σ ◦ h.
Furthermore, h−1(s) contains at most two points for any point s ∈ Σ.

Remark 8. The following information about K can be found in the
proof of Theorem G in [M2]. The set K can be expressed as a disjoint union
K = K0∪K1, where the supporting intervals [K0] and [K1] of K0 and K1 are
disjoint and f(Ki) = K1−i, where i = 0, 1. Hence K0 and K1 are invariant
under f2. Furthermore, K0 and K1 have the same bisections under f2 and
so on. Thus one can express K as the disjoint union

K =
2n⋃

j=1

K
(n)
j

for n ∈ N. Therefore at least one point of each fiber h−1(s), s ∈ Σ, is
recurrent.

Remark 9. Fom the proof of Theorem G in [M2], one also finds out that
there exists a fixed point p of f in the gap between [K0] and [K1].

Remark 10. It follows from Lemma 1 and Theorem G that, under the
assumptions of Lemma 1, there exists a set K ⊂ ∆(Sw) as in Theorem G.
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Lemma 2. Suppose that Sw is a stunted sawtooth map with P (Sw) =
{2i : i ∈ N}. Let E0(Sw) be the set consisting of the endpoints of the plateaus
of Sw, E1(Sw) be the set consisting of the endpoints of I and the turning
points of Sw, and put E(Sw) = E0(Sw) ∪E1(Sw). Then ∆(Sw) ∩E(Sw) =
∆(Sw) ∩ E0(Sw) 6= ∅.

P r o o f. Since the endpoints of I are periodic or pre-periodic and all
turning points of Sw (if any) are pre-periodic (see Remark 4), by Lemma 1
they are not in ∆(Sw). Thus ∆(Sw) ∩ E1(Sw) = ∅ so that it only remains
to prove that ∆(Sw) ∩ E(Sw) 6= ∅. Since the topological entropy of Sd is
log(d+ 1) > 0, we must have Sw 6= Sd and therefore E0(Sw) is not empty.

Suppose that the intersection of ∆(Sw) and E(Sw) is empty and let
ε > 0 stand for the distance d(∆(Sw), E(Sw)). Let K ⊂ ∆(Sw) be as in
Theorem G (see also Remark 10). Clearly, d(K,E(Sw)) > ε. By Remark
8, we can choose a point x ∈ K which is recurrent. By Theorem G, there
exists l = 2k, k ≥ 1, such that |f l(x) − x| < 1

8ε. Again by Theorem G and
Remark 8, one can choose this point x so that f l(x) > x. Let V be the
largest neighborhood of x on which f l is monotone. The slope of f l on V is
dl and clearly V ⊃ (x− ε/dl, x+ ε/dl).

Assume first that f l is orientation preserving on V . Since f l(x) > x and
f l
(
x − 7

8ε/d
l
)

= f l(x) − 7
8ε < x + 1

8ε − 7
8ε = x − 3

4ε < x − ε/dl, there
exists a point p ∈ (x− 7

8ε/d
l, x
)

such that f l(p) = p. The unstable manifold
Wu(p, f l) of f l at p clearly contains (p, x+ε/dl) and (x−ε/dl, p), hence also
(p, f l(x) + ε) and (f l(x)− ε, p). Let W be the largest neighborhood of f l(x)
on which f l is monotone. Then Wu(p, f l) ⊃W ⊃ (f l(x)−ε/dl, f l(x)+ε/dl).
It follows easily from Theorem G that f l(f l(x)) < f l(x) (this is the limiting
version of Remark 3), which implies that neither x nor p belongs to W .
It is plain that one of f l(f l(x) − ε/dl) and f l(f l(x) + ε/dl) is equal to
f l(f l(x))−ε < f l(x)−ε < x+ 1

8ε−ε = x− 7
8ε < p. Since f l(x) > x > p, this

implies that there exists y ∈ (x, f l(x) + ε/dl) ⊂ Wu(p, f l) such that y 6= p
and f l(y) = p. This means that y is a homoclinic point, a contradiction. If
f l is orientation reversing on V , one proceeds similarly.

Proof of Theorem 1. For any ε > 0, we push up a little bit all the concave
down plateaus and push down a little bit all the concave up plateaus to
get another stunted sawtooth map Sw′ with |w − w′| < ε (in fact, one
can only move the plateaus which have at least one of their endpoints in
E(Sw) ∩ ∆(Sw)). We will show that Sw′ has positive topological entropy.
Since every periodic orbit of Sw which has no point in the interior of any
plateau of Sw is also a periodic orbit of Sw′ , we have ∆(Sw) ⊂ ∆(Sw′).
Clearly, ∆(Sw)∩E(Sw′) = ∅. By the proof of Lemma 2, Sw′ has a homoclinic
point, and hence, by Theorem C, it has positive topological entropy.
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We next push down a little bit all concave down plateaus and push up a
little bit all concave up plateaus to get another stunted sawtooth map Sw′′

with |w − w′′| < ε. Suppose that P (Sw′′) = {2i : i ∈ N}. We can then use
the previous argument comparing Sw to Sw′ to compare now Sw′′ to Sw,
and conclude that Sw has positive topological entropy, a contradiction.

4. Proof of Theorem 2

Lemma 3. Suppose f ∈ C0(I) with P (f) = {2i : i ∈ N} and assume there
exists a set K as in Theorem G. Then with the notations of Remark 8 and
for each j ∈ {0, 1}, there exists a periodic point q of f with period m ∈ {1, 2}
in the gap between [K0] and [K1] such that Wu(q, f2) contains [Kj ].

P r o o f. By Remark 9, there exists a fixed point p of f in the gap between
[K0] and [K1]. Assume for instance that K1 is to the right of K0. For j = 1,
let s = inf{x : x ∈ K1} and consider the map f2 on the interval [p, s].
The point p is also a fixed point of f2. Let q be the largest fixed point
of f2 in [p, s]. Because of Lemma 1, q 6= s and then f2(y) > y for any
y ∈ (q, s). Clearly, f2(K1) ⊂ K1 and f2(s) > s. Therefore s is in Wu(q, f2)
and the same holds true for [K1] by connectivity. The case j = 0 is treated
similarly.

From Theorem G and Lemma 3, one has

Corollary 2. Suppose f ∈ C0(I) with P (f) = {2i : i ∈ N} and assume
there exists a set K as in Theorem G, with K =

⋃2n

j=1K
(m)
j , n ∈ N. Then for

any n ∈ N there exists a periodic point p of period m, where m ∈ {2n, 2n+1},
whose orbit is contained in the set

⋃2n

j=1[K(n)
j ]\⋃2n+1

j=1 [K(n+1)
j ] and such that

Wu(p, fm) contains some K(n+1)
j , where 1 ≤ j ≤ 2n+1.

Lemma 4. Assume a multimodal map f : I → I with P (f) = {2i : i ∈ N}
has no wandering interval and no plateau. Let K be as in Theorem G. Then
the semi-conjugacy h in Theorem G is actually a conjugacy.

P r o o f. Suppose that h is not a conjugacy. Then by Theorem G there
exists a point s ∈ Σ such that h−1(s) = {x, y}, x 6= y. We claim that
h−1(σn(s)) contains a single point when n is large enough. Let In denote
the supporting interval of h−1(σn(s)), n ≥ 0. Since there are only finitely
many turning points and the intervals In, n ≥ 0, are pairwise disjoint, there
exists m > 0 such that In contains no turning points for any n ≥ m. If the
claim is false, then Im is a wandering interval, a contradiction. Therefore
one can assume that f(x) = f(y), where x, y ∈ K and x 6= y. We separate
our considerations into three cases.
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Case 1. Suppose that f is orientation preserving in some neighborhoods
of x and y (the proof is similar when f is orientation reversing near both
x and y). By Corollary 2, there exists a periodic point p of f of period
n = 2k, k > 0, such that the unstable manifold Wu(p, fn) of fn at p
contains the interval [x, y], p is not in [x, y] and p is close enough to x or y.
By continuity of f , when p is close enough to x (or q), then f(p) is very close
to f(x) = f(y). By the intermediate value theorem, there are at least two
points a, b ∈ (x, y) such that f(a) = f(b) = f(p). Then fn(a) = fn(p) = p.
Hence a is a homoclinic point, a contradiction.

Case 2. Suppose that f is orientation preserving in a neighborhood of x
and orientation reversing in a neighborhood of y (the proof is similar when
the situation is reversed). Define xt = f t(x) = f t(y), t ∈ N. Let {ci}i∈α
denote the set of turning points of f , where α is a finite set. Clearly there
exists t0 > 0 such that K(t,i) := (xt, ci)∩K 6= ∅ for any t ≥ t0. In the interval
(x, y) we select v and w near x and y respectively with f(v) = f(w). Because
of the nonexistence of wandering intervals, the itineraries of f(p) = f(q) and
f(v) = f(w) under f are eventually different. Let vt = f t(v), t ∈ N. Then
there exists t > t0 such that there is at least one ci ∈ (xt, vt). Clearly,
K(t,i) ⊂ (xt, vt) and f t((x, v)) = f t((w, y)) ⊃ (xt, vt). From Theorem G and
Corollary 2, there exists a periodic point p of period n = 2k, k > 0, where p
is not in [x, y], such that p is very near x (or y), f j(p) is in the supporting
interval [K(t,i)] and the unstable manifold Wu(p, fn) ⊃ [x, y]. Clearly there
exists a point u ∈ (x, v) (or u ∈ (w, y)) such that f t(u) = f j(p). Hence
u ∈ Wu(p, fn), u 6= p and fnt(u) = fn(f j(p)) = p. So u is a homoclinic
point, a contradiction.

Case 3. If at least one of x and y is a turning point, the proof is just a
slight modification of that in Case 1 or Case 2.

Proof of Theorem 2. By Remark 10, we know there exists a set K as
in Theorem G. By Lemma 4, f : K → K is conjugate to σ : Σ → Σ
by h. Separate the turning points of f into two parts. Let S1 (resp. S2)
denote the turning points of f contained (resp. not contained) in K. Define
K =

⋃2n

j=1K
(n)
j , n ∈ N. We claim that there exists n0 ∈ N such that for any

n > n0, S2 ∩
⋃2n

j=1[K(n)
j ] = ∅. Suppose to the contrary that, for any x ∈ S2,

there exists n0 such that for any n > n0, x is in
⋃2n

j=1[K(n)
j ]. Then there

exists an infinite sequence of nested intervals [K(n)
k(n)] containing x. Hence x ∈

⋂
n∈N[K(n)

k(n)]. Since the endpoints of
⋂
n∈N[K(n)

k(n)] are in the same fiber of h,
which has to be a point, x is inK, a contradiction. Now let n > n0. Then each
critical point contained in some [K(n)

i ] is indeed in K. Since both endpoints
of any [K(n)

j ] are also in K and f restricted to K is a homeomorphism,
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f maps each [K(n)
j ] onto another [K(n)

k ]. The remaining thing is to show that

the maximal diameter D(n) of [K(n)
j ] with j ∈ {1, . . . , 2n} goes to zero when

n→∞, and therefore f is infinitely renormalizable. Notice that {D(n)}∞n=1
is a decreasing sequence. Let limn→∞D(n) = D. Clearly, D ≥ 0. Let us call
[K(n)

j ], j ∈ {1, . . . , 2n}, the nth level intervals. Suppose that D > 0. Then for
each n, there exists at least one nth level interval with diameter ≥ D, and
only those nth level intervals with diameter ≥ D can contain deeper level
intervals with diameter ≥ D. Therefore one can have an infinite sequence
of nested intervals [K(n)

j ] with diameter ≥ D, and hence
⋂∞
n=1[K(n)

j ] has
diameter ≥ D. This contradicts the fact that the intersection is a point
(Lemma 4).
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