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Abstract. A new theorem in the theory of first return representations of Baire class
one functions of a real variable is presented which has as immediate consequences several
known characterizations of standard subclasses of the Baire one functions. Further, this
theorem yields new insights into how finely Baire one functions can be recovered and
yields a characterization of another subclass of Baire one functions.

1. Introduction. Here we shall be dealing with real-valued functions
defined on [0, 1]. During the past several years, five subclasses of the Baire
class one functions have been characterized in terms of “first return” notions.
These characterizations are as follows: For a function f : [0, 1]→ R,

(I) f is Baire one if and only if f is first return recoverable [4] (1).
(II) f is Baire one with no isolated points on its graph if and only if f is

first return approachable [2].
(III) f is Baire one and Darboux if and only if f is first return continu-

ous [3].
(IV) f is Baire one and quasi-continuous if and only if f is universally

first return approachable [2].
(V) f is Baire one, Darboux and quasi-continuous if and only if f is

universally first return continuous [5].

Here we use the term “quasi-continuous” in the sense of Kempisty [7],
which in our setting can be defined by saying that f is quasi-continuous
provided that the graph of f |C(f), f restricted to the set of continuity
points of f , is dense in the graph of f . Recently, (I) has been sharpened to
read as follows:

1991 Mathematics Subject Classification: Primary 26A21.
(1) This also holds in a more general (metric space) setting [1].
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(I*) f is Baire one if and only if f is finely recoverable [6].

Proofs for these results have been rather involved and quite different from
one another. For example, (III) entailed the use of the powerful Maximoff–
Preiss Theorem ([9], [10]), while (I), (I*) and (II) utilized intricate decom-
position arguments, each somewhat different from the others. We have felt
that it ought to be possible to formulate and prove one central result which
would have all of these results as immediate consequences. Our goal for the
present work is to present such a result (Theorem 1) and to use it to obtain
new insights into how “finely” Baire one functions can be recovered. Actu-
ally, we shall concentrate solely on obtaining the “only if” direction of each
of the above statements since the “if” direction is straightforward in each
case. Before becoming more precise, we must first review some terminology
from the references and define certain “fine” concepts.

2. Terminology. A trajectory is any sequence {xn}∞n=0 of distinct points
in [0, 1], which is dense in [0, 1]. Any countable dense subset D of [0, 1] is
called a support set . Let {xn} be a fixed trajectory. For a given interval,
or finite union of intervals, H ⊆ [0, 1], r(H) will be the first element of the
trajectory {xn} in H. For x ∈ [0, 1] and % > 0,

B%(x) ≡ {y ∈ [0, 1] : |x− y| < %}.
First return recoverability. Let x ∈ [0, 1] and let {xn} be a fixed tra-

jectory. The first return route to x, Rx = {yk}∞k=1, is defined recursively
via

y1 = x0, yk+1 =
{
r(B|x−yk|(x)) if x 6= yk,
yk if x = yk.

We say that f is first return recoverable with respect to {xn} at x provided
that

lim
k→∞

f(yk) = f(x),

and if this happens for each x ∈ [0, 1], we say that f is first return recoverable
with respect to {xn}. Further, we say that f is first return recoverable if there
exists a trajectory {xn} such that f is first return recoverable with respect
to {xn}.

First return approachability. For each x ∈ [0, 1] the first return approach
to x based on {xn}, Ax = {uk}, is defined recursively via

u1 = r((0, 1) \ {x}), uk+1 = r(B|x−uk|(x) \ {x}).
We say that f is first return approachable at x with respect to the trajectory
{xn} provided

lim
u→x
u∈Ax

f(u) = f(x).
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We say that f is first return approachable with respect to {xn} provided it
is first return approachable with respect to {xn} at each x ∈ [0, 1]. Likewise,
f is said to be first return approachable provided there exists a trajectory
with respect to which f is first return approachable.

First return continuity. For 0 < x ≤ 1, the left first return path to x
based on {xn}, P lx = {tk}, is defined recursively via

t1 = r(0, x), tk+1 = r(tk, x).

For 0 ≤ x < 1, the right first return path to x based on {xn}, Prx = {sk},
is defined analogously. We say that f is first return continuous from the left
[right ] at x with respect to the trajectory {xn} provided

lim
t→x
t∈Plx

f(t) = f(x) [ lim
s→x
s∈Prx

f(s) = f(x)].

We say that for any x ∈ (0, 1), f is first return continuous at x with respect to
the trajectory {xn} provided it is both left and right first return continuous
at x with respect to the trajectory {xn}. We further adopt the convention
of saying that f is first return continuous at zero [one] if it is first return
continuous from the right [left] at zero [one].

We say that f is first return continuous with respect to {xn} provided it
is first return continuous with respect to {xn} at each x ∈ [0, 1]. Likewise, f
is said to be first return continuous provided there exists a trajectory with
respect to which f is first return continuous.

Universal notions. If every support set D has an ordering with respect
to which f is first return continuous [approachable], then f will be called
universally first return continuous [approachable].

With the above notation in place, all of the statements (I)–(V) should
make sense, and again, our goal entails finding one result which will yield
the “only if” parts of all of these. A first approximation to such a result was
obtained in [2], in that it readily yields (I), (II), and (IV). That theorem
reads as follows:

(VI) If D is a support set with the property that the graph of f |D is
dense in the graph of f , then there is an ordering {xn} of D such that f is
first return recoverable with respect to {xn} and if (x, f(x)) is not isolated
on the graph of f , then f is first return approachable at x with respect to
{xn}.

Hence, we would like the result we are after to yield (VI) as well. However,
we shall seek even more, based on the following concepts.

Fine notions. Type 1 points are those x ∈ (0, 1) for which (x, f(x)) is
isolated on neither the left nor the right. (The point x = 0 [x = 1] will be a
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type 1 point if (0, f(0)) [(1, f(1))] is not isolated on the right [left].) Type 2
points are those x ∈ (0, 1) for which (x, f(x)) is isolated on exactly one side.
(The points 0 and 1 are never considered type 2.) Type 3 points are those
x ∈ [0, 1] for which (x, f(x)) is isolated. We use the notation Ti(f) to denote
the set of type i points of f for i = 1, 2, 3. The good side of a type 2 point
is the side from which it is not isolated.

We say that f is finely recoverable with respect to the trajectory {xn}
provided that, with respect to {xn}, f is first return recoverable and first
return continuous at each type 1 point as well as first return approachable
at each type 2 point. We say that f is finely recoverable if there exists a
trajectory {xn} such that f is finely recoverable with respect to {xn}.

Clearly results (I) and (I*) illustrate that there is no difference between
the notions of a function being first return recoverable and being finely
recoverable. However, it is not the case that if f is first return recoverable
with respect to {xn}, then there is some rearrangement {yn} of {xn} such
that f is finely recoverable with respect to {yn}. This was illustrated by
Example 1 of [2]. There a Baire one function f and a trajectory {xn} were
exhibited with the properties that f is first return recoverable with respect
to {xn} but such that for any rearrangement {yn} of {xn}, including the
original arrangement {xn} itself, there is a perfectly dense Gδσ set of points
at which f is not first return continuous with respect to {yn}. (Recall that
only countably many points can fail to be type 1 points.) This situation
leads us to the following definition.

Always fine recoverability. We say that f is always finely recoverable
provided that whenever a support set D has the property that the graph of
f |D is dense in the graph of f , then there exists an ordering {xn} of D such
that f is finely recoverable with respect to {xn}.

It is clear that every universally first return continuous function must be
always finely recoverable. What is less obvious, but true, is that every Baire
one, Darboux function is always finely recoverable. This follows from Theo-
rem 1 of [5] and will also follow as a simple consequence of a characterization
we shall obtain here for always finely recoverable functions. To these ends,
we wish to broaden the goal of finding a result which has all of (I)–(VI)
and (I*) as corollaries to one of finding a result which, additionally, yields
a characterization of always finely recoverable functions and provides infor-
mation concerning the sharpness of the aforementioned example from [2]. In
particular, if we adopt the notation that for a given function f : [0, 1]→ R,
and for each n ∈ N,

En ≡ {x : max{lim inf
y→x−

|f(y)− f(x)|, lim inf
y→x+

|f(y)− f(x)|} < 1/2n}

(where the two-sided condition is reduced to the appropriate one-sided one
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at the endpoints 0 and 1) and

Fn ≡ [0, 1] \ En,
then the characterization of always finely recoverable functions which we
shall obtain is

(VII) A function f : [0, 1]→ R is always finely recoverable if and only if
Fn ∩ T2(f) is a scattered set for each n.

Once again, the “only if” direction is the more difficult to establish, and
here again, we shall obtain that direction as a consequence of Theorem 1.

3. Main result and consequences. Due to the wide range of proposi-
tions that we intend to glean as immediate consequences of our main result,
its statement has taken on a rather technical and perhaps imposing appear-
ance. Thus, we feel it best to first give the statement and see that several
clean and crisp observations follow from it in this section; then in the final
section we shall present its proof.

Theorem 1. Suppose f : [0, 1] → R is a Baire one function, D =
{dn}∞n=1 is a support set such that the graph of f |D is dense in the graph
of f , {An} is a decreasing sequence of Fσ sets, and {Bn} is an increasing
sequence of Fσ sets such that for each n,

• An ⊆ En ∪D,
• dn ∈ An ∪Bn,
• An ∩Bn = ∅, and
• for all n we have An+1 ∪Bn+1 ⊆ An ∪Bn ⊆ [0, 1].

Then there is an ordering of D with respect to which f is first return contin-
uous at every point of T1(f) ∩ (

⋂∞
n=1An), and first return approachable at

every point of (
⋃∞
n=1Bn) \ T3(f).

We note four corollaries from which the “only if” parts of all of (I*) and
(I)–(VII) clearly follow:

Corollary 1. If f : [0, 1] → R is a Baire one function and D is any
support set with f |D dense in f , then there is an ordering of D with respect
to which f is first return approachable at each point of [0, 1] \ T3(f).

P r o o f. For each n let An = ∅ and Bn = [0, 1]. Then apply the theorem.

Corollary 2. If f : [0, 1] → R is a Baire one function and D is a
support set such that T2(f) ⊆ D and f |D is dense in f , then there is an
ordering of D with respect to which f is finely recoverable.

P r o o f. Let {pn} be an ordering of T2(f). For each n letBn = {p1, . . . , pn}
and An = [0, 1] \Bn. Then apply the theorem.
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Corollary 3. If f : [0, 1] → R is a Baire one function for which each
Fn ∩ T2(f) is scattered and D is a support set such that f |D is dense in f ,
then there is an ordering of D with respect to which f is finely recoverable.

P r o o f. For each n let Bn = Fn ∩ T2(f) and An = [0, 1] \Bn. Since each
Fn ∩ T2(f) is scattered, it is both an Fσ and a Gδ. Hence An and Bn are
both Fσ sets. Now apply the theorem.

Corollary 4. If f : [0, 1]→ R is a Baire one, Darboux function and D
is any support set with f |D dense in f , then there is an ordering of D with
respect to which f is first return continuous.

P r o o f. This is a corollary to Corollary 3.

Since the “if” direction of characterization (VII) has not appeared in
print, we shall give it here in the following proposition. In the process we shall
point out yet another characterization of always finely recoverable functions,
one which again was motivated by Example 1 from [2].

Proposition 1. Let f : [0, 1]→ R be a Baire one function. The following
are equivalent :

(1) f is always finely recoverable.
(2) There is a support set D ⊂ T1(f) ∪ T3(f) and an ordering of D with

respect to which f is finely recoverable.
(3) Each Fn ∩ T2(f) is a scattered set.

P r o o f. That (1) implies (2) is immediate since f |(T1(f)∪T3(f)) is dense
in the graph of f . That (3) implies (1) follows from Corollary 3. We now
show (2) implies (3). Suppose that D is a support set and {xi} is an ordering
of D which witnesses statement (2). To obtain a contradiction, assume that
there is an n for which Fn ∩ T2(f) is not scattered. Let L(f) [R(f)] denote
the collection of x ∈ T2(f) for which (x, f(x)) is isolated on the left [right] on
the graph of f . One of the sets L(f)∩Fn, R(f)∩Fn must fail to be scattered.
Without loss of generality we shall suppose that R(f)∩Fn is not scattered.
Let S be a subset of R(f)∩Fn which is dense in itself. Since f is Baire one,
we may find a perfect subset C of the closure of S for which S ∩C is dense
in C and such that for all x, y ∈ C we have |f(x)− f(y)| < 1/(3 · 2n). List
the elements of S ∩ C in a sequence {aj}. Since each aj ∈ R(f) ∩ Fn, there
is a number bj > aj such that for all x ∈ (aj , bj), |f(x)− f(aj)| > 2/(3 · 2n).
Note that D contains none of the aj ’s. For each x ∈ [0, 1), let Prx denote the
right first return path to x based on {xi}.

For each j ∈ N, let {i(j, k)}∞k=1 be an increasing sequence of positive
integers such that xi(j,k) ∈ Praj ∩ (aj , bj). Let cj,k be the closest term of {xi :
i < i(j, k)} lying to the left of aj . Then for each x ∈ (cj,k, xi(j,k)) we have
xi(j,k) ∈ Prx and if x ∈ C ∩ (cj,k, xi(j,k)), then

∣∣f(xi(j,k))− f(x)
∣∣ > 1/(3 ·2n).
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Let

Uk =
∞⋃

j=1

C ∩ (cj,k, xi(j,k)) and G =
∞⋂

k=1

Uk.

Then at no point of the dense Gδ subset, G, of C is f first return continuous
with respect to the trajectory {xi}. Since at most countably many points
can fail to be type 1 points, this means that f is not finely recoverable with
respect to {xi}. This contradiction completes the proof.

The reader might be wondering whether (VII) and Proposition 1 can be
simplified by replacing Fn ∩ T2(f) with Fn. The following example shows
this is not so. Let C be the standard middle third Cantor set and let {rn}
and {ln} be a listing of the set of all right and left endpoints, respectively,
of intervals contiguous to C. Let Cn = C ∩ {x : x > rn} and Dn = C ∩ {x :
x ≥ ln}. Define f : [0, 1]→ R by

f =





3 on [0, 1] \ C,
∞∑
n=1

1
2n

(χCn + χDn) on C.

Then f is finely recoverable since T2(f) = ∅. However, F1 = {rn, ln : n ∈ N}
is not scattered.

4. Proof of main result. Having observed that Theorem 1 does, indeed,
immediately yield the consequences we promised in the first two sections,
we now conclude with its proof.

Proof of Theorem 1. Note that at any point of C(f), the set of points
of continuity of f , f will be first return continuous with respect to every
trajectory. Furthermore, since f is Baire one, C(f) is a dense Gδ subset of
[0, 1]. Thus, in light of what we are attempting to prove, there is no loss
of generality in replacing each set An by An \ (C(f) \ D) and each Bn by
Bn \(C(f)\D), with the result that each An and Bn now has the additional
property of being zero-dimensional.

We use ν, σ, τ etc. to denote elements of N<N. We shall use |ν| to denote
the length of ν. The kth term of ν is denoted by ν(k), and if ν has length at
least n, then the truncated sequence {ν(1), . . . , ν(n)} is denoted by ν|n. If
τ = ν|n for some n, then we say that ν extends τ , or ν is an extension of τ .

Using standard facts from Kuratowski [8], we can obtain a collection
{Mν : ν ∈ N<N} of closed sets such that

(1) For each n ∈ N,
⋃
|ν|=nMν = An ∪Bn.

(2) Mν intersects only one of A|ν| and B|ν|.
(3) If ν and τ are such that neither is an extension of the other, then

Mν ∩Mτ = ∅.
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(4) If τ is an extension of ν, then Mτ ⊆Mν .
(5) If |ν| = n, then osc(f,Mν) < 1/2n, where osc(f,Mν) denotes the

oscillation of f on Mν .
(6) For each n ∈ N the singleton {dn} is in {Mν : |ν| = n}.
To see how this can be accomplished, consider the following. Fix an

n. Since An and Bn are zero-dimensional Fσ sets and f is of Baire class
one, we can express each as a countable union of disjoint closed sets on
each of which the oscillation of f is less than 1/2n, say An =

⋃
j An,j and

Bn =
⋃
j Bn,j with osc(f,An,j) < 1/2n and osc(f,Bn,j) < 1/2n. Next we

relabel the countable collection {An,j , Bn,j : j ∈ N} as {Cn,k : k ∈ N} and
refine it, if necessary, so that the singleton {dn} is in {Cn,k : k ∈ N}. Then
for each ν ∈ N<N we set

Mν = C1,ν(1) ∩ C2,ν(2) ∩ . . . ∩ Cn,ν(n),

where n = |ν|. It readily follows that {Mν : ν ∈ N<N} satisfies condi-
tions (1)–(6).

For each k ∈ N and 1 ≤ l ≤ k, let

Gkl = {Mν : |ν| = l and each term of ν is at most k} and Gk =
k⋃

l=1

Gkl .

Furthermore, set

A =
∞⋂
n=1

An and B =
∞⋃
n=1

Bn.

Let {Pk}∞k=1 be a sequence of partitions of [0, 1] such that for each k,

(a) Pk = {0 = pk0 , p
k
1 , . . . , p

k
jk

= 1},
(b) no point of Pk, except possibly 0 and 1, belongs to A1 ∪B,
(c) Pk+1 strictly refines Pk,
(d) for each 1 ≤ l ≤ k + 1, each partition interval of Pk intersects at

most one element of Gk+1
l .

Inductively by stages we shall select the required ordering of D which
will serve as our trajectory. At the kth stage we will select a non-negative
integer mk and utilize Pk to assist us in selecting points {xl}mkl=mk−1+1 from
D. At the end of the kth stage we want {xl}mkl=0, the ordering of trajectory
selected through this stage, to satisfy the following conditions:

(i) If x ∈ Mτ ∩ T1(f) ∩ A|τ | ∩ [pki , p
k
i+1] for some Mτ ∈ Gk and s 6= x is

a point of {xl}mkl=0 nearest to x from the left or nearest to x from the right,
then s ∈ [pki , p

k
i+1].
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(ii) If x ∈ (Mτ ∩B|τ | ∩ [pki , p
k
i+1]) \ T3(f) for some Mτ ∈ Gk and s 6= x is

a point of {xl}mkl=0 nearest to x, then B|s−x|(x) ⊆ [pki , p
k
i+1].

(iii) If x ∈ Mτ ∩ T1(f) ∩ A|τ | for some Mτ ∈ Gk−1 and xl is in the first
return path to x with mk−1 < l ≤ mk, then |f(xl)− f(x)| < 2/2|τ |.

(iv) If x ∈ (Mτ ∩B|τ |) \ T3(f) for some Mτ ∈ Gk−1 and xl is in the first
return approach to x with mk−1 < l ≤ mk, then |f(xl)− f(x)| < 2/2|τ |.

The construction at the first stage is analogous to the construction at
a general stage so we proceed with the general case. Assume that the kth
stage has been completed, that the points x0, x1, . . . , xmk in D have been
selected, and that conditions (i)–(iv) are satisfied at this stage. We move
to stage k + 1. Let Dk+1 = D \ {x0, x1, . . . , xmk}. We now describe how to
select the points to be added to the trajectory at this stage and then we
shall explain how to order these newly selected points.

Fix any partition interval [pk+1
i , pk+1

i+1 ] of Pk+1 which intersects the union
of those Mν ’s belonging to Gk+1. First, by using property (d) of Pk and
condition (3) note that if both Mν and Mτ in Gk+1 intersect this interval,
then either ν is an extension of τ or τ is an extension of ν. Let Mνk+1

i
be the

unique element of Gk+1 having the longest νk+1
i such that Mνk+1

i
intersects

this interval. Note that |νk+1
i | ≤ k + 1. Set

Hk+1
i = {min(Mσ∩ [pk+1

i , pk+1
i+1 ]),max(Mσ∩ [pk+1

i , pk+1
i+1 ]) : νk+1

i extends σ}.

Next, choose εk+1
i > 0 so small that no two points of Hk+1

i ∪ {pk+1
i , pk+1

i+1 }
are within 2εk+1

i of one another, and so small that for each 1 ≤ l ≤ k + 2
no two sets in Gk+2

l are within 2εk+1
i of one another. (We are assuming that

ε’s at previous stages satisfy analogous appropriate separation conditions.)
Now, let

wk+1
i (l,−1) = min([pk+1

i , pk+1
i+1 ] ∩Mνk+1

i
|l),

wk+1
i (l,+1) = max([pk+1

i , pk+1
i+1 ] ∩Mνk+1

i
|l) for 1 ≤ l ≤ |νk+1

i |.

Choose Sk+1
i (l) according to the following scheme for 1 ≤ l ≤ |νk+1

i |.
First, we consider the case where Mνk+1

i
|l ⊆ Al.

• Suppose that wk+1
i (l,−1) ∈ El. We may pick a point u ∈ Dk+1 such

that u ∈ (wk+1
i (l,−1) − εk+1

i , wk+1
i (l,−1)) and |f(u) − f(wk+1

i (l,−1))| <
2−l. We put this point in Sk+1

i (l). Similarly, if wk+1
i (l,+1) ∈ El we pick

a point v ∈ Dk+1 such that v ∈ (wk+1
i (l,+1), wk+1

i (l,+1) + εk+1
i ) and

|f(v)− f(wk+1
i (l,+1))| < 2−l and we put this point in Sk+1

i (l). In addition,
if either wk+1

i (l,−1) or wk+1
i (l,+1) is in D, we put it in Sk+1

i (l) as well.
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• If one of wk+1
i (l,−1) or wk+1

i (l,+1) is not in El, then it has to be in
D by hypothesis. In this case, we simply put it in Sk+1

i (l).

Now we consider the case where Mνk+1
i
|l ⊆ Bl.

• If z = wk+1
i (l,−1) or z = wk+1

i (l,+1) is in T1(f)∪T2(f), then we pick
a point u 6= z in Dk+1 within εk+1

i of z such that |f(u) − f(z)| < 2−(k+1)

and put this point in Sk+1
i (l). In addition, if z ∈ D, we put it in Sk+1

i (l) as
well.
• If either wk+1

i (l,−1) or wk+1
i (l,+1) does not belongs to T1(f)∪T2(f),

then it has to be in D and we simply put it in Sk+1
i (l).

We also want the sets Sk+1
i (l) to be chosen carefully enough so that the

following additional property is satisfied as well:

[minSk+1
i (l1),maxSk+1

i (l1)] ⊆ [minSk+1
i (l2),maxSk+1

i (l2)]

for l2 ≤ l1 ≤ |νk+1
i |. Finally, we set Sk+1

i (l) = ∅ for |νk+1
i | < l ≤ k + 1.

Now repeat this process for each interval of the partition Pk+1 which
intersects the union of those Mν ’s belonging to Gk+1. If a partition interval
misses the union of those Mν ’s belonging to Gk+1, we do not select any
points from that interval at this stage, i.e., we set all the corresponding
Sk+1 sets equal to ∅. Let Bk+1

l =
⋃
i S

k+1
i (l) for 1 ≤ l ≤ k + 1. We observe

that the Bk+1
l ’s are not necessarily disjoint.

Now we are ready to explain in what order these new points will be
added to the trajectory as xl’s, beginning with xmk+1. First, append those
from Bk+1

k which have not already been labeled, ordering them from left to
right. Next, append those from Bk+1

k−1 which have not already been labeled,
ordering them from left to right, and continue this for Bk+1

k−2 , B
k+1
k−3 , . . . , B

k+1
1

in that order. Finally, append those from Bk+1
k+1 which have not been labeled

from left to right, labeling the last as xmk+1 .
Now we must show that conditions (i)–(iv) are satisfied at the end of

stage k + 1. It is easy to check that conditions (i) and (ii) hold from the
method of construction at stage k + 1.

To show that condition (iii) holds, let x ∈Mτ ∩A|τ |∩T1(f), where Mτ ∈
Gk, and let t ∈ {xl}mk+1

l=mk+1 belong to the first return path to x. Let I be the
partition interval from Pk which contains x, and let J = [pk+1

i , pk+1
i+1 ] be that

partition interval in Pk+1 containing x. From (i) of the induction hypothesis
at stage k, it follows that t ∈ I. Let j be such that t ∈ K = [pk+1

j , pk+1
j+1 ] ⊆ I.

Hence t ∈ Sk+1
j (l1) for some l1. As x ∈ Mτ ∩ A|τ | ∩ T1(f), we know that

Sk+1
i (|τ |) 6= ∅, Sk+1

i (|τ |) ⊆ J , and there is a point of Sk+1
i (|τ |) to the right

of x and to the left of x. From the method in which these sets S were chosen
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and their points ordered, we see that |τ | ≤ l1 < k + 1 if i 6= j. If i = j,
then |τ | ≤ l1 ≤ k + 1. In either case, from property (d) of the partitions Pk
and Pk+1 and properties (3) and (4), it follows that νk+1

j is an extension
of τ . Also recall that |f(t) − f(z)| < 2−l1 ≤ 2−|τ | for at least one of the
substitutions z = wk+1

j (l1,−1) or z = wk+1
j (l1,+1). Since in either case we

have z ∈Mνk+1
j
|l1 , νk+1

j is an extension of τ , and l1 ≥ |τ |, we conclude that

z ∈Mτ as well.
Hence, we have

|f(t)− f(x)| ≤ |f(t)− f(z)|+ |f(z)− f(x)| < 1
2|τ |

+
1

2|τ |
=

2
2|τ |

,

completing the proof that condition (iii) holds. The argument for condition
(iv) is analogous to the one for condition (iii) and is left to the reader.

This completes the selection of the trajectory {xl}. It is clear that the
range of {xl}∞l=0 is contained in D; to see that it is all of D, fix any dn ∈ D.
Let ν ∈ N<N be such that the singleton {dn} equals Mν and |ν| = n. Let
j = max{ν(1), . . . , ν(n), n}. Then dn ∈ {xl}mjl=0.

To see that f is first return continuous [approachable] at each x ∈
A ∩ T1(f) [x ∈ B \ T3(f)], consider the following: Let ε > 0 and let n
and ν be such that 2−n < ε/2 and x ∈ Mν ⊆ An [x ∈ Mν ⊆ Bn].
Let N = max{v(1), . . . , v(n), n}. Then, by conditions (iii) and (iv), for
all xj in the first return path [approach] to x with j > mN we have
|f(xj)− f(x)| ≤ ε.
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