Distinguishing two partition properties of ω_1

by

Péter Komjáth (Budapest)

Abstract. It is consistent that $\omega_1 \rightarrow (\omega_1, (\omega_1 : 2))^2$ but $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$.

One of the classic results in combinatorial set theory is the Dushnik–Miller theorem [3] which states that $\omega_1 \rightarrow (\omega_1, \omega)^2$ holds and so gives the first transfinite variant of Ramsey’s theorem. Later Erdős and Rado [4] extended this to $\omega_1 \rightarrow (\omega_1, \omega + 1)^2$ and for a long period it was open if the even stronger $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ holds. This was finally answered by A. Hajnal, who in [5] showed that if the continuum hypothesis is true then $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$ holds. Actually, Hajnal gave a stronger example, he produced a graph witnessing $\omega_1 \not\rightarrow (\omega_1, (\omega : 2))^2$. (See [2] for applications of his method to topology.)

The consistency of the positive partition relation $\omega_1 \rightarrow (\omega_1, (\omega : 2))^2$ was then given by J. Baumgartner and A. Hajnal in [1], in fact they deduced this from MA$_{\aleph_1}$. Only much later did Todorčević prove the consistency of the relation $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ and even that of $\omega_1 \rightarrow (\omega_1, \alpha)^2$ for any countable ordinal α (see [6]). In an unpublished work he also showed that MA$_{\aleph_1}$ alone implies $\omega_1 \rightarrow (\omega_1, \omega^2)^2$ but at present it seems unsolved if the full positive result follows from Martin’s axiom. Here we show that the two variants of the Hajnal partition theorem are indeed different; it is consistent that $\omega_1 \rightarrow (\omega_1, (\omega : 2))^2$ holds yet $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$.

Notation. Definitions. If $(A, <)$ is an ordered set and $A, B \subseteq V$ then $A < B$ denotes that $x < y$ holds whenever $x \in A, y \in B$. $A < \{a\}$ is denoted by $A < a$, etc. If S is a set and κ is a cardinal, then $[S]^\kappa = \{X \subseteq S : |X| = \kappa\}$ and $[S]^{<\kappa} = \{X \subseteq S : |X| < \kappa\}$. A graph is an ordered pair (V, X) where V is some set (the set of vertices) and $X \subseteq [V]^2$ (the set of edges). In some cases we identify the graph and X. If (V, X) is a graph, a set $A \subseteq V$ is a...
complete subgraph if $[A]^{2} \subseteq X$, and it is an independent set if $[A]^{2} \cap X = \emptyset$. If X is a graph on some ordered set $(V, <)$ and β, γ are ordinals, then a subgraph of type $(\beta : \gamma)$ is a subset $B \times C \subseteq X$ where the types of B, C are β, γ, respectively, and $B < C$.

If α, β, γ are ordinals, then the partition relation $\alpha \rightarrow (\beta, \gamma)^{2}$ denotes that the following statement is true: every graph on a vertex set of type α has either an independent set of type β or a complete subgraph of type γ. The negation of this statement is denoted, of course, by $\alpha \not\rightarrow (\beta, \gamma)^{2}$. Similarly, $\alpha \rightarrow (\beta, (\gamma : \delta))^{2}$ denotes that in a graph on α if there is no independent set of type β then there is a complete bipartite graph of type $(\gamma : \delta)$. Again, the negation is obtained by crossing the arrow.

Theorem. It is consistent that $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^{2}$ yet $\omega_1 \rightarrow (\omega_1, (\omega : 2))^{2}$.

Proof. Let V be a model of ZFC+GCH. We are going to construct a finite support iteration of length ω_2. $(P_\alpha, Q_\alpha : \alpha < \omega_2)$. Q_0 will give a counterexample to $\omega_1 \rightarrow (\omega_1, \omega + 2)^{2}$, for $0 < \alpha < \omega_2$ we select a graph Y_α on ω_1 with no subgraph of type $(\omega : 2)$ and Q_α will be a forcing which adds an uncountable independent set.

We define Q_0 as follows. $q = (s, g, f) \in Q_0$ iff $s \in [\omega_1]^{<\omega}$, $g \subseteq [s]^{2}$, $f : g \rightarrow \omega$ with the property that if $a \cup \{x, y\}$ is a complete subgraph of (s, g), i.e., $[a \cup \{x, y\}]^{2} \subseteq g$, and $a < x < y$ then $|a| \leq f(x, y)$. $(s', g', f') \leq (s, g, f)$ iff $s' \supseteq s$, $f = f' \cap [s]^{2}$, $f' \supseteq f$. It is clear that Q_0 adds a graph X on ω_1 with no complete subgraph of type $\omega + 2$.

If $0 < \alpha < \omega_2$ and the iteration P_α is given assume that $Y_\alpha \in V^{P_\alpha}$ is a graph on ω_1 with no subgraph of type $(\omega : 2)$. We set $q \in Q_\alpha$ iff $q \in [\omega_1]^{<\omega}$ is an independent set of Y_α. $q' \leq q$ iff $q' \supseteq q$. It is well known that Q_α is ccc. This implies that there is a $\delta < \omega_1$ such that if $q \in Q_\alpha$ has $q \cap \delta = \emptyset$ then q has extensions to arbitrarily large ordinals. We assume that every q is as described, or, better, by removing the part of Y_α below δ we can make $\delta = 0$. With this, Q_α will really add an uncountable independent subset of Y_α.

The results of [4] show that Q_0 is ccc and as all the other factors are ccc this way we get a ccc forcing P_{ω_2}. (Indeed, we will prove stronger statements soon.) This makes it possible that with a bookkeeping every appropriate graph on ω_1 can be some Y_α and so we prove the result if we show that X remains a graph in V^{P_α} which contains no uncountable independent sets.

For $p \in P_\alpha (1 \leq \alpha \leq \omega_2)$ we denote by $\text{supp}(p)$ the support of p, which is a finite subset of α. If $\beta < \alpha$, then $p|\beta$ is the restriction of p to β. A condition $p \in P_\alpha$ is nice if for every $0 < \beta < \alpha$ the condition $p|\beta$ determines the finite set $p(\beta)$, that is, it is not only a name of it, but an actual set.

Lemma 1. For $\alpha \leq \omega_2$ the nice conditions form a dense subset of P_α.
Proof (by induction on α). The statement is obvious for $\alpha = 1$. As every support is finite, there is nothing to prove for α limit. If $p \in P_{\alpha+1}$ pick a $p' \in P_\alpha$, $p' \leq p$ determining $p(\alpha)$. Extend p' to a nice $p'' \leq p'$. Now $(p'', p(\alpha))$ is as required.

From now on we will mostly work with nice conditions.

Assume that $0 < \alpha \leq \omega_2$, $p_0, p_1 \in P_\alpha$, $p_i(0) = (s \cup s_i, g_i, f_i)$ for $i < 2$ with s, s_0, s_1 disjoint. We call an extension $q \leq p_0, p_1$ edgeless if for $q(0) = (s^*, g^*, f^*)$ the graph g^* contains no edge between s_0 and s_1. We will frequently use the obvious fact that if $p_i' \leq p_i$ for $i < 2$ then every edgeless extension of p_0', p_1' is an edgeless extension of p_0, p_1.

Lemma 2. If $\alpha \leq \omega_2$, $k < \omega$, and R_1 conditions are given in P_α then some k of them have an edgeless common extension.

Proof (by induction on α). Let $p_\xi \in P_\alpha$ be given. We can assume outright that $p_\xi(0) = (s \cup s_\xi, g_\xi, f_\xi)$ with $\{s, s_\xi : \xi < \omega_1\}$ disjoint, and these conditions are compatible. We can also suppose that the supports of the conditions form a Δ-system.

The statement is obvious if $\alpha = 1$.

Assume now that α is limit. If $\text{cf}(\alpha) \neq \omega_1$ then there is a $\beta < \alpha$ such that P_β contains an uncountable subfamily of $\{p_\xi : \xi < \omega_1\}$ and we are done by the inductive hypothesis. If $\text{cf}(\alpha) = \omega_1$ then there is a $\beta < \alpha$ such that the supports are pairwise disjoint beyond β. This follows from the fact that they form a Δ-system. These arguments give the result for limit α.

It suffices, therefore, to show the lemma for $\alpha + 1$, assuming that it holds for α. Next we argue that it is enough to show it for $k = 2$. This will be done by remarking that if it is true for some $k \geq 2$ then it is true for $2k$. Indeed, if the conditions $\{p_\xi : \xi < \omega_1\}$ are given and we know the lemma for k then we can inductively choose $\{q_\xi : \xi < \omega_1\}$ such that q_ξ is an edgeless extension of $\{p_\xi : \xi \in s_\tau\}$ where the s_τ's are disjoint k-element subsets of ω_1. If now q_{τ_0} and q_{τ_1} admit an edgeless extension r then r is an edgeless extension of $\{p_\xi : \xi \in s_{\tau_0} \cup s_{\tau_1}\}$ and so our claim is proved.

Assume therefore that (p_ξ, q_ξ) are nice conditions in $P_{\alpha+1}$. We can as well assume that the sets $\{q_\xi : \xi < \omega_1\}$ form a Δ-system and $q_\xi = W \cup U_\xi$ holds for $\xi < \omega_1$ where $|U_\xi| = n$ for some $n < \omega$. We will ignore W as it will play no role in finding an appropriate extension. As the sets $\{U_\xi : \xi < \omega_1\}$ are disjoint, $\min(U_\xi) \geq \xi$ for almost every (closed unboundedly many) ξ.

Using the lemma itself for α we can find (by some re-indexing) a stationary set $S \subseteq \omega_1$ and conditions which are edgeless extensions

$$p_\xi \leq p_{\omega \xi}, p_{\omega \xi+1}, \ldots, p_{\omega \xi+n} \quad (\xi \in S)$$

with $\xi \leq U_\omega \xi < U_{\omega \xi+1} < \ldots < U_{\omega \xi+n}$ and we can even assume that p_ξ determines a bound $\tau(\xi) < \omega_1$ for those points $\gamma < \omega_1$ which are joined.
to two or more points in \(U_\omega \cup \ldots \cup U_{\omega^{\xi+n}} \). This bound exists as there are only finitely many ordinals \(\gamma \) as described above (by the condition that \(Y_\alpha \)
has no subgraph of type \((\omega : 2)\)). By the pressing-down lemma there is a stationary subset \(S' \subseteq S \) on which the function \(\tau(\xi) \) is constant, \(\tau(\xi) = \tau \).

Using the lemma for \(\alpha \) there are \(\tau < \xi_0 < \xi_1 \) with an edgeless extension \(r \leq \bar{p}_\xi, p_\xi \). Now observe that \(r \) forces that any of the \(n \) points in \(U_\omega \) is \(\tau \) for \(\alpha \) at most one point in \(U_{\omega^{\xi_1}} \cup \ldots \cup U_{\omega^{\xi+n}} \). Again, we can assume that \(r \) determines these points. As there are only \(n \) elements in \(U_\omega \) and \(n+1 \) sets \(U_{\omega^{\xi_1}} \), \(\ldots \), \(U_{\omega^{\xi+n}} \) there is some \(0 \leq i \leq n \) with no edge between \(U_\omega \) and \(U_{\omega^{\xi_1+i}} \). This means that \((r, \omega^{\xi_0} \cup \omega^{\xi_1+i}) \) is an edgeless extension of \((p_\omega^{\xi_0}, q_\omega^{\xi_0}) \) and \((p_\omega^{\xi_1+i}, q_\omega^{\xi_1+i}) \).

Lemma 3. If \(1 \leq \alpha \leq \omega_2 \), \(p_\xi \in P_\alpha \) for \(\xi < \omega_1 \), \(p_\xi(0) = (s \cup s_\xi, g_\xi, f_\xi) \) with the sets \(\{s, s_\xi : \xi < \omega_1\} \) disjoint, \(x_\xi \in s_\xi \) and \(t_\xi \subseteq s_\xi \) is independent in \(g_\xi \), then there is \(\xi' < \xi \) with a common extension \(r \) with \(r(0) = (s', g', f') \) such that \(\{x_\xi\} \times t_{\xi'} \subseteq g' \).

Proof (by induction on \(\alpha \)). Assume first that \(\alpha = 1 \). We can assume that we are given \(p_0 = (s \cup s_0, g_0, f_0) \), \(p_1 = (s \cup s_1, g_1, f_1) \), \(s_0 < s_1 \), \(x_0 \in s_0 \), \(t_1 \subseteq s_1 \) with \(g_0 \cap [s]^2 = g_1 \cap [s]^2 \), \(f_0(g_0 \cap g_1) = f_1(g_0 \cap g_1) \), \(t_1 \) independent in \(g_1 \). We try to extend \(p_0, p_1 \) to \(r = (s', g', f') \) where \(s' = s \cup s_0 \cup s_1 \), \(g' = g_0 \cup g_1 \cup \{t_0 \times t_1\} \), \(f' \supseteq f_0, f_1 \) satisfying \(f'(x_0, y) = |s| \) for \(y \in t_1 \).

We only have to show that \(r \) is a condition. Assume that \(a < y < z \) form a complete subgraph of \(g' \) yet \(|a| > f'(y, z) \). A moment’s reflection shows that the only problematic case is if \(y, z \in s_1 \). A “new” point joined to them can only be \(x_0 \) but this is excluded by our assumption that \(t_1 \) be independent.

We therefore proved the case \(\alpha = 1 \).

The case when \(\alpha \) is limit can be treated exactly as in Lemma 2.

Assume now that we are given the nice conditions \((p_\xi, q_\xi) \in P_{\alpha+1} \) with \(p_\xi(0) = (s \cup s_\xi, g_\xi, f_\xi) \) where the sets \(\{s, s_\xi : \xi < \omega_1\} \) are disjoint, and we are also given \(x_\xi \in s_\xi \) and the independent \(t_\xi \subseteq s_\xi \). We will call \(x_\xi \) the distinguished element of \(p_\xi \) and \(t_\xi \) the distinguished subset of \(p_\xi \). Again, as in Lemma 2 we assume that the sets \(\{q_\xi : \xi < \omega_1\} \) form a \(\Delta \)-system, and \(q_\xi = W \cup U_\xi \) holds for \(\xi < \omega_1 \) where \(|U_\xi| = n \) for some \(n < \omega \). Using Lemma 2 \(n_1 \) times we can create the edgeless extensions

\[\bar{p}_\xi \leq p_\omega \xi, p_\omega \xi+1, \ldots, p_\omega \xi+n \quad (\xi \in S) \]

for a stationary \(S \subseteq \omega_1 \) with \(\omega_\xi \leq U_\omega \xi < \ldots < U_{\omega^{\xi+n}} \). We let \(x_\omega \xi \) be the distinguished element and \(t_\omega \xi \cup \ldots \cup t_\omega \xi+n \) the distinguished subset of \(\bar{p}_\xi \).

This is possible, as we made an edgeless extension, so the above set is independent. As in Lemma 2, we assume that \(\bar{p}_\xi \) forces a bound \(\tau(\xi) < \omega_\xi \) for those points below \(\omega_\xi \) which are joined to two or more vertices in \(U_\omega \xi \cup \ldots \cup U_{\omega^{\xi+n}} \). On a stationary set, \(\tau(\xi) = \tau \). Pick two elements of
Two partition properties of ω_1

it, $\tau < \xi < \xi'$, for which the inductive hypothesis applies, that is, there is a condition $r \leq p_\xi, p_\xi'$ in which x_ξ is joined to $t_\omega \cup \ldots \cup t_{\omega \xi + n}$ and also determining the edges between $U_\omega \xi$ and $U_\omega \xi' \cup \ldots \cup U_\omega \xi' + n$. As every point of $U_\omega \xi$ is joined to at most one point in $U_\omega \xi' \cup \ldots \cup U_\omega \xi' + n$, there is a $0 \leq i \leq n$ such that $r \upharpoonright U_\omega \xi \cup U_\omega \xi' + i$ is independent. Now (r, q_ω, q_ω') is an extension of $(p_\omega, q_\omega, q_\omega')$ as required.

With Lemma 3 we can conclude the proof of the Theorem. Assume that $p \in P_{\omega_2}$ forces that A is an uncountable independent subset of X in $V^{P_{\omega_2}}$. There exist, for $\xi < \omega_1$, conditions $p_\xi \leq p$, and distinct ordinals x_ξ, such that $p_\xi \upharpoonright x_\xi \in A$. We assume that $p_\xi(0) = (s \cup s_\xi, g_\xi, f_\xi)$ with $x_\xi \in s_\xi$. Let x_ξ be the distinguished element and $\{x_\xi\}$ the distinguished subset of p_ξ. By Lemma 3 we can find $\xi < \xi'$ with a common extension of p_ξ, p_ξ' which adds the edge $\{x_\xi, x_\xi'\}$ to X, and therefore forces a contradiction. ■

References

Department of Computer Science
Eotvos University
Múzeum krt. 6–8
Budapest 1088, Hungary
E-mail: kope@cs.elte.hu

Received 21 May 1997;
in revised form 8 July 1997