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Topological realization of a
family of pseudoreflection groups

by

Dietrich N o t b o h m (Göttingen)

Abstract. We are interested in a topological realization of a family of pseudoreflection
groups G ⊂ GL(n,Fp); i.e. we are looking for topological spaces whose mod-p cohomology
is isomorphic to the ring of invariants Fp[x1, . . . , xn]G. Spaces of this type give partial
answers to a problem of Steenrod, namely which polynomial algebras over Fp can appear
as the mod-p cohomology of a space. The family under consideration is given by pseu-
doreflection groups which are subgroups of the wreath product Z/q oΣn where q divides
p − 1 and where p is odd. Let G be such a subgroup acting on the polynomial algebra
A := Fp[x1, . . . , xn]. We show that there exists a space X such that H∗(X;Fp) ∼= AG

which is again a polynomial algebra. Examples of polynomial algebras of this form are
given by the mod-p cohomology of the classifying spaces of special orthogonal groups or
of symplectic groups.

The construction uses products of classifying spaces of unitary groups as building
blocks which are glued together via information encoded in a full subcategory of the orbit
category of the group G. Using this construction we also show that the homotopy type of
the p-adic completion of these spaces is completely determined by the mod-p cohomology
considered as an algebra over the Steenrod algebra. Moreover, we calculate the set of
homotopy classes of self maps of the completed spaces.

1. Introduction. In 1970, Steenrod [33] posed the question of which
polynomial algebras over the field Fp of p elements can occur as the mod-p
cohomology of a topological space. Later, work of Adams and Wilkerson [2]
and Dwyer, Miller, and Wilkerson [10] shows that, at least at odd primes,
such a polynomial algebra is always the ring of invariants of a pseudoreflec-
tion group acting on a polynomial algebra with generators in degree 2. More
precisely, for every space X for which H∗(X;Fp) is a polynomial algebra on
n generators, there exists a pseudoreflection group W ⊆ GL(n,Fp) such
that H∗(X;Fp) ∼= H∗(BTn;Fp)W , where Tn denotes the n-dimensional
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torus. Actually, this isomorphism is an isomorphism of algebras over the
Steenrod algebra. Here, a pseudoreflection group means a finite subgroup
W ⊆ GL(n,Fp) which is generated by pseudoreflections, i.e. by elements
of finite order fixing a hyperplane of codimension one. Moreover, Dwyer,
Miller, and Wilkerson also showed (still for odd p) that any such W lifts to
a subgroup of GL(n, Ẑp), that this lift depends only on the geometric real-
ization of the Fp-algebra, and that W as a subgroup of GL(n, Q̂p) is again
a pseudoreflection group [10].

Conversely, we can ask for a realization of a given pseudoreflection group
W → GL(n, Ẑp); e.g. for a p-complete space X with polynomial mod-p
cohomology such that H∗(X;Fp) ∼= H∗(BTn;Fp)W (as algebras over the
Steenrod algebra) and such that the lift to GL(n, Ẑp), determined by X,
is given by the representation W → GL(n,Fp) we started with. Actually,
for odd primes the work of Dwyer, Miller and Wilkerson shows that such
a space X even satisfies some stronger conditions. These conditions will be
used for a definition.

Definition 1.1. A realization of a pseudoreflection group W →
GL(n, Ẑp) consists of a p-complete space X with polynomial mod-p cohomol-
ogy and a map f : BT∧p → X (T := Tn) such that f is equivariant up to ho-
motopy with respect to the induced W -action on BT∧p and the trivial action
on X and such that f induces an isomorphism H∗(X;Fp) ∼= H∗(BT ;Fp)W .
Here, GL(n, Ẑp) acts on BT∧p ' K((Ẑp)n, 2) in the obvious way. A realiza-
tion of a p-adic rational pseudoreflection group is given by a realization of
a p-adic integral lift.

The classifying space BG of a compact connected Lie group G has poly-
nomial mod-p cohomology if the integral cohomology of G is p-torsion free,
which is true for almost all primes. In this case, the completion of BG to-
gether with the map BTG

∧
p → BG∧p (TG ⊂ G a maximal torus) realizes the

Weyl group WG when regarded as a subgroup of GL(n, Ẑp) (n = rk(G)).
For a slightly more general definition of the realization of a pseudoreflection
group, see Remark 4.10.

If X is a realization of the pseudoreflection group W → GL(n, Ẑp), one
can easily show that H∗(X; Ẑp) ∼= H∗(BT∧p ; Ẑp)W and that H∗(X; Ẑp)⊗Q
∼= (H∗(BT∧p ; Ẑp)⊗Q)W (see Proposition 4.9).

A complete classification of all irreducible pseudoreflection groups over
Q̂p has been made by Clark and Ewing [8], based on the classification by
Shephard and Todd of irreducible pseudoreflection groups over C [32]. Most
of the groups on this list have already been shown to be realizable by spaces
with polynomial cohomology (see [8], [36], [3], [12]); i.e. there exists a p-adic
integral lift which has a realization in the above sense. In fact, there is only
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one case on the Clark–Ewing list for which the problem is not completely
solved. Partial results for this case are achieved by Quillen [31, §10] and by
Xu [35], who constructed the spaces in the cases where p2 does not divide
the order of the group. Our results here fill this last gap, in that we realize
all of the groups in this class. In addition, we show that the realization is
unique up to homotopy (in a sense made more precise below), and describe
the monoids of self maps of the spaces.

We now set up the notation needed to describe our results explicitly.
For any q > 1, let µq ⊆ C be the group of qth roots of unity. We fix an
identification µq ∼= Z/q.

Definition 1.2. For any q > 1, any r | q, and any n > 1, we set

A(q, r;n) = {(z1, . . . , zn) ∈ (µq)n | z1, . . . , zn ∈ µr}
and define G(q, r;n) ⊆ U(n) to be the subgroup generated by A(q, r;n)
(regarded as a group of diagonal matrices) and the group Σn of permutation
matrices.

Thus G(q, r;n) is a semidirect product of A(q, r;n) and Σn, and
|G(q, r;n)| = qn−1r · n!. Also, G(q, q;n) ∼= Z/q oΣn (the wreath product).

R e m a r k 1.3. Clearly, G(q, r;n) can be considered as a subgroup of
GL(n,R) for any commutative ring R which contains the group of qth roots
of unity. Note that G(q, r;n) is always a pseudoreflection group in this sit-
uation: it is generated by the pseudoreflections

σ




u 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


σ−1 and σ




0 v 0 · · · 0
v−1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



σ−1,

for all u ∈ µr, all v ∈ µq, and all σ ∈ Σn (regarded as a permutation
matrix). In particular, this applies when R = Fp, Ẑp, or Q̂p, for any prime
p ≡ 1 (mod q). In this situation (and when p is understood), we denote by
V (q, r;n) this associated representation on (Ẑp)n.

If G(q, r;n) is any of the groups G(2, 1;n), G(2, 2;n), G(3, 1; 2), G(4, 1; 2),
or G(6, 1; 2), then it is in fact conjugate to a subgroup of GL(n,Z). Actually,
they are the only pseudoreflection groups of the form G(q, r;n) which can be
realized over Q̂2 [8]. Moreover, in these cases, G(q, r;n) is the Weyl group of
the compact connected Lie group SO(2n), SO(2n+1), SU(3), Sp(2), or G2,
respectively, with representation given by its action on the integral lattice
of the maximal torus. Hence, these groups all have topological realizations.
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For p = 2 and G(2, 1;n), G(2, 2;n) and G(6, 1; 2) this is not true in the sense
of Definition 1.1 but in the extended sense of Remark 4.10.

We therefore can focus our attention on the groups G = G(q, r;n) real-
ized at odd primes p such that q | (p − 1). These are exactly the pseudore-
flection groups described in case no. 2a in the list of Clark and Ewing [8].

For convenience, throughout the rest of this section, we fix r | q > 1,
n ≥ 2, and let p be an odd prime such that q | (p − 1). We first consider
the ring of invariants for G(q, r;n) acting on the appropriate polynomial
algebras.

Proposition 1.4. Set R = Fp, Ẑp, or Q̂p, and fix an identification of
µq with the group of qth roots of unity in R. Then

R[x1, . . . , xn]G(q,r;n) ∼= R[y1, . . . , yn−1, e],

where for each i, yi = σi(x
q
1, . . . , x

q
n) (the ith elementary symmetric polyno-

mial), and where e = (x1, . . . , xn)r. In particular , the ring of invariants is
a polynomial algebra.

P r o o f. Set G = G(q, r;n) and A = A(q, r;n). Any element α ∈
R[x1, . . . , xn]A can be written uniquely in the form α = a0 + a1e + . . . +
ak−1e

k−1, where k = q/r and ai ∈ R[(x1)q, . . . , (xn)q] for each i. Then α is
G-invariant if and only if each ai lies in

R[(x1)q, . . . , (xn)q]Σn ∼= R[y1, . . . , yn−1, yn]

(cf. [22]), where each yi is the ith elementary symmetric polynomial on the
elements (x1)q, . . . , (xn)q (and yn = eq/r).

The polynomial ring Fp[x1, . . . , xn] can be identified with the mod-p co-
homology H∗(BT ;Fp) of the classifying space BT of an n-dimensional torus
T . Thus the last proposition shows that H∗(BT ;Fp)G is a polynomial alge-
bra. We can state our main results: the existence and homotopy uniqueness
of spaces which realize the pseudoreflection groups G(q, r;n).

Theorem 1.5. Fix q > 1, r | q, and n > 1, and let p be an odd prime
such that q | (p − 1). Then G = G(q, r;n) ⊂ GL(n, Ẑp) can be realized by a
p-complete space BX = BX(q, r;n).

The space BX(q, r;n) satisfies a strong homotopy uniqueness property
as the next theorem shows.

Theorem 1.6. Fix q > 1, r | q, and n > 1, and let p be an odd prime
such that q | (p − 1). Let BX = BX(q, r;n) be the space constructed in
Theorem 1.5. Then for any p-complete space Y such that H∗(BX;Fp) ∼=
H∗(Y ;Fp) as algebras over the Steenrod algebra, the spaces Y and BX are
homotopy equivalent.
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It turns out that the space BX(q, r;n) behaves in many ways like the
classifying space of a compact Lie group with Weyl group G(q, r;n) acting on
a “p-complete n-torus” via the representation V (q, r;n) (Proposition 4.4).
That is the reason why we switched to the notation BX (instead of X). We
think of BX as the classifying space of the loop space X := ΩBX, which is
a p-compact group (a p-complete generalization of a compact Lie group) in
the sense of Dwyer and Wilkerson. This interpretation is not necessary for
the construction of the spaces BX, but is very helpful in the proof of the
homotopy uniqueness property (Theorem 1.6), and in the description of the
monoid of self maps [BX,BX].

The description of [BX,BX] is given in Theorem 7.2 below, in terms of
the normalizer of G in GL(n, Q̂p). In particular, we prove that the homotopy
classes of self maps of BX are detected by its rational p-adic cohomology:

Theorem 1.7. Let p be an odd prime, q > 2 and r | q | (p − 1), and set
BX = BX(q, r;n). Then the obvious map

[BX,BX]→ Hom(H∗(BX; Ẑp)⊗Q,H∗(BX; Ẑp)⊗Q)

is a monomorphism.

For q = 2, the groupG(q, r;n) is the Weyl group of SO(2n) or SO(2n+1),
and Theorem 1.6 shows that the space BX(q, r;n) is homotopy equivalent
to BSO(2n)∧p or BSO(2n+ 1)∧p . For these spaces, the monoid of self maps
has already been calculated in [20]. In that paper, Theorem 1.7 is also shown
for q = 2.

Theorem 1.5 also gives new decompositions of the classifying spaces of
SO(n), Sp(n), SU(3) and G2 at odd primes; or alternatively, reconstructs
the classifying spaces of these groups at odd primes. For these compact
connected Lie groups, Theorem 1.6 has already been proven with different
methods in [10] (for p coprime to the order of G) and in [29] (for all odd
primes).

We sketch here the construction of BX(q, r;n). Let C be the full sub-
category of the orbit category of G = G(q, r;n) with objects G/H for all
subgroups H conjugate to a product of symmetric groups contained in Σn
(considered as a subgroup of G). By sending each orbit G/H of this form
to the ring of invariants R[x1, . . . , xn]H , we get a functor from C into the
category of algebras over the Steenrod algebra. This is then realized as the
cohomology of a functor on C, first to the homotopy category, and then to
the category of spaces: a functor which sends G/H to an appropriate prod-
uct of classifying spaces of unitary groups. Finally, BX is defined to be the
homotopy direct limit of this topological functor. The mod-p cohomology of
BX is calculated using the Bousfield–Kan spectral sequence, and shown to
be isomorphic to the ring of invariants R[x1, . . . , xn]G. This particular con-
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struction is also used in the proof of uniqueness (Theorem 1.6), and when
determining the monoid [BX,BX].

The paper is organized as follows. In Section 2, we prove a vanishing
result for higher derived functors of inverse limits in certain very specialized
situations. This is then used in Section 3, when constructing the spaces BX.
The definitions and basic results about the p-compact groups of Dwyer and
Wilkerson [11] are recalled in Section 4, where we also study particular maps
between p-compact groups, and show that the spaces BX constructed in Sec-
tion 3 are p-compact groups. These results, in this generality, are necessary
for the proof of the homotopy uniqueness of the space BX (Theorem 1.6)
in Section 5, and for the calculation of the monoid [BX,BX] in Section 7.
The calculation of the Weyl group of G ⊆ GL(n, Q̂p), needed to determine
[BX,BX], is done in Section 6.

This paper appears only under my name, but actually, this is joint work
with R. Oliver. He found this very simple construction of the spaces realizing
the pseudoreflection groups in question. My only contribution consists of
the idea how one can use his construction for a proof of the homotopy
uniqueness property and for the calculation of the set of homotopy classes
of the self maps of these spaces. It proved impossible for us to agree on a
way of presenting the results, and Oliver eventually suggested that I publish
a version of the work under my own name. It is a pleasure for me to thank
him here for all his contributions.

I also would like to thank the referee for some clarification in the state-
ments and the proofs of Propositions 2.1 and 2.2, and the Centre de Re-
cerca Matemàtica in Barcelona for their hospitality when this joint work
was started.

2. Inverse limits of functors on subcategories. Let C be a small
category and Fun(C,Ab) the category of (covariant) functors from C to Ab.
Then there exist higher limits

lim←−C
i : Fun(C,Ab)→ Ab

defined as right derived functors of the inverse limit functor

lim←−C
: Fun(C,Ab)→ Ab

(cf. [5, XI.6] or [30, Lemma 2]).
For any pair of categories C ⊇ D and any object x in C, we let (x→D)

denote the category of objects in D “under” x: the objects are the mor-
phisms ϕ : x → y in C such that y is an object in D, and a morphism
(y1, ϕ1) → (y2, ϕ2) is an element in MorD(y1, y2) which makes the obvious
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triangle commute in C. The category (D → x) of objects “over” x is defined
analogously.

Proposition 2.1. Let C be a small category , and let D ⊆ C be a full
subcategory. Let F : C → Ab be a (covariant) functor such that for each
object y ∈ Ob(C)rOb(D),

lim←−
∗

y→D
(F |(y → D)) =

{
F (y) if ∗ = 0,
0 if ∗ > 0.

Then
lim←−C
∗(F ) ∼= lim←−D

∗(F ).

P r o o f. Let I : D → C be the inclusion functor. The right Kan extension

I∗ : Fun(D,Ab)→ Fun(C,Ab)

is defined by

I∗(F )(y) = lim←−
y→D

(F | (y → D)).

There exists a composition of functors spectral sequence

lim←−C
i(RjI∗(FI))⇒ lim←−D

i+j(FI)

converging to the higher limits of F restricted to D (cf. [7, XVI, 3] or
[16, Appendix II, 3.6]). Here,

RjI∗(FI) ∼= lim←−
j

y→D
(F | (y → D))

denotes the right derived functor of I∗ evaluated at FI. For y ∈ C r D all
higher right derived functors vanish and R0I∗(F )(y) = F (y) by assumption.
For y ∈ D the identity id : y → y is an initial object of the over category
y → D and the same formulas hold. Consequently, we have

lim←−C
∗(F ) ∼= lim←−D

∗(FI) ∼= lim←−D
∗(F ).

Proposition 2.1 dealt with limits over a “terminal” subcategory. In con-
trast, Proposition 2.2 deals with limits over an “initial” subcategory.

Proposition 2.2. Let C be a small category , and let E ⊆ C be a full
subcategory with the following property : For any y ∈ Ob(C) r Ob(E) there
exist R(y) ∈ Ob(E) and ϕy ∈ MorC(R(y), y), such that any morphism ϕ :
x → y, where x ∈ Ob(E), factors uniquely through ϕy. (In other words,
the category (E→y) has a final object.) Then for any (covariant) functor
F : C → Ab,

lim←−C
∗(F ) ∼= lim←−E

∗(F ).



8 D. Notbohm

P r o o f. If y ∈ E then the over category E → y has the identity id : y → y
as final object. Therefore by assumption all over categories are contractible.
That is the inclusion E → C is left cofinal in the sense of Bousfield and Kan
[5, XI.9.1]. The argument of the proof of [5, XI.9.2] shows that, if you have
a left cofinal functor I : E → C, the higher limits of FI are canonically
isomorphic to the higher limits of F , which is the statement.

Now, for any finite group G, we let O(G) denote the orbit category for
G. Thus, Ob(O(G)) is the set of orbits G/H for all subgroups H ⊆ G, and
MorO(G)(G/H,G/K) is the set of all G-maps between the orbits. If H is any
set of subgroups of G, then OH(G) will denote the full subcategory of O(G)
whose objects are those orbits G/H for H ∈ H. Also, Op(G) will denote the
full subcategory whose objects are the orbits G/P for p-subgroups P .

Proposition 2.3. Fix a group G and a prime p. Let H be a family of
subgroups of G, closed under conjugation, and with the property that each
p-subgroup of G is contained in a unique minimal element of H (minimal
with respect to inclusions). Then for any Z(p)[G]-module M ,

lim←−
∗

G/H∈OH(G)

MH ∼=
{
MG if ∗ = 0,
0 if ∗ > 0.

P r o o f. Let P be the family of p-subgroups of G, and set H = H∪P. Let
FM : OH(G)op → Ab defined by FM (G/H) = MH . We first check that the
hypotheses of Propositions 2.1 and 2.2 hold, when applied to the categories
C = (OH(G))op, D = (OP(G))op, and E = (OH(G))op, and the functor F .

For each H ∈ H, we can identify the categories

(G/H → OP(G)op) = ((G/H)← OP(G))op ∼= OP(H)op

by identifying aG-mapG/P
ϕ→ G/H (for P ∈ P) with theH-orbit ϕ−1(eH).

Also, for any H ∈ H,

lim←−
∗

OP(H)

(F |OP(H)) = lim←−
∗

H/P∈OP(H)

MP ∼=
{
MH = F (G/H) if ∗ = 0,
0 if ∗ > 0.

The hypotheses of Proposition 2.1 are thus satisfied and so

(1) lim←−
∗

OH(G)

(F ) ∼= lim←−
∗

OP(G)

(F ) = lim←−
∗

G/P∈OP(G)

(MP ) ∼=
{
MG if ∗ = 0,
0 if ∗ > 0.

Here, the last step follows from [18, Theorem 5.14].
Now, for each p-subgroup P ⊆ G, let HP ∈ H be the unique minimal

subgroup in H which contains P . Let ϕP : G/P → G/HP be the map
ϕP (gP ) = gHP . Then for any H ∈ H, any ϕ : G/P → G/H factors
uniquely through ϕP . Also, by hypothesis, no element of H is contained
in any subgroup of P r H. In other words, the hypotheses of Proposition
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2.2 are satisfied for the pair of categories (OH(G))op ⊆ (OH(G))op. Thus,
we have

lim←−
∗

G/H∈OH(G)

MH = lim←−
∗

OH(G)

(F ) ∼= lim←−
∗

OH(G)

(F )

and the result now follows from (1).

3. The construction of the spaces BX(q, r;n). By a partition of a
set S we mean a collection of nonempty subsets S1, . . . , Sk ⊆ S such that
S =

∐k
i=1 Si. Let P(n) denote the set of partitions of {1, . . . , n}. For any

π = {S1, . . . , Sk} ∈ P(n), set

Σπ = Σ(S1)× . . .×Σ(Sk) ⊆ Σn,
the product of the corresponding symmetric groups. For any prime p, let
Pp(n) be the set of those partitions all of whose elements have p-power
order.

For any r | q and any n, let H(q, r;n) denote the set of all subgroups of
G = G(q, r;n) conjugate to subgroups of the form Σπ for π ∈ P(n). And
for any prime p such that (p, q) = 1, let Hp(q, r;n) ⊆ H(q, r;n) denote the
set of those subgroups conjugate to Σπ for some π ∈ Pp(n).

Lemma 3.1. If r | q and (p, q) = 1, then any p-subgroup of G = G(q, r;n)
is contained in a unique minimal element of Hp(q, r;n). For any Z(p)[G]-
module M we have

lim←−
∗

G/H∈OH(G)

MH ∼=
{
MG if ∗ = 0,
0 if ∗ > 0.

P r o o f. Since (q, p) = 1, any p-subgroup is conjugate to a subgroup of
Σn. So it suffices to consider a p-subgroup P ⊆ Σn ⊆ G(q, r;n). Regard
P as a group of permutations of the set {1, . . . , n}, let πP ∈ Pp(n) be the
set of orbits of P , and set HP = ΣπP ∈ Hp(q, r;n). Note in particular that
P ⊆ HP . It remains to show that any subgroup in Hp(q, r;n) which contains
P also contains HP .

Fix any H ∈ Hp(q, r;n) such that H ⊇ P . Let pr : G(q, r;n) → Σn be
the projection. Then, by construction, pr(H) ⊇ pr(HP ). Also (by definition
of Hp(q, r;n)) there is some g ∈ G(q, r;n) such that gHg−1 ⊆ Σn, and we
can clearly take g ∈ A(q, r;n). Then pr(gHg−1) = pr(H) ⊇ pr(HP ) and
both are contained in Σn, and it follows that gHg−1 ⊇ HP . Also, gPg−1 ⊆
gHg−1 ⊆ Σn; and since P ⊆ Σn it follows that [g, P ] ⊆ A(q, r;n)∩Σn = 1.
Thus [g, P ] = 1, and if we write g = (z1, . . . , zn), then this means that the
zi are constant on orbits of P . This in turn implies that [g,HP ] = 1, and
hence that HP = g−1(HP )g ⊆ H. This proves the first part. The second
part follows from Proposition 2.3.
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For any partition π = {S1, . . . , Sk} ∈ P(n), let U(π) be the correspond-
ing product of unitary groups:

U(π) = U(S1)× . . .× U(Sk) ⊆ U(n).

If π1, π2 ∈ P(n) are two partitions, we write π1 ≤ π2 if each element of π1

is contained in an element of π2. In particular, if π1 ≤ π2, then Σπ1 ⊆ Σπ2

and U(π1) ⊆ U(π2).

Theorem 3.2. Fix any prime p, any r | q | (p − 1), and any n > 1. Set
G = G(q, r;n) and H = Hp(q, r;n). Then there exists a functor

Ψ : OH(G)→ Top

with the following properties:

(a) For any partition π ∈ Pp(n),

Ψ(G/Σπ) ' BU(π)∧p .

(b) The composite H∗(−; Ẑp)◦Ψ is isomorphic to the fixed point functor

(G/H) 7→ Ẑp[x1, . . . , xn]H .

(c) If we set BX(q, r;n) := (hocolim−−−−−→OH(G)

(Ψ))∧p , then

H∗(BX;Fp) ∼= Fp[x1, . . . , xn]G.

For the proof we need the following result about maps between classifying
spaces of unitary groups.

Proposition 3.3. Let G be a product of unitary groups. Let f : BG
→ BG be a homotopy equivalence. Let T ⊆ G be a maximal torus and
Z ⊆ T ⊆ G the center of G. Then the following hold :

(a) Fix any abelian p-toral subgroup S ⊆ T and set H = CG(S) ⊆ G.
Then the maps

BZ(H)∧p
βH−→ map(BH,BG∧p )incl

f◦−−→ map(BH,BG∧p )f |BH ,

and
β′H : BH∧p → map(BS,BG∧p )f |BS

(where βH and β′H are adjoint to the maps induced by multiplication) are
homotopy equivalences.

(b) Let S and H be as in (a). Then for any map g : BH → BG,
g ' f |BH iff H∗(g; Ẑp)⊗Q = H∗(f |BH; Ẑp)⊗Q iff g|BT ' f |BT .

This theorem is a special case of Proposition 4.6, where we prove a
more general statement about p-compact groups. This also will show that
the theorem holds for every compact connected Lie group G. In this more
general case, for part (b), we only have to assume in addition that H is
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connected. If G is a product of unitary groups, this extra condition always
holds because the centralizer of a subgroup of a unitary group is always a
product of unitary groups and therefore connected.

Actually, to prove Theorem 4.6 only for compact connected Lie groups
the theory of p-compact groups is not necessary as Remark 4.7 explains.

P r o o f o f T h e o r e m 3.2. It will be convenient to consider the subset

H0 = {Σπ | π ∈ Pp(n)} ⊆ H.
Then H0 is the set of elements of H contained in Σn, and every element of
H is conjugate to an element of H0. Hence OH0(G) contains objects from all
isomorphism classes of OH(G) and so limits over OH0(G) and over OH(G)
are the same.

Any morphism in OH0(G) is a composite

(1) (G/Σπ1) σ·a−→ (G/Σσ(π1))
proj−→ (G/Σπ2),

where

σ ∈ Σn, a = (z1, . . . , zn) ∈ A(q, r;n), [a,Σπ1 ] = 1, and σ(π1) ≤ π2.

Note that the condition [a,Σπ1 ] = 1 is equivalent to the condition that the
zi are constant on elements in π1.

We first define a functor

Ψ ′0 : OH0(G)→ hTop

taking values in the homotopy category of Top which satisfies conditions (a)
and (b). On objects, we set

Ψ ′0(G/Σπ) = BU(π)∧p .

And a morphism of type (1) above is sent to a composite of the form

BU(π1)∧p
ψαπ1−→ BU(π1)∧p

σ∗−→ BU(σ(π1))∧p
incl−→ BU(π2)∧p .

Here, ψαπ1
means the product of the corresponding unstable Adams opera-

tions on the unitary group factors (recall that the coordinates of α are con-
stant on each element of the partition π1). The map σ∗ is induced by the ho-
momorphism which sends each factor of U(π1) to the corresponding factor of
U(σ(π1)). When showing that these maps compose correctly (i.e., that Ψ ′0 is
a functor), the only difficult parts are to show that ψr◦ψs ' ψrs (this follows
from the homotopy uniqueness of the unstable Adams operations, shown in
[19, Theorem 4.3]) and that the unstable Adams operations commute with
inclusions. This last point holds since (ψαπ )−1 ◦ incl ◦ψαπ is homotopic to the
inclusion by Proposition 3.3(b). (Note that for U(π1) ⊆ U(π2) there exists
a subtorus S = Z(U(π1)) ⊆ U(π1) such that U(π1) = CU(π2)(S).)
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Thus, Ψ ′0 is a well defined functor to the homotopy category, and can be
extended to a functor

Ψ ′ : OH(G)→ hTop.

Conditions (a) and (b) hold for Ψ ′ by construction.
We now claim that Ψ ′ is a centric functor in the sense of Dwyer and

Kan [9]. This means that for any morphism ϕ : G/H1 → G/H2 in OH(G)
the map

map(Ψ ′(G/H1), Ψ ′(G/H1))Id
Ψ ′(ϕ)◦−−−−−−→ map(Ψ ′(G/H1), Ψ ′(G/H2))Ψ ′(ϕ)

is a homotopy equivalence. This is automatic when ϕ is an isomorphism,
so it suffices to check it for inclusions of the form Σπ1 ⊆ Σπ2 . It follows
from Proposition 3.3(a) (applied with G = Ψ ′(G/H2) and with G = H =
ψ′(G/H1)). Furthermore, for each H ∈ H,

map(Ψ ′(G/H), Ψ ′(G/H))Id ' BZ(H)∧p ,

again by Lemma 3.3(b). Since Z(ψ′(G/H)) is a torus (ψ′(G/H) is a product
of unitary groups), the only nonvanishing homotopy group in these mapping
spaces is

π2(map(Ψ ′(G/H), Ψ ′(G/H))Id) ∼= π2(BZ(ψ′(G/H)))∧p ∼= [(Ẑp)n]H .

So by Lemma 3.1,

lim←−
i

OH(G)

πj(map(Ψ ′(−), Ψ ′(−))Id) ∼= 0

for all i, j > 0. The obstruction groups for lifting Ψ ′ to a functor to topolog-
ical spaces are given by some of these higher derived limits [9, Theorem 1.1].
Since all these groups vanish, we obtain a lifting

Ψ : OH(G)→ Top

which satisfies conditions (a) and (b) above.
Finally, by Lemma 3.1 again,

lim←−
i

OH(G)

(H∗(Ψ(−);Fp)) ∼= lim←−
i

G/H∈OH(G)

(Fp[x1, . . . , xn]H)

∼=
{
Fp[x1, . . . , xn]G if i = 0,
0 if i > 0.

So by the spectral sequence for the cohomology of a homotopy colimit
(cf. [5, XII.4.5] or [21]),

H∗(hocolim−−−−−→OH(G)

(Ψ);Fp) ∼= Fp[x1, . . . , xn]G.

The homotopy colimit is thus mod-p simply connected, and hence its p-
completion BX(q, r;n) has the same mod-p cohomology.
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P r o o f o f T h e o r e m 1.5. Let T ⊂ U(n) be the maximal torus given
by the diagonal. Making the identification H∗(BTn∧p ; Ẑp) ∼= Ẑp[x1, . . . , xn],
the composition BT∧p → BU(n)∧p → BX := BX(q, r;n) becomes equiv-
ariant with respect to the action of G(q, r;n) and realizes the isomorphism
H∗(BX;Fp) ∼= H∗(BT ;Fp)G. All this follows directly from the construction
of the space BX.

4. p-compact groups. The concept of p-compact groups was introduced
by Dwyer and Wilkerson in [13], where they showed that p-compact groups
behave very much like compact Lie groups. In particular, a p-compact group
always has a maximal torus and a Weyl group, which satisfy properties
analogous to those of the maximal torus and Weyl group of a compact Lie
group. We recall here the basic definitions and results from [13].

A p-compact group is a triple X = (X,BX, e), where BX is a p-complete
pointed space, where X is mod-p finite (i.e., H∗(X;Fp) is finite), and where
e : ΩBX '−→ X is a homotopy equivalence. The space BX is thought of as
the classifying space of the p-compact group X.

The motivating examples of p-compact groups come from compact Lie
groups. If G is any compact Lie group for which π0(G) is a finite p-group,
then the triple (G∧p , BG

∧
p , G

∧
p ' ΩBG∧p ) is a p-compact group. Particu-

lar compact Lie groups establish particular p-compact groups. A p-compact
torus is a triple of the form (T∧p , BT

∧
p ,') where T is a torus and a finite

p-compact group is of the form (π,Bπ,') where π is a finite p-group. And
p-toral groups give p-compact toral groups which in general are p-compact
groups whose component of the unit is a p-compact torus. (The component
of the unit is given by the universal cover of BX or by the component of
X related to the constant loop in BX.) Note that for any p-compact group
(X,BX, e), π1(BX) ∼= π0(X) is a finite p-group (since BX is p-complete).

A homomorphism f : X → Y between two p-compact groups is a pointed
map Bf : BX → BY . A homomorphism f is called an isomorphism if Bf
is a homotopy equivalence; and a monomorphism if the homotopy fiber of
Bf , denoted by Y/X, is mod-p finite. Two homomorphisms f, g : X → Y
are conjugate if Bf and Bg are freely homotopic.

Let P be a p-toral or p-compact toral group. Dwyer and Wilkerson
showed that for every homomorphism f : P → X of p-compact groups,
the mapping space BCX(f) := map(BP,BX)Bf is the classifying space
of another p-compact group; i.e. that BCX(f) is p-complete and its loop
space CX(f) is mod-p finite. The triple CX(f) = (CX(f), BCX(f), Id) is
called the centralizer of f . Evaluation at the base point induces a map
BCX(f)→ BX respectively a homomorphism CX(f)→ X which is always
a monomorphism [13, 5.2, 6.1]. If P is an abelian compact Lie group, or
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if map(BP,BP )Id ' BP , then there is an obvious map BP → BCX(f)
[13, 8.2]. The notion of the centralizer is motivated by:

Proposition 4.1 ([15] and [28]). For any homomorphism % : P → G
from a p-toral group P into a compact connected Lie group G, let CG(%)
denote the centralizer of Im(%) (in the group theoretic sense). Then the
map

BCG(%)∧p
'−→ map(BP,BG∧p )B%,

adjoint to B(%, incl) : BCG(%)×BP → BG, is a homotopy equivalence.

Note that this form of the statement, which will be used later, is only
contained implicitly in the two mentioned references. It is derived explicitly
in [19, Theorem 3.2].

Now we recall the notion of maximal tori and Weyl groups. A maximal
torus of a p-compact group X is a monomorphism f : T → X from a
p-compact torus into X such that the induced homomorphism T → CX(T )
is an equivalence to the identity component of the centralizer. The rank of
X is defined as the dimension of T .

Theorem 4.2 [13, 8.11, 8.13, 9.1]. Every p-compact group X has a max-
imal torus TX → X, and any two maximal tori of X are conjugate.

When defining the Weyl group WX of a p-compact group X, we will
assume here for simplicity that X is connected. For a fixed maximal torus
f : TX → X of X, WX is defined to be the set of all homotopy classes of
self maps of w : BTX → BTX such that Bf ◦ w and Bf are homotopic. It
turns out that WX has many of the well known properties of Weyl groups
of a compact connected Lie group. This definition is equivalent to the one
given by Dwyer and Wilkerson in [13, 9.11] (see [27, 1.8]); their definition
also applies to disconnected p-compact groups.

Proposition 4.3 [13, 9.5 and 9.7]. Let TX → X be a maximal torus of
a connected p-compact group X of rank n. Then the following hold :

(1) WX is a finite group.
(2) The action of WX on BTX induces a faithful representation

WX → GL(n, Q̂p)

which represents WX as a pseudoreflection group.
(3) The map TX → X induces an isomorphism

H∗(BX; Ẑp)⊗Q→ (H∗(BTX ; Ẑp)⊗Q)WX .

The next proposition describes the structure of the spaces BX con-
structed in Section 3, as p-compact groups.
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Proposition 4.4. Fix r | q | (p − 1) and n ≥ 2 and set G = G(q, r;n).
Let BX be any p-complete space such that H∗(BX;Fp) ∼= Fp[x1, . . . , xn]G.
Then the following hold :

(1) The triple X = (ΩBX,BX, Id) is a connected p-compact group.
(2) There exists a maximal torus TX → X and an identification

H∗(BTX ;Fp) ∼= Fp[x1, . . . , xn] such that the composition

Fp[x1, . . . , xn]G ∼= H∗(BX;Fp)→ H∗(BTX ;Fp) ∼= Fp[x1, . . . , xn]

is the obvious iclusion.
(3) WX

∼= G.

P r o o f. To prove the first part we only have to show that X = ΩBX is
mod-p finite. This follows easily from an Eilenberg–Moore spectral sequence
argument.

Using Lannes’ T -functor, one can show that there exists a realization
BTX → BX of the given algebraic map. The following construction is
similar to that in [10] (see also [29, Section 7]). Set V ∼= (Z/p)n. By
[23, Théorème 0.4] the composite

H∗(BX;Fp) ∼= Fp[x1, . . . , xn]G ↪→ Fp[x1, . . . , xn]→ H∗(BV ;Fp)

can be realized by a map f0 : BV → BX. A calculation of the mod-p
cohomology of map(BV,BX)f0 , using Lannes’ T -functor, shows that this
mapping space has the same mod-p cohomology as the classifying space
BTX of a p-compact torus TX and hence, that they can be identified. The
evaluation at the basepoint

BTX = map(BV ;BX)f0

ev−→ BX

induces the inclusion Fp[x1, . . . , xn]G ⊆ Fp[x1, . . . , xn] (in mod-p cohomol-
ogy). Because H∗(BTX ;Fp) is finitely generated over H∗(BX;Fp), the map
BTX → BX is a monomorphism of p-compact groups [13, 9.11]. More-
over, the sequence of monomorphisms TX ↪→ CX(TX) ↪→ CX(V ) ∼= TX
[13, 5.2, 6.1] shows that TX ∼= CX(TX) and that TX → X is a maximal
torus. This proves the second part.

The group G acts in a basepoint preserving way on the space BV and
fixes the induced map H∗(f0;Fp). Hence, again by [23, Théorème 0.4], this
action also fixes the component of map(BV,BX)f0 ' BTX of the mapping
space map(BV,BX) and is therefore a subgroup of WX .

Passing to invariants the inclusion of the maximal torus TX → X estab-
lishes the composition

H∗(BX;Fp)→ H∗(BTX ;Fp)WX → H∗(BTX ;Fp)G.

The second arrow is a monomorphism, the composition is an isomorphism
and so are both arrows. The action of WX on H∗(BTX ;Fp) is faithful be-
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cause this is true for Z∧p as coefficients (Proposition 4.3) and because for
odd primes the kernel of GL(n,Z∧p )→ GL(n,Fp) is torsion free.

The ring R := H∗(BTX ;Fp) is an integrally closed integral domain.
Let F (R) denote the field of fractions. Then we have F (RG) ∼= F (R)G and
F (R)G ⊂ F (R) is a Galois extension with Galois group G. The same formula
is true for the Weyl group WX and F (R)G ∼= F (R)WX . Thus, both groups
have the same order and G = WX . This proves the third part.

Now we can start to study particular maps between classifying spaces
of p-compact groups. The next lemma describes a well known trick in the
theory of classifying spaces.

Lemma 4.5. Fix a prime p and a p-compact group X. Let G be a compact
Lie group, let P C G be a normal p-toral subgroup, and let κ : G → G/P
be the projection. Then for any f : B(G/P )→ BX,

(1) (− ◦Bκ) : map(B(G/P ), BX)f
'−→ map(BG,BX)f◦Bκ

is a homotopy equivalence.

P r o o f. The map BP → map(BP,BX)const is an equivalence. This fol-
lows from the Sullivan conjecture and is stated in [14, 9.7, 10.1]. Using this
fact the statement might be found in [4, 7.3].

We are now ready to state our main proposition needed to describe
certain mapping spaces between p-compact groups. We have to distinguish
between centralizers in the (Lie) group theoretic sense and in the sense od
p-compact groups. In the latter case we will use the notation of mapping
spaces and keep the notation as centralizers for homomorphisms between
compact Lie groups.

Proposition 4.6. Let G be a compact connected Lie group with maximal
torus T ⊆ G and with central subgroup Z ⊆ Z(G) ⊆ G. Let i : T ↪→ G
and j : Z ↪→ G be the inclusions, and let mult : G × Z → G denote
multiplication (a homomorphism since Z is central). Let X be a connected
p-compact group, and let f : BG→ BX be a map such that

(1) f ′ : BG∧p
'−→ map(BZ,BX)f◦Bj ,

adjoint to f ◦Bmult, is a homotopy equivalence. Then the following hold :

(a) The composite BT Bi−→ BG
f−→ BX is a maximal torus of X.

(b) Fix any abelian p-toral subgroup S ⊆ T with Z ⊆ S and assume that
H := CG(S) ⊆ G is connected. Then the maps

BZ(H)∧p
βH−→ map(BH,BG∧p )incl

f◦−−→ map(BH,BX)f |BH ,
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and

β′H : BH∧p f → map(BS,BX∧p )f |BS
are homotopy equivalences. Here, βH and β′H are adjoint to the maps induced

by Bmult : BZ(H)×BH → BG and BH ×BS Bmult−−−→BG f−→ BX.
(c) Let S and H be as in (b) and assume that H is connected. Then for

any map g : BH → BX, g ' f |BH iff H∗(g; Ẑp)⊗Q = H∗(f |BH; Ẑp)⊗Q
iff g|BT ' f |BT .

R e m a r k. The fact corresponding to (a) for Lie groups is this: Let X be
a compact connected Lie group. Because G is connected, Z is contained in a
maximal torus for G and therefore in a maximal torus for X; consequently,
G→ X is of maximal rank.

If S ⊂ T is a subtorus, then H is always connected [19, Proposition A.4].

P r o o f (of Proposition 4.6). Throughout the proof, Ad : BH∧p →
map(BK,BG∧p ) and Ad(f) : BH∧p → map(BK,BX) will denote the ad-
joint maps to B(mult) and f ◦B(mult), for any commuting pair of subgroups
H,K ⊆ G and the multiplication mult : H ×K → G. And similarly for any
other map f ′ : BG′ → BX, for any G′ ⊆ G. In particular, βH is of the form
Ad and β′H of the form Ad(f).

For any H ⊆ G containing Z, we have

(2) map(BH,BG∧p )incl

' map(BH,map(BZ,BX)f◦Bj)Ad(f)

' map(BZ ×BH,BX)f◦Bmult ' map(BH,BX)f |BH .

The first equivalence holds by (1), the second by taking adjoints, and the

third by Lemma 4.5 using the fibration BZ → BZ × BH Bmult−−−→BH. Thus,
the second map (f ◦−) in (b) is a homotopy equivalence. This even holds if
we only assume that π0(G) is a finite p-group.

Now we assume that H is the centralizer in G of a p-toral subgroup
S ⊆ T . In particular, we have H ⊇ T and π0(H) is a finite p-group (cf. [19,
Proposition A.4]). Then by Proposition 4.1,

(3) Ad : BH∧p
'−→ map(BS,BG∧p )incl

is a homotopy equivalence. Hence by (2) (after replacing G by H and BX
by BG∧p ), the map

(4) map(BH,BH∧p )Id
(incl)◦−−−−−−→' map(BH,BG∧p )incl

is a homotopy equivalence. Furthermore,

(5) map(BH,BH∧p )Id ' BZ(H)∧p .
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For connected H, this follows from [19, Theorem 4.2] when H is simple, and
from [20, Proposition 2.7] in the nonsimple case. For disconnected H, this is
proved in [14], but can also be proved in the context of compact Lie groups
starting from the connected case. Points (2)–(5) now combine to prove that
βH as well as the composition (f ◦ −)βH are equivalences. The second part
of (b) follows by applying (2) in the case of H = S and by (3) if we assume
in addition that Z ⊆ S. Otherwise there is no multiplication Z × S → S.

For H = T , point (b) takes the form of a homotopy equivalence

BT∧p
'−→ map(BT,BX)f |BT

(recall that T = CG(T ) [6, Theorem 2.3]). This proves part (a), namely that

BT ↪→ BG
f−→ BX is a maximal torus (see the above definitions).

It remains to prove part (c). Assume that H is connected and let g :
BH → BX be another map such that H∗(g; Ẑp) ⊗ Q = H∗(f |BH; Ẑp) ⊗
Q. By [13, Proposition 8.11], g|BT and f |BT lift to maps g′, f ′ : BT
→ BT∧p . SinceH∗(g′; Ẑp)⊗Q andH∗(f ′; Ẑp)⊗Q agree onH∗(BX; Ẑp)⊗Q ∼=
(H∗(BT ; Ẑp) ⊗ Q)WX (Proposition 4.3), there exists w ∈ WX such that g′

and w ◦ f ′ induce the same map on H∗(BT ; Ẑp) ⊗ Q and that g′ ' w ◦ f ′.
The first conclusion follows from [28, 7.1] and the second is obvious. Hence,
we can assume that g|BT ' f |BT . We consider the following diagram:

BT map(BS,BT )B incl map(BS,BT )B incl

BH map(BS,BH∧p )B incl∧p map(BS,BX)g|BS
= map(BS,BX)f |BS

ev−→ BX,

//

²²

__________________

²²

(g|BT◦−)'(f |BT◦−)

²²
Ad // g◦−

f◦−
//

where incl always denotes the obvious inclusion. The composition in the
lower row is nothing but g or f . The compositions (g◦−)Ad and (f ◦−)Ad '
(idBH)∧p induce the same map after restriction to BT and are therefore
homotopic by [20, 2.5]. And so are f and g.

P r o o f o f T h e o r e m 3.3. Theorem 3.3 is a special case of (b) and
(c) of Theorem 4.6. We only have to assume that X = G. To satisfy the
extra condition Z ⊂ S we notice that we can replace S by the group S′ ⊂ T
generated by S and Z, since H = CG(S) = CG(S′). Moreover, notice that,
for G a product of unitary groups, H = CG(S) is always connected.

R e m a r k 4.7. In the case of X being the completion of a compact con-
nected Lie group, the proof does not depend on the theory of p-compact
groups. In the proof of parts (b) and (c) we only have to replace some refer-
ences, namely Proposition 4.3 by the fact that H∗(BG;Q)'H∗(BTG;Q)WG
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for any compact connected Lie group and [13, Proposition 8.11] by
[20, Proposition 1.2]. In particular, this shows that Proposition 3.3, which
is contained in (b) and (c), can be proved in the context of compact Lie
groups.

The following proposition describes the principal situation in which Pro-
position 4.6 will be applied.

Proposition 4.8. Fix r | q | (p − 1) and n ≥ 2, and set G = G(q, r;n).
Let BX be a p-complete space, together with an isomorphism

Φ : H∗(BX;Fp)
∼=−→ Fp[x1, . . . , xn]G

of algebras over the Steenrod algebra. Then there exists a map g : BU(n)
→ BX such that the square

(1)

H∗(BX;Fp) Fp[x1, . . . , xn]G

H∗(BU(n);Fp) Fp[x1, . . . , xn]Σn

Φ //

g∗

²²
incl

²²
ΦU
∼=

//

commutes (where ΦU is the standard isomorphism). Furthermore, the fol-
lowing hold for any such map g : BU(n)→ BX:

(a) For any maximal torus T ⊆ U(n), g|BT : BT → BX is a maximal
torus of X.

(b) Let S ⊆ U(n) be any subtorus with Z(U(n)) ⊆ S, and set
H = CU(n)(S). Then the maps

(2) BH∧p → map(BS,BX)g|BS and BZ(H)∧p → map(BH,BX)g|BH

(adjoint to g ◦Bmult) are homotopy equivalences.
(c) Let S and H be as in (b). If f : BH → BX is any map such that

H∗(f ; Ẑp)⊗Q = H∗(g|BH; Ẑp)⊗Q, then f ' g|BH.

P r o o f. Let ϕ : H∗(BX;Fp)→ H∗(BZ/p;Fp) be the composite

ϕ : H∗(BX;Fp)
Φ−→∼= Fp[x1, . . . , xn]G

Φ−1
U ◦incl−−−−−→ H∗(BU(n);Fp)

incl∗−→ H∗(BZ/p;Fp),

where the last map is the restriction to the central subgroup of order p. By
[23, Théorème 0.4], there is a map g0 : BZ/p → BX such that H∗(g0;Fp)
= ϕ. Let BTX → BX be the maximal torus of X as in Proposition 4.4.
Then a lift of g0 to BTX is given by the imbedding k : BZ/p→ BTX . The
isotropy group of k, i.e. the group of all elements of WX such that w◦k ' k,
is given by Σn ⊆ G = WX .
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Since H∗(BX;Fp) ∼= Fp[x1, . . . , xn]G, an application of [29, 10.1, 10.2]
calculates the mod-p cohomology of the mapping space. We get

H∗(map(BZ/p,BX)g0 ;Fp) ∼= H∗(BTX ;Fp)Σn ∼= H∗(BU(n);Fp).

The uniqueness theorems in [29] yield that

(3) map(BZ/p,BX)g0 ' BU(n)∧p .

The composite

g : BU(n)∧p ' map(BZ/p,BX)g0

ev−→ BX

makes diagram (1) commutative.
Now let g : BU(n)→ BX be any map satisfying (1), and let g0 : BZ/p→

BX be the restriction of g to the central subgroup of order p in U(n). Then
using Proposition 4.1 and (3), we see that multiplication Z/p×U(n)→ U(n)
induces homotopy equivalences

BU(n)∧p
'−→ map(BZ/p,BU(n)∧p )incl

'−→ map(BZ/p,BX)g0 .

Points (a), (b) and (c) now follow directly from Proposition 4.6.

We end this section with some remarks we referred to in the introduc-
tion. Let f : BT∧p → BX be the realization of a pseudoreflection group

W → GL(n, Ẑp). We claimed that, for several coefficients, the map f in-
duces an isomorphism between the cohomology of BX and the invariants of
W acting on the cohomology of BT . This is stated in the next proposition.

Proposition 4.9. Let W ⊂ GL(n, Ẑp) be a finite subgroup, T be a
torus and BT∧p → BX be a map invariant with repect to the action of W .
If H∗(BX;Fp) → H∗(BT ;Fp)W is an isomorphism, then so are the maps
H∗(BX; Ẑp)→ H∗(BT ; Ẑp)W and H∗(BX; Ẑp)⊗Q→ (H∗(BT ; Ẑp)⊗Q)W .

P r o o f. By assumption the mod-p cohomology of BX is concentrated
in even degrees. Hence, the p-adic integral cohomology is torsionfree, and
the map H∗(BX; Ẑp)⊗Fp → H∗(BX;Fp) is an isomorphism. Therefore the
isomorphism for mod-p cohomology can be written as the composition

H∗(BX;Fp)
∼=−→ H∗(BX; Ẑp)⊗Fp → H∗(BT ; Ẑp)W ⊗Fp → H∗(BT ;Fp)W .

The right arrow is an epimorphism, because the composition is one. Passing
to invariants is left exact. Thus this arrow is also a monomorphism and
the middle arrow is an isomorphism. As a consequence of the Nakayama
Lemma, this shows that H∗(BX; Ẑp) → H∗(BT ; Ẑp)W is an isomorphism.
The functor ⊗Q̂p commutes with taking invariants. This establishes the
second isomorphism asserted.
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R e m a r k 4.10. Pseudoreflection groups appear as the Weyl group of
connected p-compact groups (Theorem 4.3). Hence, one could say that a re-
alization of a pseudoreflection group W → GL(n, Ẑp) consists of a connected
p-compact group X of rank n such that the action of the Weyl group WX on
the maximal torus TX is described by the representation W → GL(n, Ẑp).
In this sense, every connected p-compact group is a realization of its Weyl
group.

Because p-complete spaces with polynomial cohomology give rise to a
connected p-compact group (see Proposition 4.4), this notion is a generali-
sation of the definition given in the introduction.

The work of several people [8], [36], [3], [14] and this paper (Theorem 1.4)
show that every irreducible pseudoreflection group over Q̂p (all primes) has a
realization in this interpretation. The fact that every pseudoreflection group
over Q̂p has a realization in this sense follows immediately from the ob-
servation that such a group splits (canonically) as a product of irreducible
pseudoreflection groups.

5. Homotopy uniqueness. In this section, we show that the spaces
BX(q, r;n) are determined by their mod-p cohomology: any p-complete
space whose Fp-cohomology is isomorphic to that of BX(q, r;n) has the ho-
motopy type of BX(q, r;n). The next theorem is nothing but Theorem 1.6.

Theorem 5.1. Fix r | q | (p−1) (q > 1) and n > 1, set G = G(q, r;n) and
BX = BX(q, r;n). Let BY be any p-complete space such that H∗(BY ;Fp) ∼=
H∗(BX;Fp) as algebras over the Steenrod algebra. Then BY ' BX.

R e m a r k. We used the notation BY instead of Y , because a p-complete
space with the above properties can be thought of as the classifying space
of a p-compact group (see Proposition 4.4).

P r o o f (of Theorem 5.1). Let

jY : BU(n)→ BY

be the map constructed in Proposition 4.8, whose induced map in cohomol-
ogy is the same as that of j : BU(n) → BX. For each space BU(π) in the
decomposition of BX (Theorem 5.2), set fπ = jY |BU(π) : BU(π) → BY .
We want to show that the fπ all fit nicely together to define a map

(1) f̂ : BX = (hocolim−−−−−→OH(G)

(BU(π)))∧p → BY,

which will then be a homotopy equivalence by the assumption on the coho-
mology of BY . Here, we take H = {Σπ | π ∈ Pp(n)}.



22 D. Notbohm

We first want to show that for any morphism ϕ : G/Σπ1 → G/Σπ2 in
OH(G), the diagram

(2)

BU(π1) BY

BU(π2) BY

fπ1 //

ϕ

²²

������

������
fπ2 //

commutes up to homotopy. Since the restriction of jY to BT (T ⊆ U(n)
a maximal torus) gives a maximal torus of BY (Proposition 4.8(a)), and
because j∗Y : H∗(BY ; Ẑp)→ H∗(BT ; Ẑp) is a monomorphism, the diagrams
clearly commute in cohomology. Moreover, by Proposition 4.8(b) we have
BU(π1) ' map(BZ(U(πi)), BY )fπi |BZ(U(πi)). (Note that Z(U(πi)) = TΣπi

is a torus containing the center Z(U(n)) of U(n).) Hence, Proposition 4.8(c)
shows that the diagrams (2) commute up to homotopy.

The commutativity up to homotopy of the diagrams (2) shows that the
maps fπ define a map from the 1-skeleton of the homotopy colimit into BY .
The obstructions for extending this to a map on the full homotopy direct
limit lie in the groups

(3) lim←−
i+1

G/H∈OH(G)

πi(map(BU(π), BY )fπ )

(for i ≥ 1; see [34]), where

πi(map(BU(π), BY )fπ ) ∼= πi(BZ(U(π))∧p ) (Prop. 4.8(b)),

∼=
{
π2(BT∧p )Σπ if i = 2,
0 if i 6= 2.

Lemma 3.1 now implies that the obstruction groups in (3) all vanish. Hence
there exists a map f̂ : BX → BY as in (1), which is a homotopy equiva-
lence since BX and BY are p-complete and f̂ induces an isomorphism in
Fp-cohomology.

We can also offer a characterization of BX respectively X as a p-compact
group in terms of the Weyl group data. We say that two p-compact groups
X and Y have the same Weyl group type if the ranks are equal, say equal
to n, and if the two representations WX ,WY → GL(n, Ẑp), induced by the
action on the maximal torus, are conjugate.

Theorem 5.2. Fix r | q | (p − 1) (q > 1) and n > 1 and set BX =
BX(q, r;n). Let Y be a p-compact group which has the same Weyl group
type as X. Then the p-compact groups X and Y are isomorphic.

P r o o f. Without loss of generality we can assume that T := TX = TY ,
that W := WX = WY and that the two representations W → GL(n, Ẑp)
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are equal. Let j0 : Z/p ↪→ T be the diagonal inclusion. Then the centralizer
C := CY (S1) is a p-compact group of rank n with Weyl group given by the
isotropy group of the inclusion S1 ↪→ T . That is to say, WC = Σn and C
has the same Weyl group type as U(n). Hence, by [27], the two p-compact
groups C and U(n)∧p are isomorphic. The index of Σn ⊆W is coprime to p.
This implies that H∗(BY ;Fp) → H∗(BU(n);Fp) is a monomorphism ([14]
or [26]), that H∗(BY ; Ẑp) is torsionfree, that H∗(BY ;Z∧p ) ∼= H∗(BT ;Z∧p )W

[27, 4.2] and that

H∗(BY ;Fp) ∼= H∗(BT ;Z∧p )W ⊗ Fp ∼= H∗(BT ;Fp)W ∼= H∗(BX;Fp).

The second isomorphism follows from the proof of Proposition 4.9. Now,
an application of Theorem 5.1 yields that BX ' BY , which is to say that
X ∼= Y as p-compact groups.

6. The normalizer of G(q, r;n). In this section we calculate the quo-
tient group NGL(n,Q̂p)(G)/G, when G = G(q, r;n) ⊆ GL(n, Q̂p). This will
be needed in the next section when describing the self maps of BX(q, r;n).

Set Amax = (µq)n = A(q, q;n), and set Gmax = G(q, q;n). As usual, we
write G = G(q, r;n) and A = A(q, r;n) for short. An easy calculation shows
that the image of the homomorphism

H ′ : Amax × (Q̂p)∗ → GL(n, Q̂p),

where H ′((a1, . . . , an), k) = diag(ka1, . . . , kan), is contained in the nor-
malizer NGL(n,Q̂p)(G). Since H ′ sends A × 1 into G, and the subgroup

µq ∼= {((k, . . . , k), k−1) | k ∈ µq} ⊆ Amax × Q̂p into 1, it factors through the
quotient homomorphism

H : Amax/A×µq (Q̂p)∗ → NGL(n,Q̂p)(G)/G.

Lemma 6.1. Fix r | q | (p − 1) and n > 1, and assume q > 2. Regard
G = G(q, r;n) as a subgroup of GL(n, Q̂p). Then the homomorphism

H : Amax/A×µq (Q̂p)∗ → NGL(n,Q̂p)(G)/G

is an isomorphism except in the following two cases:

(a) G = G(4, 2; 2), and NGL(2,Q̂p)(G)/G ∼= Σ3 × ((Q̂p)∗/µ4),

(b) G = G(3, 1; 3), and NGL(3,Q̂p)(G)/G ∼= A∗4 ×(−1) ((Q̂p)∗/µ3) (A∗4 de-
notes the binary tetrahedral group).

In both cases (a) and (b), the first factor is contained in GL(n, Ẑp).

P r o o f. S t e p 1: We first check that H is a monomorphism. For any
(a1, . . . , an) ∈ Amax and any k ∈ (Q̂p)∗, let [a1, . . . , an; k] denote the class
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of ((a1, . . . , an), k) in Amax/A ×µq (Q̂p)∗. If [a1, . . . , an; k] ∈ Ker(H), then
diag(ka1, . . . , kan) ∈ G, so k ∈ µq and (ka1, . . . , kan) ∈ A(q, r;n), and

[a1, . . . , an; k] = [ka1, . . . , kan; 1] = 1 in Amax/A×µq (Q̂p)∗.

S t e p 2: Fix an element M ∈ NGL(n,Q̂p)(G), and let [M ] denote its class
mod G. We show that [M ] ∈ Im(H) if M normalizes A.

As an A-representation, (Q̂p)n splits as a sum of n distinct 1-dimensional
representations. So if M ∈ NGL(n,Q̂p)(A), then M must be monomial (i.e.,
a product of a diagonal matrix and a permutation matrix). In particular,
after multiplying M by an appropriate element in Σn ⊆ G, we can assume
that M is diagonal.

Write M = diag(u1, . . . , un), where ui ∈ Q̂p. For any σ ∈ Σn,

MσM−1 = M · (σM−1σ−1) · σ
= (u1u

−1
σ−1(1), . . . , unu

−1
σ−1(n)) · σ ∈ G.

It follows that u1 ≡ . . . ≡ un (mod µq), so

M = H ′((1, u2u
−1
1 , . . . , unu

−1
1 ), u1)

and [M ] ∈ Im(H).

S t e p 3: Again fix M ∈ NGL(n,Q̂p)(G), and set % = (g 7→ MgM−1) ∈
Aut(G). We now show that %(A) = A, except in the cases (a) and (b) listed
above, by showing that no other subgroup of G is isomorphic to A. In fact,
G contains no other abelian subgroup with the same order as that of A.

Assume first that for some prime p′ | q, Op′(Σn) = 1. Here, Op′(−) de-
notes the intersection of all Sylow p′-subgroups. In this case, Op′(G) ⊆ A
and A = CG(Op′(G)), and so %(A) = A. Hence the only cases which remain
to consider are those where q is a power of p′, and where (n, p′) = (2, 2),
(3, 3), or (4, 2). (Recall that for n ≥ 5, the alternating group An ⊆ Σn is
the only nontrivial normal subgroup.)

Now, if n = 3 and q is a power of 3, and if %(A) 6= A, then φ(%(A)) must
contain a 3-cycle, and so %(A) ∩A is contained in the diagonal subgroup of
order at most min(q, 3r). Thus, q2r = |%(A)| | min(3q, 9r), and hence q = 3
and r = 1. If n = 2 or 4 and q is a power of 2, then a similar argument
shows that (q, r;n) = (4, 1; 2) or (4, 2; 2) (recall that q > 2 by assumption).
Finally, the group G(4, 1; 2) is dihedral of order 8, and A is its unique cyclic
subgroup of order 4.

S t e p 4: If G = G(4, 2; 2), then it contains a total of three subgroups iso-
morphic to A. So by Step 2, Im(H) has index at most 3 in NGL(n,Q̂p)(G)/G.

Using this, one checks that NGL(n,Q̂p)(G)/G ∼= Σ3 × (Q̂p)∗/µ4, where the
second factor consists of multiples of the identity, and where the first factor
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is generated by the matrices

S1 =
1

1 + i

(
i 1
i −1

)
and S2 =

(
i 0
0 1

)
.

Note that 1 + i is a unit in Ẑp, since 2 is invertible.
If G = G(3, 1; 3), then it contains a total of four subgroups isomorphic

to A. Hence Im(H) has index at most four in NGL(n,Q̂p)(G)/G. One now

checks that NGL(n,Q̂p)(G)/G ∼= A∗4 ×(−1) (Q̂p)∗/µ3, where the second factor
consists of multiples of the identity and the first is generated by the matrices

Ti =
1√−3




1 1 1
1 ζ ζ2

1 ζ2 ζ


 , Tj =

1√−3




1 ζ2 ζ2

ζ ζ ζ2

ζ ζ2 ζ


 ,

Tk =
1√−3




1 ζ ζ
ζ2 ζ ζ2

ζ2 ζ2 ζ


 , and T ′ = diag(ζ, 1, 1).

Here, ζ denotes a primitive cube root of unity in Ẑp.

7. Classification of self maps. Let BX = BX(q, r;n) be a generalized
Grassmannian. In this section, we want to study the monoid [BX,BX] of
homotopy classes of self maps of BX. As usual we assume that q | (p − 1),
but throughout this section we also assume that q > 2. This restriction is
necessary because we later use Lemma 6.1. When q = 2, BX ' BSO(2n)∧p
or BSO(2n+ 1)∧p , and so [BX,BX] is described in [20, Theorem 2].

Proposition 7.1. Let p be an odd prime and let r | q | (p−1). Let BX =
BX(q, r;n) be the p-complete space constructed in Theorem 3.2. Then, for
any self map f : BX → BX which induces a nontrivial map in cohomology ,
the map H∗(f ; Ẑp) extends to a map

H∗(fT ) ∈ End(H∗(BT ; Ẑp))∩Aut(H∗(BT ; Ẑp)⊗Q) ∼= Mn(Ẑp)∩GL(n, Q̂p).
This extension H∗(fT ) is contained in N(G) = NGL(n,Q̂p)(G) and is unique

modulo G. If n ≥ p, then H∗(fT ) ∈ GL(n, Ẑp).

The proof of this statement also works for q = 2.

P r o o f. By [13, Proposition 8.11], for any map f : BX → BX, the map
f |BT : BT → BX lifts to a self map fT : BT∧p → BT∧p of the classifying

space of the maximal torus BT i−→ BX of X. Moreover, H∗(f ; Ẑp) is non-
trivial if and only if H∗(fT ; Ẑp) is nontrivial. For any w ∈ G = G(q, r;n),
the two maps fT ◦ Bw and fT are homotopic after composition with i. So
by [28, 7.1], there is w′ ∈ G such that H∗(fT ◦ Bw) = H∗(Bw′ ◦ fT ), and
hence fT ◦Bw ' Bw′ ◦ fT . In other words, there is a map of sets % : G→ G
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such that f∗T = H∗(fT ; Ẑp) is equivariant with respect to %. An algebraic
version dealing with rational cohomology, which is sufficient for our purpose,
is already contained in [1] (see also [25, 0.2]).

In particular, this shows that the kernel of H2(fT ; Ẑp) is WX -invariant.
Also, H2(BT ; Ẑp) ⊗ Q is an irreducible representation of G = G(q, r;n) =
WX , since it splits as a sum of distinct 1–dimensional A = A(q, r;n)-
representations which are permuted transitively by Σn = G/A. It follows
that fT induces either an isomorphism in rational cohomology and that
% is an isomorphism of groups (given by conjugation with f∗T considered
as a self map of H2(BT ; Ẑp) ⊗ Q), or that H∗(fT ; Ẑp) ⊗ Q is the trivial
map. We only have to consider the first case. Now the above argument says
that H∗(fT ) ∈ NGL(n,Q̂p)(G) (and clearly H∗(fT ) ∈ Mn(Ẑp)). By [28, 7.1]
again, H∗(fT ) is uniquely defined modulo G. This proves the first part of
the statement.

Lemma 6.1 shows that, up to homotopy equivalences, the map fT looks
like an unstable Adams operation of degree psk with (p, k) = 1. Hence, we
can assume that fT = Ψp

sk is an unstable Adams operation.
Let gS : BS1 = BZ(U(n)) → BX be the inclusion of the center. Then

we have Ψp
skgS ' gSΨpsk (Proposition 4.8), and Ψp

sk induces a map

BU(n)∧p ' map(BZ(U(n)), BX)gS → map(BS1, BX)gS ' BU(n)∧p ,

which is again an unstable Adams operation of the same degree psk. By a
result of Ishiguro [17], the degree psk is a p-adic unit, equal to 0 or n < p.
Hence, for n ≥ p every non-nullhomotopic map f : BX → BX gives rise to
an element in GL(n, Ẑp). This finishes the proof.

The fact that the degree of an unstable Adams operations on BX is a
p-adic unit when n ≥ p is also implicitly contained in a theorem of Møller
[25, 4.5].

By Lemma 6.1 and Proposition 7.1, there are well defined homomor-
phisms of monoids

[BX,BX] D−→ {0} qNGL(n,Q̂p)(G)/G H←− {0} q ((Amax/A)×µq (Ẑp r 0)),

where H is an isomorphism except in the cases BX(4, 2; 2) and BX(3, 1; 3).
Using these maps, we can now formulate the main theorem of this section.

Theorem 7.2. Let p be an odd prime, r | q | (p−1) and q > 2. Let BX =
BX(q, r;n) be the generalized Grassmannian constructed in Theorem 3.2.
Then H−1 ◦D induces an isomorphism

[BX,BX] ∼= {0} q ((Amax/A)×µq (Ẑp)∗)
if n ≥ p, and an isomorphism

[BX,BX] ∼= {0} q ((Amax/A)×µq (Ẑp r 0))
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if n < p and (q, r;n) 6= (4, 2; 2) or (3, 1; 3). In the two exceptional cases,
D induces isomorphisms

[BX(4, 2; 2), BX(4, 2; 2)] ∼= {0} q (Mn(Ẑp) ∩NGL(n,Q̂p)(G)/G)

∼= {0} q (Σ3 × (Ẑp r 0))

and

[BX(3, 1; 3), BX(3, 1; 3)] ∼= {0} q (Mn(Ẑp) ∩NGL(n,Q̂p)(G)/G)

∼= {0} q (A∗4 × (−1)(Ẑp r 0)).

The following corollary contains Theorem 1.7.

Corollary 7.3. Let BX be as in Theorem 7.2. Then the following con-
ditions are equivalent for any pair of maps f, g : BX → BX.

(a) The maps f and g are homotopic.
(b) The restrictions f |BT, g|BT : BT → BX are homotopic.

(c) f∗ = g∗ : H∗(BX; Ẑp)→ H∗(BX; Ẑp).

(d) f∗ ⊗Q = g∗ ⊗Q : H∗(BX; Ẑp)⊗Q→ H∗(BX; Ẑp)⊗Q.

P r o o f. Clearly, (a)⇒(b)⇒(c)⇒(d): the second implication holds since
H∗(BX; Ẑp)⊗Q injects into H∗(BT ; Ẑp)⊗Q (Proposition 4.3). Finally, (d)
implies (a) by Theorem 7.2 (the injectivity of D).

P r o o f o f T h e o r e m 7.2. Set G = G(q, r;n). If n < p, then

BX ' (EG×G BT∧p )∧p ' (hocolim−−−−−→
G

(BT∧p ))∧p

by [10, Theorem 1.2] (where T is the n-torus) and where we think of G as
a category with one object and morphisms given by the elements of G. In
this case, we will show that

[BX,BX]
∼=−→ {fT ∈ [BT,BT ] | equivariant w.r.t. some % : G→ G}/G
∼=←− {0} q (Mn(Ẑp) ∩NGL(n,Q̂p)(G))/G.

The latter isomorphism is obvious. The action of G on the second set is
induced from the action of G on the target space BT∧p . Because self maps
of BT∧p are detected by rational cohomology, the arguments in the proof of
Theorem 7.1 establish the first map. Now let fT : BT∧p → BT∧p be a self
map equivariant w.r.t. some % : G→ G. The obstructions for extending the

composition BT∧p
fT−→ BT∧p → BX, also denoted by fT , to a self map of

BX lie in
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lim←−
G

i+1πi(map(BT∧p , BX)fT ) ∼= lim←−
G

i+1πi(BT∧p ) ∼= Hi+1(G;πi(BT∧p )).

Let f, f ′ : BX → BX be two maps which, up to homotopy and the G-action,
give rise to the same self map of BT∧p . The obstructions for f and f ′ being
homotopic lie in

lim←−
G

iπi(map(BT∧p , BX)fT ) ∼= lim←−
G

iπi(BT∧p ) ∼= Hi(G;πi(BT∧p )).

In both cases this follows from [34]. Because the order of G is coprime to p,
all the obstruction groups involved vanish, which proves the statement for
n < p.

Now we assume that n ≥ p. In particular, by Proposition 7.1, any map
f : BX → BX which does not induce the trivial map in rational coho-
mology induces an isomorphism on H∗(BX; Ẑp), and hence is a homotopy
equivalence.

We first construct the unstable Adams operations. Fix k ∈ (Ẑp)∗. Let
g : BU(n) → BX be the inclusion of BU(n) into the homotopy direct
limit constructed in Theorem 4.8. For each partition π ∈ Pp(n), set gπ =
g|BU(π); and let fπ : BU(π)→ BX be the composite

fπ : BU(π)∧p
ψkπ−→' BU(π)∧p

gπ−→ BX,

where ψkπ denotes an unstable Adams operation of degree k on BU(π).
Furthermore, by Proposition 4.8(c), the fπ commute up to homotopy with
maps induced by morphisms ϕ : G/Σπ1 → G/Σπ2 (since they commute in
cohomology). The fπ thus combine to define an element

f̂ ∈ lim←−
G/H∈OH(G)

π0(map(BU(π), BY )gπ ).

Here, H = {Σπ | π ∈ Pp(n)} is the family of subgroups of G constructed in
Section 5.

Since ψkπ is an equivalence (p - k), Proposition 4.8(b) applies again to
show that there are homotopy equivalences

BZ(U(π))∧p
'−→ map(BU(π), BX)gπ
−◦ψkπ−−→
'

map(BU(π), BX)fπ
'←− BZ(U(π))∧p .

These equivalences are compatible with all morphisms of the category
OH(G), and

πi(BZ(U(π))∧p ) ∼=
{

0 if i 6= 2,
π2(BT∧p )Σπ if i = 2.



Topological realization of pseudoreflection groups 29

This is a fixed point functor. So by Proposition 2.3,

lim←−
j

G/H∈OH(G)

π2(map(BU(π), BY )fπ ) = 0

for all j ≥ 1. Thus, the obstructions to extending the fπ to a map

BX ∼= hocolim−−−−−→OH(G)

(BU(π))→ BX

all vanish, and we get a map f : BX → BX which (since the cohomology of
BX injects into the cohomology of BU(n)) is an unstable Adams operation
of degree k.

Next we want to realize the elements of Amax/A as self maps of BX. Fix
α ∈ Amax, and set

Φ = incl ◦Bα∗X : H∗(BX;Fp)→ H∗(BU(n);Fp).

By Proposition 4.8, there exists a map gα : BU(n) → BX such that
H∗(gα) = Φ. If we set fπ = gα|BU(π) for each π ∈ Pp(n), then the same
arguments as those used to construct unstable Adams operations apply to
show that the fπ extend to a map g : BX → BX. Then H∗(f ; Ẑp) = α∗X
(mod p), so D(g) = (α, k) for some k ≡ 1 (mod p).

It remains to show that D is injective. If D(f) = D(f ′) and they are
nontrivial in rational cohomology, then as noted above, f and f ′ are both
homotopy equivalences. Hence, upon replacing f by f◦(f ′)−1, we can assume
thatH∗(f ; Ẑp) is the identity, and must show that f ' IdBX . By Proposition
4.8(b),

f ◦ g ' g : BU(n)→ BX,

where g : BU(n)→ BX denotes the “canonical” map of Proposition 4.8. It
follows that f and IdBX have the same image under the restriction map

[BX,BX] ∼= [ hocolim−−−−−→
G/Σπ∈OH(G)

(BU(π)), BX]→ lim←−
G/Σπ∈OH(G)

[BU(π), BX].

By [34] again, the obstructions to f being homotopic to IdBX lie in the
groups

lim←−
i

G/Σπ∈OH(G)

πi(map(BU(π), BX)gπ ).

Because map(BU(π), BX)gπ ' BZ(U(π))∧p by Proposition 4.8(b), these
higher limits vanish by Proposition 2.3.

It remains to check that f : BX → BX is nullhomotopic if it induces
the trivial map in rational cohomology. This is nothing but a special case of
[25, 5.7].
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