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Branched coverings and cubic Newton maps
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Lei Tan (Warwick)

Abstract. We construct branched coverings such as matings and captures to describe
the dynamics of every critically finite cubic Newton map. This gives a combinatorial model
of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part
of the filled Julia set of a specific polynomial (Figure 1).

Introduction. The Newton’s method of a polynomial P is defined to
be the following rational map:

NP : C → C, z 7→ z − P (z)

P ′(z)
.

A cubic Newton map N is a rational map conformally conjugate to NP ,
with P a cubic polynomial with simple roots. The map N has four critical
points. Three of them are also fixed points. They are the zeros of P . The
fourth one, denoted by x0, can have various dynamics under the iterations
of N . We say that N is postcritically finite if x0 has a finite orbit.

In this paper we intend to give three ways (one due to J. Head) to
construct a branched covering which is equivalent (in the sense of Thurston)
to a postcritically finite cubic Newton map. The first one (at the end of
Section 3) is the simplest and produces many interesting examples. The
second one (matings) together with the third one (captures, due to J. Head)
will cover all postcritically finite cubic Newton maps. Here is a more precise
statement:

For a generic cubic Newton map NP , there is a unique, dynamically
determined numbering p1, p2 and p3 of the three roots of P in the following
way: in the Böttcher coordinates of immediate basins A1, A2 and A3, the
three 0-rays land at ∞ in counterclockwise order, and the 1/2-rays of A1

and A2 land at the same point (see Section 2.1 for details). Define f to be
the specific polynomial z 7→ z3 + (3/2)z. We will prove
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Main Theorem. There is a subset A of cubic polynomials and a subset

Y of the filled Julia set of f such that : there is a surjective mapping M
from A ∪ Y onto the set of postcritically finite cubic Newton maps (up to

conformal conjugacy) such that : for any g ∈ A (resp. y ∈ Y ), the Newton

map M(g) (resp. M(y)) is equivalent to the mating f⊥⊥g (resp. the capture

Fy). Moreover :

1. Any map NP with x0 either periodic (but not fixed) or a preimage of

p1 is equivalent to a unique mating (i.e. is in M(A) with a unique g ∈ A).

2. Any map NP with x0 a preimage of p2 or p3 is equivalent to a capture

(i.e. is in M(Y )).

3. Any other postcritically finite NP is equivalent to a capture and a

mating (i.e. is in M(A) ∩M(Y )), with two choices of g ∈ A in case x0 is

a preimage of ∞, or a unique g ∈ A otherwise.

Therefore, the space of cubic Newton maps can be considered (combina-
torially) as the gluing of a subset of cubic polynomials with a part of the filled
Julia set of f . This is one of the rare families of maps that can be completely
described by matings and captures. Even the family of quadratic rational
maps with one superattracting cycle of period 3 is more complicated.

Head’s angle of a cubic Newton map is a very important information
about the location of the free critical point x0. Conjecturally the Head’s
angle characterises the islands appearing in the computer generated picture
of the parameter space. We will apply the Main Theorem to characterise
Newton maps with a given Head angle by means of matings and captures
(Proposition 6.3).

This result gives rise to another classification of the cubic Newton family
by abstract graphs. More precisely, there is a space of abstract graphs, each
corresponding to a unique cubic Newton map N (up to conformal conju-
gacy), in the sense that N has a forward invariant topological finite graph,
which contains the orbit of the critical points, and which is homeomorphic
to the given abstract graph. We also know exactly when two graphs give
the same rational map.

Section 1 gives a parametrization of the set of cubic Newton maps (the
λ-plane), together with a description of hyperbolic components, the location
of the three main components B0, G0, R0 and their 0- and 1/2-rays, and a
fundamental domain Ω for conformal classes of cubic Newton maps. It ends
with a corollary of the main theorem in terms of parameters.

Section 2 states first some general results on the dynamics of a cubic
Newton map, and describes the dynamical numbering of the three roots
(mainly due to J. Head). As a simple consequence, we show that the Julia
set is always connected. We also state the conditions for the boundary of
an attracting basin to be a Jordan curve (with a proof by M. Shishikura).
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It is followed by a combinatorial study of an open subset of R/Z, which is
considered to be a combinatorial model via Head’s angles of the connected
components of C−B0 ∪G0 ∪R0 (the islands). We then state the definition
and main topological properties of Head’s angles. It will be shown at the
end of Section 3 that any branched covering satisfying these properties is in
fact equivalent to a cubic Newton map.

Section 3 contains the key step towards our branched covering construc-
tions. There we simplify a Thurston obstruction Γ to a one-curve Levy cycle,
if Γ occurs for a cubic branched covering having three fixed critical points.

The results about matings are contained in Section 4. It determines
the set A by means of dynamical properties and proves the mating part of
the Main Theorem. By using Head’s results about captures, we define in
Section 5 the set Y as a subset of the filled Julia set of f and prove the
capture part of the Main Theorem.

Finally, in Section 6 we interpret the sets A and Y in parameter spaces
and give more precise information about the gluing (Theorem 6.1). We
will see that A is precisely the postcritically finite locus in a quarter part
of the following space: the connectedness locus of the family ga : z 7→
z3 − 3a2z + 2a3 + a minus the “head” and the “foot” part, and Y is the
preperiodic locus in a quarter part of the following space: the filled Julia set
of f minus the “head” and the “foot” part. Moreover, M(A) ∪M(Y ) can
be realized as A ⊔ Y quotiented by ray-equivalence relations. Figure 1 is a
schematic picture of these sets and their gluings.

This result on postcritically finite maps suggests the following conjecture:
The fundamental part of the cubic Newton family is homeomorphic to the
quotient of a well determined subset of the a-family union a specific subset
of the filled Julia set of f , by the equivalence relation generated by external
rays.

The paper ends with a discussion of graph classifications and Head’s
angle determination via matings and captures.

The author would like to thank all the people who have had discussions
with her and encouraged her, especially B. Branner, A. Douady, F. von
Haeseler, J. H. Hubbard, J. W. Milnor, C. L. Petersen, M. Rees, P. Sentenac,
B. Sevennec and M. Shishikura. The author would also like to thank Bremen
University where the first part of the present work was done. Many thanks
are due to Madame Blandine Mauduit for the drawing of all the schematic
pictures in the preprint version of the paper (prépublication ENS Lyon,
no. 26, 1990). Finally, it is a pleasure to thank D. Faught and J. Smillie for
having read carefully the manuscript.

Figure 3 (resp. Figure 4, Figure 5) shows the Julia set of Nλ for λ = a
(resp. λ = b, λ = c). We have N2

a(x0) = p3 = 1 (resp. N3
b (x0) = p1 =
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−1/2− b, N2
c (x0) = x0). Note that c is in the center of a small Mandelbrot

set. Further pictures of related Julia sets and parameter spaces can be found
in [CGS], [DH3], [He], [HP] and [Sa].

Fig. 1. How to mate in the parameter spaces

Fig. 2. The parameter λ-plane and a magnification around an island
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Fig. 3

Fig. 4

Fig. 5
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1. Description of the parameter space. For definitions of Julia set,
filled Julia set, critical point, repulsive (attracting, superattracting, indiffer-
ent) periodic point, (immediate) attracting basin, external angles of a monic
polynomial, etc., we refer the reader for example to [B] and [DH1].

Let P : C → C be a monic complex polynomial of degree d. Define

NP : C → C, z 7→ z − P (z)

P ′(z)
,

where P ′(z) denotes the derivative of P . NP is called Newton’s method

of P . It is well known and easy to check that the simple roots of P are
superattracting fixed points of NP .

Note first that given two polynomials P,Q, a necessary and sufficient
condition for their Newton’s methods to be conjugate by a Möbius trans-
formation (i.e. NQ = ϕ−1 ◦NP ◦ ϕ) is Q(z) = K · P (az + b), where K,a, b
are some complex numbers. Moreover, the conjugacy mapping ϕ is exactly
z 7→ az + b. Hence for any cubic polynomial Q the Newton’s method NQ is
conjugate to a rational map of the following form:

Nλ : z 7→ 2z3 + (1/4 − λ2)

3z2 − (3/4 + λ2)
=

2z3 + σ3

3z2 + σ2
,

which is the Newton’s method of the polynomial

Pλ : z 7→ (z + 1/2 − λ)(z + 1/2 + λ)(z − 1) = (z − r1)(z − r2)(z − r3)

with σ1 = r1 + r2 + r3 = 0, σ2 = r1r2 + r2r3 + r1r3 and σ3 = r1r2r3.
Moreover, Nλ and Nλ′ are conjugate iff G(λ) = G(λ′), where

G : C → C, λ 7→ σ3
2/σ

2
3 .

Note that in particular Nλ and N−λ are conjugate, and Nλ and Nλ̄ are
conjugate by z 7→ z.

The critical points of G are ∞,±3/2,±1/2, 0,±i
√

3/2 (where ±i
√

3/2
are double critical points). We have

G(±3/2) = G(0) = −27/4, G(±1/2) = G(∞) = ∞, G(±i
√

3/2) = 0.

Moreover,

G−1([−∞,−27/4]) = R,

G−1([−27/4, 0]) = {iy | |y| ≤
√

3/2} ∪ {−1/2 + eiθ | π/3 ≤ θ ≤ 5π/3}
∪ {1/2 + eiθ | −2π/3 ≤ θ ≤ 2π/3},

G−1([0,+∞]) = {iy | |y| >
√

3/2} ∪ {−1/2 + eiθ | |θ| ≤ π/3}
∪ {1/2 + eiθ | |θ| ≥ 2π/3}.

Special cases:

1. λ = ±1/2; then Nλ is conjugate to NP for P : z 7→ z3 − z.
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2. λ = 0, ±3/2; then Pλ has a double root and Nλ is a rational map of
lower degree.

3. λ = ±i
√

3/2; then Nλ is conjugate to NP for P : z 7→ z3 − 1.

Therefore the map

λ 7→ 1

1 + 4
27G(λ)

gives rise to an isomorphism between the space of cubic Newton maps up
to conformal conjugacy and C.

The mappingNλ has four critical points −1/2+λ,−1/2−λ, 1 and x0 = 0.
Among them −1/2 + λ,−1/2 − λ, 1 are fixed by Nλ. Only x0 can have a
free dynamics. We can then understand the dynamics of Nλ by following
the dynamics of x0.

Denote by A+
λ (resp. A−

λ , A1
λ) the immediate attracting basin for Nλ of

−1/2 + λ (resp. of −1/2 − λ, 1). Figure 2 is a computer generated picture
of the parameter space. The point λ is left light grey (resp. grey, dark grey)
if Nn

λ (x0) converges to −1/2 − λ (resp. −1/2 + λ, 1), and is colored white
if not.

Define λ to be a hyperbolic point if Nn
λ (x0) converges to an attracting

periodic orbit. The set of hyperbolic points forms an open subset of C. Its
connected components are called hyperbolic components. It is conjectured
that hyperbolic points form a dense set. The following analysis is very
similar to the analysis of the family S1 in [F], [M1].

There are several types of hyperbolic components:

Type A (adjacent critical points):

B0: with the critical point x0 in the immediate attracting basin A+
λ of

−1/2 + λ. There is only one such hyperbolic component.
G0: with the critical point x0 in the immediate attracting basin A−

λ of
−1/2 − λ. There is only one such hyperbolic component.

R0: with the critical point x0 in the immediate attracting basin A1
λ of

1. There is only one such hyperbolic component. As a convention,
we assume ∞ ∈ R0.

Type C (capture):

C+: with Nn
λ (x0) converging to −1/2 + λ but x0 6∈ A+

λ .
C−: with Nn

λ (x0) converging to −1/2 − λ but x0 6∈ A−
λ .

C1: with Nn
λ (x0) converging to 1 but x0 6∈ A1

λ.

Type D (disjoint attracting orbits): with Nn
λ (x0) converging to an at-

tracting orbit disjoint from {−1/2 + λ,−1/2 − λ, 1}.
In all cases, the same proof as Milnor’s will show that each hyperbolic

component (except R0) is an open topological 2-cell, and contains a unique
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λ such that Nλ is postcritically finite. As a consequence, the set of non-
hyperbolic points is connected. It is conjectured to be also locally connected,
and without interior.

The following lemmas, whose proof uses some results in Section 2, explain
the half apple shape in λ-plane. Denote by [−i

√
3/2, i

√
3/2] the set {iy |

|y| ≤
√

3/2}.
Lemma 1.1. The imaginary axis {λ | Re(λ) = 0} can only intersect hy-

perbolic components of type R0, D and C1. Moreover , {λ | Re(λ) = 0}−R0

= [−i
√

3/2, i
√

3/2].

P r o o f. Since Nλ is a function of λ2, it is real when Re(λ) = 0. When
Re(λ) = 0, the two components A+

λ and A−
λ are symmetric to each other

with respect to the real axis so do not intersect the real axis, and A1
λ is

symmetric to itself with respect to the real axis. Since x0 = 0 is also real,
Nk

λ (x0) remains real for every integer k > 0, and is not attracted by either
−1/2 + λ or −1/2− λ. Hence λ 6∈ B0 ∪G0 and λ cannot be in a hyperbolic
component of type C+, C−.

The other two preimages of ∞ are ξ1,2 = ±
√

1/4 + λ2/3. Set λ = ri,
with r ∈ R. According to Lemmas 2.3 and 2.5 below, the component A1

λ

is connected, at least one of ξ1, ξ2 is contained in ∂A1
λ, and x0 ∈ A1

λ if
and only if both ξ1, ξ2 ∈ ∂A1

λ. In case r2 < 3/4, ξ1,2 are real. Since A1
λ is

symmetric with respect to the real axis, the set A1
λ∩R is connected. So only

one of ξ1,2 can appear in ∂A1
λ. We then have x0 6∈ A1

λ. In case r2 > 3/4,
ξ1,2 are complex conjugate. They must both appear in ∂A1

λ because of the
symmetry. We then have x0 ∈ A1

λ. In case r2 = 3/4, we have x0 = ξ1 = ξ2 ∈
∂A1

λ, hence x0 6∈ A1
λ. This proves {λ | Re(λ) = 0} −R0 = [−i

√
3/2, i

√
3/2].

Lemma 1.2. Each of the three components of C − G−1([−27/4, 0]) con-

tains one of B0, G0 and R0, with 1/2 ∈ B0, −1/2 ∈ G0 and R0 unbounded.

Moreover , ±i
√

3/2 ∈ ∂R0 ∩ ∂G0 ∩ ∂B0 and 0 ∈ ∂G0 ∩ ∂B0.

P r o o f. By the above lemma, R0 ∪ B0 ∪ G0 is disjoint from [−i
√

3/2,
i
√

3/2]. Because of the dynamical symmetry between the three roots,
we have G(R0) = G(B0) = G(G0) ⊂ C − G[−i

√
3/2, i

√
3/2]. Since

G−1(G([−i
√

3/2, i
√

3/2])) = G−1([−27/4, 0]), each of the three components
of C−G−1([−27/4, 0]) contains one of B0, G0, R0. Now one connected com-
ponent of G−1(]0,∞]) in C is contained in R0; the other two must be con-
tained in B0 and G0 respectively.

For λ = 1/2, we have x0 = −1/2 + λ ∈ A+
λ , hence 1/2 ∈ B0. Similarly,

−1/2 ∈ G0. We can then specify thatR0 is contained in the unbounded com-
ponent of C −G−1([−27/4, 0]), B0 is contained in the bounded component
of C−G−1([−27/4, 0]) on the right and G0 is contained in the bounded com-
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ponent of C −G−1([−27/4, 0]) on the left. Moreover, since ±i
√

3/2 ∈ ∂R0,
via G, we get ±i

√
3/2 ∈ ∂R0 ∩ ∂G0 ∩ ∂B0.

One can easily check that 0 ∈ ∂G0 ∩ ∂B0 in the following way: take
any λ with 0 < λ < 1/2. For any x such that −1/2 + λ < x ≤ 0, we
have −1/2 + λ < Nλ(x) < x. Hence Nk

λ (x) tends to a fixed point of Nλ,
which has to be −1/2 + λ, because we know where the fixed points of Nλ

are (namely, −1/2 + λ,−1/2 − λ, 1 and ∞). This shows x0 = 0 ∈ A+
λ and

then λ ∈ B0. So ]0, 1/2[ ⊂ B0. Similarly one can show that ]−1/2, 0[ ⊂ G0.
Now G−1(G([−1/2, 0[)) = G−1(]−∞,−27/4]) = R − {±3/2, 0}, so {x ∈ R |
|x| > 3/2} ⊂ R0, {x ∈ R | −3/2 < x < 0} ⊂ G0 and {x ∈ R | 0 < x < 3/2}
⊂ B0.

Denote by Ω the closed region in C bounded by the Jordan curve

[−1/2, 1/2] ∪ {−1/2 + eiθ | 0 ≤ θ ≤ π/3} ∪ {1/2 + eiθ | 2π/3 ≤ θ ≤ π}.
The region Ω is a fundamental domain for the Newton’s method of cu-
bic polynomials. To be more precise, every NP is conjugate by a Möbius
transformation to Nλ for a λ ∈ Ω, and, for λ and λ′ in Ω, the two map-
pings Nλ and Nλ′ are conjugate iff λ and λ′ are on the boundary of Ω with
Re(λ′) = ±Re(λ).

Define ΨB : (B0, 1/2) → (D, 0) such that ΨB(λ) is the location of the
co-critical point (= 3σ3/2σ2) in the Böttcher coordinates of A+

λ . Define
ΨG : (G0,−1/2) → (D, 0) and ΨR : (R0,∞) → (D, 0) similarly.

Lemma 1.3. The map ΨB (resp. ΨG) is a holomorphic double cover

branched at 1/2 (resp. −1/2). One of the two 1/2-rays of B0 is ]0, 1/2],
one of the 0-rays of B0 is the arc {−1/2 + eiθ | 0 ≤ θ ≤ π/3}. Thus Ω is

bounded by 0- and 1/2-rays of both B0 and G0.

P r o o f. Again the mapping properties of ΨB and ΨG are very similar to
Milnor’s study in [M1]. We omit the details here. The fact about the 1/2-
ray of B0 is an easy consequence of the fact that both Nλ and the Böttcher
coordinate are real when λ ∈ ]0, 1/2[. The fact about the 0-ray of B0 is
proved by proving that the 0-rays of R0 stay in the imaginary axis (where
the map is real again), and then transferring the result to B0 by G.

Define Λ to be the set of postcritically finite maps inΩ. An interpretation
of the Main Theorem in parameter space will be:

Corollary 1.4. For A and Y as in the Main Theorem, the mapping

M satisfies

M(A) ⊃ Λ ∩ (C− ∪D), M(Y ) ⊃ Λ ∩ (C+ ∪ C1).

This corollary will be proved in Section 6.1.
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2. Topological structure of the dynamical plane. The results of
this section in the postcritically finite case are mainly due to J. Head. We
extend them to the non-postcritically finite case.

2.1. General structure. A cubic polynomial can be written as

P (z) = k(z − p1)(z − p2)(z − p3)

with p1, p2, p3 the roots of P . Let N = NP : z 7→ z − P (z)/P ′(z) be the
Newton’s method of P . The degree of N as a rational map is 3 except when
P has multiple roots.

If P has a triple root p, its Newton map reduces to a Möbius transfor-
mation having p as an attracting fixed point.

If P has a double root p and a simple root q, then NP reduces to a
degree two rational map having q as a superattracting fixed point and p
as an attracting fixed point. The Julia set J of NP is a topological circle,
separating the basin Ap of p and the basin Aq of q. The restriction N |Ap

is
analytically conjugate to a Blaschke product z 7→ z(z − s)/(1 − sz) (|s| < 1)
on D1 while N |Aq

is analytically conjugate to z 7→ z2 on D1. Moreover in a
neighborhood of the Julia set NP is quasi-conformally conjugate to z 7→ z2.

These degenerate cases are exceptional. In the following we will assume
that the roots p1, p2, p3 are distinct.

We will work on the Riemann sphere C with the spherical metric. For
example xn → ∞ as n → ∞ does not mean that xn diverges, but that xn

converges to the point ∞ ∈ C with respect to the spherical metric.
We can calculate immediately the fixed points and critical points of N

= NP :

Lemma 2.1. 1. The fixed points of N are p1, p2, p3,∞. The eigenvalue

of N at ∞ is 3/2.
2. The critical points of N are p1, p2, p3 and x0 = (p1 + p2 + p3)/3. We

have P ′′(x0) = 0, and p1, p2, p3 are superattracting fixed points of N .

There is a very easy criterion for a rational map to be the Newton’s
method of a polynomial:

Lemma 2.2 (cf. [He]). Any rational map F of degree d having d distinct

superattracting fixed points is conjugate by a Möbius transformation to NP

for a polynomial P of degree d. Moreover , if ∞ is not superattracting for F
and F fixes ∞, then F = NP for some polynomial P of degree d.

In this paper we consider NP as a special kind of rational map, rather
than as a root finding algorithm. Moreover we will only treat the cubic case,
i.e. d = 3.

Definition 1. A cubic rational map N : C → C is called a Newton

map if it has three distinct critical fixed points, denoted by p1, p2, p3. Up
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to conjugacy by a Möbius transformation, we may assume that ∞ is the
unique fixed point of N which is not critical. We denote by x0 the free
critical point of N .

In this subsection we concentrate only on general properties of a Newton
map.

We know since Fatou and Julia that the dynamics of a rational map
depends on the dynamical behavior of its critical points. In the case that
interests us here, three critical points p1, p2, p3 are already fixed. The critical
point x0 is the only one which can have various behaviors. We call x0 the
free critical point .

Denote by A1, A2, A3 the immediate attracting basins of p1, p2, p3 re-
spectively. Their topological structure is extremely simple, according to a
result of F. Przytycki:

Lemma 2.3 ([Prz]). Each Ai is simply connected and ∞ ∈ ∂Ai, i =
1, 2, 3.

The idea of the proof is to show that if Ai is not simply connected then
there are at least two fixed points of N on the boundary. The proof uses
only classical results, such as Montel’s theorem. We can also construct a
proof using the Poincaré metric of Ai, following Douady–Hubbard’s method
for landing points of rays (cf. [DH1], part I, pp. 70–71).

Combining the Böttcher theorem and a result of Douady–Hubbard we
can give an analytic model for the dynamics of N |Ai

whenever x0 6∈ Ai.

Lemma 2.4. Set D = {z ∈ C | |z| < 1}. Fix i ∈ {1, 2, 3} such that

x0 6= pi.

1 (Böttcher). There is a unique holomorphic mapping ϕi : D−Xi → Ai

such that ϕi(0) = pi, ϕ
′
i(0) 6= 0, and the following diagram commutes:

D −Xi
τ−→ D − τ(Xi)

ϕi

y
yϕi

Ai
N−→ Ai

where τ denotes z 7→ z2, Xi = ∅ and ϕi(D) = Ai if x0 6∈ Ai, or else

Xi =
⋃

n≥0 τ
−n{re2πiθ0 | r0 ≤ r ≤ 1} with r0, θ0 the values for which

ϕi(r0e
2πi(θ0+1/2)) is the co-critical point.

2 (Douady–Hubbard). The mapping ϕi : D −Xi → Ai has radial limits

at each point of ∂D−Xi with rational angle (counted in turns). That is, for

t ∈ Q/Z and e2πit 6∈ Xi, the limit limrր1 ϕi(re
2πit) exists, and is contained

in ∂Ai. In particular , if θ0 6= 0, 1/2, we have

3. ϕi(1) = limrր1 ϕi(r) = ∞, and limrր1 ϕi(re
πi) exists and is a preim-

age of ∞.
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The existence and unicity of ϕi in a neighborhood of 0 can be found for
example in [M2]. The rest of assertion 1 is done by a pull-back argument. A
proof of assertion 2 is contained in [DH1], part I, pp. 70–71. Point 3 follows
from point 2.

Assume that the free critical point x0 is contained in one of Ai, say A1.
A typical example for this is NQ for Q(z) = z3−z. We have x0 = p1 = 0 and
p2,3 = ±1. The mapping NQ is analytically conjugate to f : z 7→ z3 +(3/2)z
in the entire Riemann sphere. In general x0 ∈ A1 is disjoint from p1. In this
case, the restriction N |A1

is analytically conjugate to a Blaschke product
z 7→ λz2(z − s)/(1 − sz) (|λ| = 1, |s| < 1) on D1 (since N : A1 → A1 is a
proper mapping of degree 3 with one simple critical point fixed), while N |JN

is quasi-conformally conjugate to f |Jf
(in fact, N is a cubic polynomial-like

mapping in the complement of a disc containing p1 and x0; see [D3] or
[DH3]).

Fix i such that x0 6∈ Ai. Since pi is a simple critical point of N , the
mapping N : Ai → Ai is a double covering ramified at pi. Moreover, Ai

is a connected component of N−1(Ai) (∂Ai ⊂ JN ). But N is of degree
three. There must be another connected component Wi of N−1(Ai), with
N : Wi → Ai a homeomorphism. We can lift ϕi by N and claim that there
is a unique conformal mapping ψi : D →Wi such that N ◦ ψi(z) = ϕi(z).

Similarly N−1(∞) contains three points, which we denote by ξ1, ξ2,∞.
Since ∞ is not a critical point, we have ξ1 6= ∞ and ξ2 6= ∞. The case ξ1 = ξ2
is quite exceptional, because in this case ξ1 = ξ2 = x0, and N is conjugate
by a Möbius transformation to the Newton’s method NQ for Q : z 7→ z3−1.
Its dynamics is simple and has been well studied in the literature. (This is
Cayley’s original problem and is well studied. See for example [HP].) We
will give some description of its dynamics in the following as well.

For t ∈ T, we define the t-ray of Ai and of Wi to be

ai(t) = {ϕi(re
2πit) | 0 ≤ r < 1}, wi(t) = {ψi(re

2πit) | 0 ≤ r < 1} .
If ai(t) (resp. wi(t)) lands at a point of ∂Ai (resp. ∂Wi), we denote the
landing point by ιi(t) (resp. σi(t)). In other words, ιi(t) = ϕi(e

2πit) (σi(t) =
ψi(e

2πit)). Moreover, set

ai(t) = ai(t) = {ϕi(re
2πit) | 0 ≤ r ≤ 1} = ai(t) ∪ {ιi(t)},

wi(t) = wi(t) = {ψi(re
2πit) | 0 ≤ r ≤ 1} = wi(t) ∪ {σi(t)}.

The conjugacy in Lemma 2.4 ensures that the rays are preserved by dynam-
ics. More precisely, N(ai(t)) = ai(2t), N(wi(t)) = ai(t) and N−1(ai(t)) =
ai(t/2) ∪ ai(t/2 + 1/2) ∪ wi(t). Moreover, ιi(t) exists if and only if one of
ιi(t/2), ιi(t/2 + 1/2), σi(t) exists.

In case x0 ∈ Ai, set Wi = Ai. For e2πit 6∈ Xi, we can define ai(t)
similarly, and we define ιi(t) as before if ai(t) lands.
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Assume that either x0 6∈ A1 ∪ A2 ∪ A3, or x0 ∈ Ai for some i but
the co-critical point is not on the 0- or 1/2-ray of Ai (i.e. θ0 6= 0, 1/2 in
Lemma 2.4.1. So the 0- and 1/2-rays are well defined and land in each
of A1, A2, A3. Assume that the 0-rays a1(0), a2(0), a3(0) are connected at
∞ in counterclockwise order. The first striking result of J. Head is ([He],
Proposition 3.2.1):

Lemma 2.5. In case ξ1 6= ξ2, one can renumber p1, p2, p3 so that

ξ1 = ι1(1/2) = ι2(1/2) = σ3(1) ∈ ∂A1 ∩ ∂A2 ∩ ∂W3,

ξ2 = σ1(1) = σ2(1) = ι3(1/2) ∈ ∂W1 ∩ ∂W2 ∩ ∂A3.

Moreover , x0 6∈ A3.

P r o o f. Note that ιi(1/2), σi(1) ∈ N−1(∞), i = 1, 2, 3. Since N is
locally injective at ∞, we must have ιi(1/2), σi(1) ∈ {ξ1, ξ2}, i = 1, 2, 3. Two
of ι1(1/2), ι2(1/2), ι3(1/2) must coincide. Assume ξ1 = ι1(1/2) = ι2(1/2).
The rest is proved essentially by looking at the cyclic order of components
attached at ξ1, which should be preserved by N . See [He]. The cyclic order
at ξ1 shows also W3 6= A3. So x0 6∈ A3.

Fig. 3′. Ai, Wi and ξ1, ξ2

An immediate consequence of this lemma is:

Proposition 2.6. The Julia set JN for a cubic Newton map N is con-

nected.

R e m a r k. According to a result of M. Shishikura ([Sh1]), the Julia set
of NP for any polynomial P is always connected. His proof uses essentially
the technique of holomorphic surgery. In the degree three case, however, we
can give a more elementary argument, using ideas of H.-G. Meier ([Me]),
who got the same result under some extra assumptions.
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P r o o f (of Proposition 2.6). Note first that any simply connected open
subset U of C has a connected boundary (for a conformal mapping u : D →
U , the boundary ∂U coincides with

⋂
n u({1 − 1/n < |z| < 1})).

We only need to examine the case p1, p2, p3 distinct and x0 6∈ A1∪A2∪A3.
By the above lemma the set N−1(∂A1 ∪ ∂A2) is connected and contains
∂A1 ∪ ∂A2. We first prove that N−k(∂A1 ∪ ∂A2) is connected and contains
N−(k−1)(∂A1 ∪ ∂A2) for every integer k.

Let U be a connected component of C − JN such that Nk(U) = Ai for
some k ∈ N and some i ∈ {1, 2}. Denote by k(U) the minimal integer k
satisfying the above equality. Since Nk(U) : U → Ai is ramified at at most
one point, U is simply connected and ∂U is connected. It is quite easy to
see that ∂N−1(U) = N−1(∂U). Hence

N−k(∂A1 ∪ ∂A2) = ∂N−k(A1 ∪A2) = ∂N−k(A1 ∪A2) .

By induction on k we can prove that for any k ∈ N and any U with
k(U) = k, there is a preimage component V of A1, A2 such that k(V ) < k(U)
and U ∩ V 6= ∅. So ∂U ∪ ∂V is connected.

We conclude that
⋃K

k=0N
−k(∂A1 ∪ ∂A2) is connected for all K. Thus

(1) closure
( ⋃

k≥0

N−k(∂A1 ∪ ∂A2)
)

is also connected.
The set (1) is clearly a subset of JN . Just as JN , the set (1) is a com-

pletely invariant compact set of N and contains more than two points. Since
JN is the unique minimal compact set with these properties (cf. [B]), we
conclude that JN coincides with (1). It is thus connected.

Again from Lemma 2.5, we can get more information about relations
between ∂Ai, ∂Wi, i = 1, 2, 3.

Convention. Under the assumption that either x0 6∈ A1 ∪ A2 ∪ A3 or
x0 ∈ Ai for some i but not in the 0- and 1/2-ray of Ai, we always number
p1, p2, p3 in the way described in Lemma 2.5, i.e. so that the 0-rays of
A1, A2, A3 are connected at ∞ in counterclockwise order and ξ1 = ι1(1/2) =
ι2(1/2). We call this the dynamical numbering of the three fixed points.

Lemma 2.7. Suppose x0 6∈ A1 ∪A2 ∪A3.

1 ([He], Proposition 3.2.2). ι1(−1/2n)= ι2(1/2
n)∈ ∂A1∩ ∂A2, n∈ N+.

2. There is an integer l ≥ 1 such that for n = 0, 1, . . . , l − 1,

ι1(1/2
n) = ι2(−1/2n) ∈ ∂A1 ∩ ∂A2

but ι1(1/2
l) = σ2(−1/2l−1) ∈ ∂A1 ∩ ∂W2 and ι2(−1/2l) = σ1(1/2

l−1) ∈
∂W1 ∩ ∂A2. And the last two points coincide if and only if one of them is

equal to x0.



Branched coverings and cubic Newton maps 221

3. For the free critical point x0, either x0 = ι1(1/2
l), or it is separated

from ∞ by the following closed curve:

η = a1(1/2
l−1) ∪ a2(−1/2l−1) ∪ a1(1/2

l) ∪ a2(−1/2l)

∪ w1(1/2
l−1) ∪ w2(−1/2l−1) ∪ w1(1/2

l−2) ∪ w2(−1/2l−2).

(Recall that for t rational , ai(t) = ai(t) ∪ {ιi(t)}).
4. The impression of the prime end associated with ai(0) is ∞, i = 1, 2, 3,

and limn→∞ ι1(−1/2n) = ∞.
5 ([He], Proposition 3.2.2). ∂A3 ∩ (∂A1 ∪ ∂A2) = {∞}.
P r o o f. Point 1 is proved in [He]. The idea is to look at the position

of points in N−1(ξ1) relative to the Jordan curve a1(0) ∪ a2(0) ∪ a2(1/2) ∪
a1(1/2).

2. Suppose that for all n ∈ N, ι1(1/2
n) = ι2(−1/2n). Choose s0 < 0

and set sn = s0/2
n. For n ≥ 2, define Γn to be the following Jordan curve,

made by parts of rays and parts of equi-potentials of A1, A2:

Γn = {ϕ1(e
s+2πi/2n

) | sn ≤ s ≤ 0} ∪ {ϕ2(e
s−2πi/2n

) | sn ≤ s ≤ 0}
∪ {ϕ2(e

sn+2πiθ) | θ ∈ [−1/2n, 1] ∪ [0, 1/2n]}
∪ {ϕ2(e

s+2πi/2n

) | sn ≤ s ≤ 0} ∪ {ϕ1(e
s−2πi/2n

) | sn ≤ s ≤ 0}
∪ {ϕ1(e

sn+2πiθ) | θ ∈ [−1/2n, 1] ∪ [0, 1/2n]}.
Denote by Bn the annulus bounded by the two loops Γn, Γn+1. Then
B2, B3, . . . form a nested sequence of annuli with A3 contained in the end of
the nest. It is easy to check that N(Bn) = Bn−1, and N : Bn → Bn−1 is a
holomorphic homeomorphism. Hence all annuli Bn have the same complex
modulus. By a classical result of complex analysis, there is only one point
at the end of the nest. This gives a contradiction.

3. The curve η is a connected component of N−1(η′) where

η′ = a1(1/2
l−1) ∪ a2(−1/2l−1) ∪ a1(1/2

l−2) ∪ a2(−1/2l−2).

Looking at the preimages of components of C− η′, we can see that N maps
the connected component V of C − η with ∞ 6∈ V onto the connected
component V ′ of C − η′ with ∞ 6∈ V ′, and deg(N : ∂V → ∂V ′) = 2. So
x0 ∈ V and N : V → V ′ is a double covering ramified at x0.

4. This will follow essentially from the same argument as the proof of
point 2. Define

g = a1(1/2) ∪ a2(1/2) ∪ a1(1/2
l) ∪ a2(−1/2l)

∪ w2(−1/2l−1) ∪ w2(0) ∪ a3(1/2) ∪ w1(0) ∪ w1(1/2
l−1)

(see Figure 4′). We first construct a new graph in the following way: Take
a small neighborhood U of p1 bounded by an equi-potential. Replace g ∩U
by the connected component of ∂U − g intersecting a1(0). Make similar
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modifications in neighborhoods of p2 and p3. We get our graph g0. The
complement of g0 has a component S containing ∞ but no critical points.
Now taking inductively the connected component of N−1(gk) contained in
S, we can construct a nested sequence of annuli having the same modulus
and containing ∞ in the end of the nest. Hence the end consists of only one
point ∞. For each i = 1, 2, 3, we have also constructed a sequence of cross
cuts cutting ai(0), and converging to ∞.

Fig. 4′. The graph g

5. In the first annulus constructed in assertion 4 one can find an arc
which is a preimage of

w1(1/2) ∪ w1(1/2
l−1) ∪ a2(−1/2l),

separating ∂A1 and ∂A3, and another arc separating ∂A2 and ∂A3.

The integer l guarantees that for any t ∈ T, t < 1/2l, a1(t) ∩ A2 = ∅.
More precisely, the graph

a1(0) ∪ a1(1/2
l) ∪ w2(−1/2l−1) ∪ w2(0) ∪ w1(0)

∪w1(1/2
l−1) ∪ a2(−1/2l) ∪ a2(0) ∪ a3(0) ∪ a3(1/2)

separates C into 4 or 3 commected components. In any case denote by V
the connected component containing ι1(1/2). Then

Corollary 2.8. ∂A1 ∩ ∂A2 ⊂ V .

In general we do not know if ai(t) lands at a point of ∂Ai for all t. But
if the Julia set JN is locally connected, then according to the Carathéodory
theorem (cf. [DH1], part I, p. 11) ϕi (resp. ψi) extends continuously to ∂D.
In this case the dynamics of any point z ∈ ∂Ai is completely determined
by the angle t such that ai(t) lands at z. A priori it might happen that
ai(t) and ai(t

′) land at the same point. But since we have three basins, the
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extension of ϕi is in fact a homeomorphism, as we are going to see in the
next proposition. The proof is due to M. Shishikura.

Proposition 2.9. Assume that x0 6∈ A1 ∪ A2 ∪ A3 and JN is locally

connected. Then for i = 1, 2, 3, the mappings ϕi : D → Ai and ψi : D →Wi

extend homeomorphically to D, with ϕi(∂D) = ∂Ai and ψi(∂D) = ∂Wi. As

a consequence, the sets ∂Ai and ∂Wi are Jordan curves.

P r o o f. We only need to study ϕi, i = 1, 2, 3. By the Carathéodory
theorem, every ray of Ai lands at a point of ∂Ai.

Recall that ∞ 6= ξ1 and ∞ 6= ξ2. First of all we show that the point
∞ accepts no ray other than the 0-ray of Ai, i = 1, 2, 3. Suppose that
ai(θ) lands at ∞ with 0 < θ < 1/2. Then there is n ∈ N such that 0 <
2nθ < 1/2 < 2n+1θ < 1. The graph ai(0) ∪ ai(2

nθ) ∪ ai(2
n+1θ) cuts C into

three components, each of them containing exactly one of ai(1/2) − {pi},
ai(2

n+1θ−1/2)−{pi} and ai(2
nθ+1/2)−{pi}. But the last three rays should

also land at the same point (which is either ξ1 or ξ2). This is impossible
because the rays are disjoint, except at their extremities.

Next let us show that each ξ1, ξ2 accepts at most one ray from A1, A2, A3.
If ξ1 6= ξ2, the mapping N is injective in a neighborhood of ξ1 (resp. ξ2).
It then sends injectively each ray of Ai (i = {1, 2, 3}) landing at ξ1 (resp.
ξ2) to a ray of Ai landing at ∞. But there is only one such ray, so there is
at most one ray from Ai landing at ξ1 (resp. ξ2). If ξ1 = ξ2, then N is of
degree 2 in a neighborhood of ξ1. Since ai(1/2) and wi(0) both land at ξ1,
and N(ai(1/2)) = N(wi(0)) = ai(0), there is no other ray from Ai landing
at ξ1, i = 1, 2, 3.

The union a1(0)∪a2(0)∪a1(1/2)∪a2(1/2) forms a Jordan curve C. For
θ 6= θ′, there is an n ∈ N such that 2nθ ∈ ]0, 1/2] and 2nθ′ ∈ ]1/2, 1]. If
one of them is 0 or 1/2, we know already that a1(2

nθ) and a1(2
nθ′) land

at different points. If neither of them is 0 or 1/2, then a1(2
nθ) − {p1} and

a1(2
nθ′)−{p1} are contained in different components of C−C. So a1(2

nθ)
and a1(2

nθ′) land at different points. As a consequence, a1(θ) and a1(θ
′)

land at different points.

This shows that ϕ1 extends homeomorphically to the boundary of D.
Clearly the same is true of ϕ2. Concerning ϕ3, we need to take another
Jordan curve C, and then proceed in the same way. If ξ1 = ξ2, we can take
C = a1(0) ∪ a3(0) ∪ a1(1/2) ∪ a3(1/2). If ξ1 6= ξ2, let l be the integer of
Lemma 2.7.2, and take

C = a1(0) ∪ a3(0) ∪ a1(1/2
l) ∪ a3(1/2) ∪ w2(0) ∪w2(−1/2l−1).

We are now ready to determine the set ∂A1 ∩ ∂A2. Define

TN = {t ∈ T | ι1(t) = ι2(−t)}.
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Corollary 2.10. Assume that JN is locally connected , and that x0 is not

contained in A1 ∪A2 ∪A3. The mapping ι1 gives rise to a homeomorphism

from TN to ∂A1 ∩ ∂A2 and conjugates τ to N .

P r o o f. Clearly ι1(TN ) ⊂ ∂A1 ∩ ∂A2. The mapping ι1 is injective by
the above proposition.

Now let z ∈ ∂A1 ∩ ∂A2. Again by the above theorem, there are two
angles t, s ∈ T such that z = ι1(t) = ι2(−s). Denote by C the Jordan curve
a1(0) ∪ a2(0) ∪ a1(1/2) ∪ a2(1/2). The binary expansion of t (resp. −s) is
determined by the position of a1(2

nt) − {0} (resp. a2(−2ns) − {0}) with
respect to C−C. Since a1(t) and a2(−s) land at the same point, the angles
t and −s have opposite expansion. Thus t = s.

In the next subsection we will see that TN is determined by its minimal
element.

To end this subsection, we state a relative result of F. von Haeseler about
the Jordan curve property of the boundary of an attracting basin (Theorem
2.14 of [Ha]).

Proposition 2.11 ([Ha]). Let U ⊂ S2 open and simply connected. Sup-

pose that F : U → U and H : D → U (D = {|z| ≤ 1}) are continuous

mappings with the following properties:

1. #{F−1(x)} ≤ 2 for each x ∈ ∂U .

2. H : D → U is a homeomorphism.

3. F (H(z)) = H(z2) for each z ∈ D.

4. F extends to an injective map in a neighborhood of H(1) in S2.

Then H : ∂D → ∂U is a homeomorphism if and only if there exists an open

connected non-empty set V ⊂ S2 − U such that H(1) ∈ ∂V .

Condition 1 is often difficult to check. For example Shishikura’s proof
of Proposition 2.9 does not use this theorem because of this difficulty. Con-
dition 4 is not stated in [Ha] but is used implicitly in the proof, and a
counterexample of Shishikura shows that it cannot be omitted. But in the
case where F is a branched covering of S2 this condition is always satisfied.

2.2. A combinatorial study. Now we are going to study a closed subset
S of T = R/Z. Later we will see reasons for there being a one-to-one
correspondence between the connected components of C−B0∪G0 in Ω and
the connected components of (T − S) − ]1/2, 1[.

Definition. Let T be the quotient space [0, 1]/{0 ∼ 1}. The order in T

is the quotient of the order in the half-open interval ]0, 1]. An interval of T

is the quotient of an interval in ]0, 1]. Set τ : T → T, t 7→ 2t (mod 1). For
a ∈ T, define

Ga = {t ∈ T | τn(t) ∈ [a, 1], n = 0, 1, 2, . . .},
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S = {a ∈ T | a ∈ Ga} = {a ∈ T | τn(a) ∈ [a, 1], n = 0, 1, 2, . . .}.
Note that for a ∈ ]1/2, 1], Ga = {1}.
The mapping τ has the following properties: For any interval I with

1/2 6∈ I, τ(I) is again an interval and τ : I → τ(I) is a homeomorphism.
Conversely, for any interval I, τ−1(I) consists of two intervals I1 and I2 with
I1 ⊂ ]0, 1/2], I2 ⊂ ]1/2, 1] and τ : I1, I2 → I are homeomorphisms.

Lemma 2.12. Let a ∈ ]0, 1/2]. The set Ga is closed , forward invariant

(τ(Ga) = Ga), without interior and with 1 as an accumulation point. Any

connected component I of T−Ga is an open interval. Denote by I0 the one

containing ]0, a[. For any I 6= I0, τ(I) is again a connected component of

T −Ga.

P r o o f. The set T −Ga =
⋃∞

n=0 τ
−n(]0, a[) is open. We have τ(Ga) ⊂

Ga. On the other hand, for any t ∈ Ga, the point 1/2+t/2 is inGa∩τ−1(Ga).
Hence t ∈ τ(Ga).

Suppose that the interior of Ga contains an interval ]s, t[. There are
minimal integers k, p such that s ≤ p/2k < t. Then τk is injective in
]p/2k, t[ and τk(]p/2k, t[) = ]0, τkt[ ⊂ Ga. But by definition Ga ∩ ]0, a[ = ∅,
a contradiction.

We have (2n − 1)/2n ∈ Ga for n ∈ N and (2n − 1)/2n → 1 as n→ ∞.
Let I be a connected component of T − Ga. Since 1 6∈ I, I is an open

interval. Assume I 6= I0 and I = ]t, t′[. We have 1/2 6∈ I since 1/2 ∈ Ga.
So τ(I) is again an interval, the interval ]τ(t), τ(t′)[. We want to show
]τ(t), τ(t′)[ ∩ Ga = ∅. If not, there is s ∈ I such that τ(s) ∈ Ga. Since
s ≥ t ≥ a, s ∈ Ga by definition. This contradicts the choice of I.

Lemma 2.13. Let G ⊂ T be a closed set satisfying :

(a) τ(G) ⊂ G;
(b) I0 = ]0, α[ is a connected component of T −G;
(c) 1 is an accumulation point ; and

(d) for each connected component I 6= I0 of T −G, τ(I) is a connected

component of T −G.

Then G = Gα for some α ∈ S.

P r o o f. For any t ∈ G, we have t ≥ α and τn(t) ∈ G. So G ⊂ Gα, and
α ∈ S.

Let us now prove T−G⊂T−Gα. First, I0⊂T−Gα. Let I be a connected
component of T − G. We have 1 6∈ I. So I = ]t, t′[ is an interval. We also
have 1/2 6∈ I for otherwise τ(I) would be a connected component of T −G
containing 1. There are minimal integers k and p such that t≤ p/2k ≤ t′.
Then τk : I → τk(I) is injective. Since τ j(t) 6= 0 for j = 0, 1, . . . , k − 1,
τ j(I) 6= I0. So τk(I) is a connected component of T − G, with 1 in the
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extremity. Since 1 is an accumulation point, we have τk(I) = I0. In other
words, for any t∈ I, τk(t)< α. That is, I⊂ T −Gα.

Corollary 2.14. Let s ∈ T. The following four conditions for the angle

α are equivalent :

1. α = infGs.

2. α ∈ S such that Gs = Gα.

3. α = inf S ∩ [s, 1].
4. I0 = ]0, α[.

P r o o f. 1⇒2 is a consequence of Lemmas 2.12 and 2.13. The rest is
trivial.

Lemma 2.15. Let a ∈ S. The connected components of T − Ga can be

listed as follows: Set inductively H0 = I0 = ]0, a[, and Hn = τ−1(Hn−1) ∩
[a, 1]. Then Hn is an open set with finitely many connected components Ij ,
and τn : Ij → I0 is a homeomorphism. For n 6= m, Hn ∩ Hm = ∅. As a

consequence,

T −Ga =
⊔

n∈N

Hn.

P r o o f. If n < m, then τn(Hn) = H0 and τn(Hm) ⊂ [a, 1]. So Hn ∩Hm

= ∅. The rest of the proof is trivial.

Proposition 2.16. The set S is closed. The connected components of

T − S can be listed as (in binary expansions)

T − S =

∞⊔

k=1

⊔

0.ε1...εk∈S, εk=1

]0.ε1 . . . εk, 0.ε1 . . . εk[

=

∞⊔

k=1

⊔

0.ε1...εk∈S

]0.ε1 . . . εk, 0.ε1 . . . εk[.

In other words, any connected component of T − S must be of the form

]0.ε1 . . . εk, 0.ε1 . . . εk[, εk = 1, and any such interval with at least one of its

extremities in S is a connected component of T − S. The set S is perfect ,
totally disconnected , and of Lebesgue measure zero.

P r o o f. By definition S is the set of points t such that t is the smallest
in its orbit. Clearly 1, 1/2 ∈ S, and ]1/2, 1[ is a connected component of
T − S. It is also clear that T − S is an open set. So S is closed.

Let I = ]t, t′[ be a connected component of T − S, 0 < t < t′ < 1.
Let k be the minimal positive integer such that there is a positive integer p
with t ≤ p/2k ≤ t′ (such a p is unique). Note that τ is strictly expanding
on any interval contained in T − {1, 1/2}. In particular, τ i : [t, p/2k] →
[τ i(t), τ i(p/2k)] is an expanding homeomorphism, i = 1, . . . , k − 1. Since
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τ i(t) ≥ t for i = 1, . . . , k − 1, we have τ i(p/2k) ≥ p/2k for i = 1, . . . , k − 1.
Note that τk(p/2k) = 1 > p/2k. So p/2k ∈ S. Hence t = p/2k or t′ = p/2k.

We now show that t′ = p/2k is impossible. If t′ = p/2k, then τk−1I =
]τk−1t, 1/2[ contains a point s1 of the form (2n − 1)/2n+1, which is in S,
and then I contains a point s2 such that τk−1(s2) = s1. It is not difficult to
see that s2 ∈ S, we only need to show τ i(s2) ≥ s2 for i = 1, . . . , k − 1, and
this is guaranteed by the same argument as above: for i = 1, . . . , k − 1, the
mapping τ i : [t, s2] → [τ i(t), τ i(s2)] is an expanding homeomorphism, and
τ i(t) ≥ t since t ∈ S. But s2 ∈ S contradicts the choice of I.

We conclude that t = p/2k. Now we want to show that for any p/2k ∈ S,
irreducible, we have p/(2k−1) ∈ S and ]p/2k, p/(2k−1)[ ⊂ T−S. (Applying
this to t, we can conclude that t′ = p/(2k − 1). As a consequence, S is
perfect, since any isolated point of S would be on the common boundary
of two connected components of T − S.) First, for i = 1, . . . , k − 1, the
mapping τ i : [p/2k, p/(2k − 1)] → [τ i(p/2k), τ i(p/(2k − 1))] is an expanding
homeomorphism, and τ i(p/2k) ≥ p/2k; hence τ i(p/(2k − 1)) ≥ p/(2k − 1).
Since τk(p/(2k − 1)) = p/(2k − 1), for any positive integer n we have

τn(p/(2k − 1)) = τ l(p/(2k − 1)) for some 0 ≤ l ≤ k − 1.

So p/(2k − 1) ∈ S. Now since τk : [p/2k, p/(2k − 1)] → [0, p/(2k − 1)] is
strictly expanding, for any t′′ ∈ ]p/2k, p/(2k − 1)[ we have 0 < τk(t′′) < t′′.
So t′′ 6∈ S and then ]p/2k, p/(2k − 1)[ is a connected component of T − S.

The same argument will show that if p/(2k − 1) ∈ S for some p, k, then
]p/2k, p/(2k − 1)[ is a connected component of T − S.

The Lebesgue measure of S will be calculated in Lemma 2.19.

Lemma 2.17. Let a ∈ S. Assume that a is not a dyadic number , or

equivalently a is not the left end point of a connected component of T − S.

Then Ga is a perfect set. Let ]β, α[ be a connected component of ]0, 1[ − S.

Assume β = 0.ε1ε2 . . . εk, εk = 1. Then β is an isolated point of Gβ .

Moreover , Gβ−Gα =
⊔

I EI , where the union is taken over all the connected

components I of T −Gα, and , for I0 = ]0, α[,

E = EI0 = {0.ε1 . . . εk, 0.ε1 . . . εkε1 . . . εk, 0.ε1 . . . εkε1 . . . εkε1 . . . εk, . . .}.
For a general I, let n be the integer associated with I defined in Lemma

2.15. Then EI = τ−n(E) ∩ I.
The proof is left to the reader.

We give another description of the number α in Corollary 2.14.

Lemma 2.18. Let s = 0.ε1ε2 . . . ∈ T (in binary expansion). Define a

number t as follows: If s ∈ S, set t = s. Otherwise, there is a minimal

integer k such that τk(s) ∈ ]0, s[. Set t = 0.ε1 . . . εk. Then t = α.
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P r o o f. Assume s 6∈ S. We have α = inf S ∩ [s, 1[, and α > s. So
s ∈ ]β, α[ with ]β, α[ a connected component of T − S. If α = 0.σ1 . . . σl,
then β = 0.σ1 . . . σl by Lemma 2.16. It is then easy to check that s =
0.σ1 . . . σl ∗ ∗ . . . , and l is the minimal integer such that τ l(s) < s.

Lemma 2.19. For each a ∈ T, the Lebesgue measure of Ga is zero. The

set S also has Lebesgue measure zero.

P r o o f. Note that τ is ergodic with respect to the Lebesgue measure µ.
Let F ⊂ T with µ(F ) 6= 0. Set G = {t ∈ T | τn(t) 6∈ F, n = 0, 1, . . .}. Then
G ⊂ τ−1(G) and

⋃
n∈N

τ−n(G) is τ -invariant. Hence

µ
( ⋃

n∈N

τ−n(G)
)

= µ(G) ≤ µ(T − I) < 1.

By ergodicity, µ(G) = 0.

We conclude that µ(Ga) = 0. The fact µ(S) = 0 follows then from the
formula

S =
⋃

n∈N

S ∩ [1/2n, 1/2] ⊂
⋃

n∈N

G1/2n .

2.3. Head’s angle and location of the free critical point. In this subsec-
tion we introduce Head’s angle for a Newton map N with the Julia set JN

locally connected and x0 6∈ A1 ∪ A2 ∪ A3. With this angle we will be able
to give a combinatorial model of ∂A1 ∩ ∂A2, to point out the location of x0

with respect to A1, A2, A3 and to describe the dynamics of the connected
components of C −A1 ∪A2 ∪A3.

Assume in this subsection that JN is locally connected and x0 6∈ A1 ∪
A2 ∪A3.

Definition. The Head’s angle of N is defined by

(2) α = α(N) = inf{t ∈ T | ι1(t) = ι2(−t)}.
By Corollary 2.8, α > 0. Since TN is closed, α ∈ TN . Thus a1(0) ∪

a2(0) ∪ a1(α) ∪ a2(−α) forms a Jordan curve.

The sets S and Gα were defined and studied in Subsection 2.2.

Proposition 2.20. We have α ∈ S and TN = Gα. In other words, ι1
gives rise to a homeomorphism from Gα to ∂A1 ∩ ∂A2 and conjugates τ
to N .

P r o o f. We check that TN satisfies the assumptions of Lemma 2.13. Let
I = ]t, t′[ be a connected component of T − TN , and I 6= ]0, α[. We have
1, 1/2 6∈ I, and τ(t), τ(t′) ∈ TN . We want to show that ]τ(t), τ(t′)[∩TN = ∅.
Let t < s < t′. If τ(s) ∈ TN , then N(ι1(s)) = ι1(τ(s)) ∈ ∂A2. So ι1(s) ∈
∂A1 ∩ ∂W2.
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By looking at the position of ι1(α/2) (which is also a point of ∂W2)
and ι1(s), we can see easily that W2 and ι1(s) are in different connected
components of C − a1(0) ∪ a2(0) ∪ a1(α) ∪ a2(−α). So ι1(s) ∈ ∂A2 and
s ∈ TN . But this contradicts the choice of I.

R e m a r k. The converse question is: given any angle α ∈ S, is there a
Newton map with Head’s angle α? We will see in the following sections that
the answer is affirmative for α rational. (We conjecture that the answer is
also affirmative for α irrational. But to construct such Newton maps we
have to deal with postcritically infinite rational maps.) Moreover, for any
periodic angle α ∈ S, there are many Newton maps with Head’s angle α.
Hence one important observation of the above theorem is that the set TN

(or ∂A1 ∩ ∂A2) does not depend on the special choice of N , but only on the
angle α.

From Lemma 2.17 we get immediately the following two corollaries:

Corollary 2.21 ([He], Lemma 3.6.2). The point ι1(α) is isolated in

∂A1 ∩ ∂A2 iff α is dyadic.

Corollary 2.22. ∂A1 ∩ ∂W2 is homeomorphic to

{t ∈ T | ι1(t) = σ2(−2t)} = τ−1(TN ) − TN

= τ−1(TN ) ∩ [α/2, α[ = {t/2 | t ∈ TN ∩ [α, 2α[},
and similarly for ∂A2 ∩ ∂W1. The set ∂W1 ∩ ∂W2 is homeomorphic to

TN ∩ [2α, 1].

Proposition 2.23 ([He], Lemma 3.6.2). The following conditions are

equivalent :

1. x0 = ι1(α).

2. α is not periodic.

P r o o f. If a critical point belongs to the Julia set then it cannot be
periodic, otherwise we would have a superattracting cycle, which is disjoint
from the Julia set.

If α is not periodic, define β = max{t | ι1(t) = σ2(−2t)}. Then β = α,
for otherwise ]τ(β), τ(α)[ is a connected component of T−TN = T−Gα. But
the right end point of each connected component of T − Gα is a preimage
by τ of α. Hence ι1(α) ∈ a2(−α) ∩ w2(−2α). That is, N is not injective in
a neighborhood of ι1(α). Since x0 is the only free critical point of N , we
must have x0 = ι1(α).

Assume now α is periodic. Define

(3) β = inf{t ∈ T | ι1(s) 6∈W2 for all s ∈ [t, 1]}.
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Lemma 2.24 ([He], Lemma 3.6.3). Let α = p/(2k − 1). Then ]τ(β), τ(α)[
is a connected component of T − TN , and β = p/2k. In other words, ]β, α[
is the connected component of T − S with α as the right end point.

P r o o f. We have β < α and ι1(β) ∈ ∂W2. So ]τ(β), τ(α)[ is a connected
component of T−TN = T−Gα. Hence ]τk(β), τk(α)[ = ]0, α[ (Lemma 2.15).
Thus β ∈ S and τk(t) < t for all t ∈ ]β, α[. We conclude that ]β, α[∩S = ∅.
The rest follows from Proposition 2.16.

Denote by U the union of the open bounded components surrounded by
the following four arcs:

γ0 = {ι1(t) | β ≤ t ≤ α}, η0 = {ι2(t) | 1 − α ≤ t ≤ 1 − β},
γ̃0 = {σ1(t) | 2β ≤ t ≤ 2α}, η̃0 = {σ2(t) | 1 − 2α ≤ t ≤ 1 − 2β}.

Fig. 5′. α-ray, β-ray and the region U

Proposition 2.25 ([He]). Assume that α is periodic. If U is connected ,
then x0 ∈ U , the set N(U) is a connected component of C−A1 ∪A2, and N
induces a degree two covering from U to N(U), ramified at x0. The following

statements are equivalent :

1. U is not connected.

2. U has two connected components U1, U2 and U1 ∩ U2 = {x0}.
3. Either x0 = ι1(t) or x0 = ι2(−t) for some β < t < α.

In this case N(U1) = N(U2) is a connected component of C −A1 ∪A2.

The proof is left to the reader.

Corollary 2.26. Suppose that JN is locally connected and x0 is not

contained in A1 ∪ A2 ∪ A3. Let α be the Head’s angle of N . There is a

bijection between connected components of T−Gα and connected components
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in C − A1 ∪ A2. More precisely , let I = ]t, t′[ be a connected component of

T−Gα. Then {ι1(s) | s ∈ [t, t′]}∪{ι2(−s) | s ∈ [t, t′]} forms a Jordan curve,
with one connected component EI disjoint from A1∪A2. For I0 = ]0, α[, we

have EI0 ⊃ A3∪W1∪W2. For I 6= I0, N : EI → Eτ(I) is a homeomorphism.

Denote by H the set EI0 −A3. It is an open connected set. Denote by
H1,2 the two connected components of H −W1 ∪W2 with ∞ as a point on
the boundary. Recall that EI is defined in the above corollary, and ∞ is the
unique common point of A1, A2, A3.

Corollary 2.27. The mapping N induces a homeomorphism from H1,2

to H. For any connected component F of H −W1 ∪W2 with neither ∞ nor

ι1(α) on the boundary , the mapping N induces a homeomorphism from F
to some E]t,t′[, with t greater than α. The angle t′ is smaller than 2α iff

the boundary of F intersects the closure of A1 or A2. If α is periodic, then

the set U (resp. U1, U2) as in Proposition 2.25 is a connected component of

H −W1 ∪W2, and N(U) (resp. N(U1),N(U2)) is equal to E]2β,2α[.

Corollary 2.28 ([He]). Suppose that α is periodic of period k. Then

there is an open neighborhood U ′ of U such that U ′ is relatively compact in

Nk(U ′) and (Nk, U ′, Nk(U ′)) is a polynomial-like mapping of degree two (in
the sense of Douady–Hubbard , [DH3]), with ι1(α) as one fixed point of the

corresponding Julia set.

P r o o f. Note that ι1(α) is an accumulation point of ∂A1 ∩ ∂A2, and
ι1(β) is an accumulation point of ∂A1 ∩ ∂W2 (Corollary 2.21). We can then
construct the boundary of U ′ with part of equi-potentials and part of rays
with angle close to α, β. We omit the details.

One can deduce even deeper properties ofH1,2 by considering the homeo-
morphisms N : H1,2 → H. We again omit the details.

Here we state our conjecture about islands and Head’s angles (we use
the notations defined in Section 1):

Conjecture. Given any component ]β, α[ of T − S, different from
]1/2, 1[, there is a unique connected component of Ω − B0 ∪G0 such that
the maps in the closure of this component are precisely the maps with Head’s
angle β or α.

In the rest of the paper we will only be interested in postcritically finite
Newton maps (i.e. x0 has a finite orbit). They have locally connected
Julia sets (cf. [TY]), and a well defined rational Head’s angle, when x0 6∈
A1 ∪A2 ∪A3.

3. Cubic branched coverings with three fixed critical points. We
start the construction of postcritically finite Newton maps. The technique
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is to construct first postcritically finite branched coverings from S2 to itself,
and then deduce the existence of rational maps via Thurston equivalence
(see definition below). By the end of this paper we will be able to construct
all postcritically finite Newton maps.

3.1. Definition and Thurston equivalence. We recall here Thurston’s
theory of postcritically finite branched coverings. The results are valid for
any degree. For details and proofs, see [DH2].

A branched covering F : S2 → S2 of degree d has in general 2d − 2
critical points and 2d− 2 critical values. In the following, we always assume
that branched coverings are orientation preserving and of degree greater
than one.

Definition (postcritical set). Set

ΩF = {critical points of F} and PF =
⋃

n>0

Fn(ΩF )

F is called a postcritically finite branched covering if PF is finite.

Definition (Thurston’s equivalence). We say that two postcritically
finite branched coverings F and G are equivalent , denoted by F ∼ G, if
there exist two orientation preserving homeomorphisms θ1, θ2 : S2 → S2

such that

θi(PF ) = PG (i = 1, 2),

θ1 = θ2 on PF , θ1 and θ2 are isotopic relative to PF

(we write rel PF ), and the following diagram commutes:

S2 θ1−→ S2

F

y
yG

S2 θ2−→ S2.

We are interested in whether a branched covering is equivalent to a
rational map in the above sense. Let F be a postcritically finite branched
covering from S2 to itself. All the homotopies and isotopies in the following
are rel PF .

Definition. A simple closed curve in S2 − PF is called peripheral if
it bounds a disc containing at most one point of PF . A multicurve Γ is a
collection of disjoint simple closed curves in S2−PF such that none of them
is peripheral and no two curves are homotopic to each other in S2 − PF . A
multicurve Γ is F -invariant if

F−1(Γ ) = {connected components of F−1(γ) | γ ∈ Γ}
consists of peripheral curves and curves which are homotopic to curves in Γ .
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Definition. For a multicurve Γ , the associated linear transformation

FΓ is a linear map from RΓ = {∑γ∈Γ cγγ | cγ ∈ R} to itself defined by

FΓ (γ) =
∑

γ′⊂F−1(γ)

1

deg(F : γ′ → γ)
[γ′]Γ for γ ∈ Γ

where the sum is over all components γ′ of F−1(γ), and [γ′]Γ denotes the
curve in Γ homotopic to γ′ if it exists and [γ′]Γ = 0 otherwise. We denote
by λΓ the leading eigenvalue of FΓ , i.e. the Perron–Frobenius eigenvalue.

Definition. 1. An F -invariant multicurve Γ with λΓ ≥ 1 is called a
Thurston obstruction for F .

2. A Thurston obstruction Γ for F is called minimal if every γ ∈ Γ is
homotopic to a curve of F−1(Γ ), and any invariant proper submulticurve
of Γ has leading eigenvalue less than one.

3. A multicurve Γ = {γ1, . . . , γn} is called a Levy cycle if each F−1(γi+1)
contains a component γ′i homotopic in S2 − PF to γi and F : γ′i → γi+1 is
of degree one (i = 0, . . . , n− 1), where γ0 = γn.

4. A Levy cycle Γ is a degenerate Levy cycle if the connected components
of S2 − ⋃

i γi are

B1, B2, . . . , Bn, C

with Bi discs, C not a disc, and each F−1(Bi+1) has a component B′
i isotopic

to Bi (rel PF ), and F : B′
i → Bi+1 is a homeomorphism (i = 0, 1, . . . , n−1),

where B0 = Bn (C = ∅ if Γ consists of only one curve).

Note that every Thurston obstruction can be reduced to a minimal one.

Theorem 3.1 (Thurston, cf. [DH2]). Suppose that F : S2 → S2 is a

postcritically finite branched covering with a hyperbolic orbifold (see [DH2]
for definition). Then F is equivalent to a rational map if and only if F has

no Thurston obstruction. Having a Levy cycle is a sufficient condition for

having a Thurston obstruction.

Applying the theorem to the case that interests us in this work, we get

Corollary 3.2. Every cubic postcritically finite branched covering with

three fixed critical points has a hyperbolic orbifold. If it is Thurston-equiv-

alent to a rational map N , then N must be a Newton map, i.e. a cubic

rational map with three fixed critical points.

3.2. From a Thurston obstruction to a one-curve Levy cycle. In this
section we will show that if a cubic postcritically finite branched covering
fixing at least 3 critical points is not equivalent to a rational map, it has
either a degenerate Levy cycle or an extremely simple Levy cycle, namely
one with only one curve.
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Let F be a cubic postcritically finite branched covering from S2 to itself.
All the homotopies and isotopies in the following are rel PF .

A multicurve Γ1 may have the following properties:

(I) Each γ ∈ Γ1 is homotopic to a curve in F−1(Γ1).

(II) For each γ ∈ Γ1, at least one component of F−1(γ) is homotopic to
a curve in Γ1.

(III) For some disc-component D of S2−Γ1, the set F−1(D) has at least
one non-disc component.

(IV) For a connected component B of S2 − Γ1, every component of
F−1(B) is isotopically contained in a component of S2 − Γ1.

Note that (IV) is a consequence of (I). It is going to be used many times
in what follows.

Theorem 3.3. Assume that F is a cubic postcritically finite branched

covering with three fixed distinct critical points p1, p2, p3. Denote by x0 the

other critical point and by x1 = F (x0) the critical value. Suppose that F
has a minimal Thurston obstruction Γ . Then at least one of the following

happens:

1. Γ contains a degenerate Levy cycle.

2. Γ can be decomposed into the disjoint union of {γ} and Γ2 with {γ} a

Levy cycle, and Γ2 F -invariant (hence λ(Γ2) < 1 ). Moreover , each compo-

nent of S2 − γ contains exactly two of the four critical values p1, p2, p3, x1,
F−1(γ) consists of three nested curves γ′, γ′′, γ′′′ with γ′′ homotopic to γ
(with the same orientation) and γ′, γ′′′ either peripheral or homotopic to

curves in Γ2 (see Figure 6).

Fig. 6. γ, F−1(γ) = γ′ ∪ γ′′ ∪ γ′′′, Di and F
−1(Di) = D

′

i ∪ B
′

i, i = 1, 2

Before proving the theorem, we rewrite Theorem III.3.4 of [ST] in the
following more convenient form:

Proposition 3.4 (minimal-maximal principle; [ST], see also [Ta]). Let

F be a postcritically finite branched covering , and Γ a minimal Thurston

obstruction for F . Then Γ can be decomposed in a unique way into Γ1 ∪ Γ2
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with Γ2 the maximal invariant proper submulticurve of Γ (Γ2 may be empty).
Either Γ1 is a degenerate Levy cycle or Γ1 has the properties (I)–(IV).

P r o o f (of Theorem 3.3). Assume that Γ does not contain any degen-
erate Levy cycle. Then Γ is decomposed into Γ1 ∪Γ2, with Γ2 the maximal
invariant proper submulticurve and Γ1 satisfying (I)–(IV).

Note first that if a subset B ⊂ S2 satisfies B ∩ {p1, p2, p3} = ∅, then
F−1(B) ∩ {p1, p2, p3} = ∅. Moreover, if B is disc-like, then B contains at
most one critical value of F and hence F−1(B) are discs.

Set

(4) Γ ′ = {γ ∈ Γ | γ = ∂D,D a disc-component of S2 − Γ,

D ∩ {p1, p2, p3} = ∅}.
Then Γ ′ is F -invariant. We have Γ ′ 6= Γ , for otherwise one could decompose
Γ ′ so that a submulticurve of Γ ′ would satisfy (III) (by Proposition 3.4).
This is impossible from the definition of Γ ′. Hence Γ ′ ⊂ Γ2. Set

S2 − Γ1 = D1 ∪ . . . ∪Dk ∪A1 ∪ . . . ∪Al

where the Di denote the disc-components of S2 − Γ1 and Ai the non-disc
components. We have k ≥ 2. We claim

Lemma 3.5. Each Di contains exactly two critical values of F .

P r o o f. First for each i, Di ∩ {p1, p2, p3} 6= ∅. Otherwise the union of
Γ2 with

Γ ′′ = {∂Di | Di ∩ {p1, p2, p3} = ∅}
is F -invariant. Hence Γ ′′ = Γ1 (since Γ2 is maximal). But Γ ′′ does not
satisfy (III), a contradiction.

Next, if there is D = Di containing only one of p1, p2, p3, say p1, and if
x1 6∈ D, then F−1(D) = D′ ∪ D′′ with D′,D′′ disc-like, deg(F : D′ → D)
= 1, D′ ∩ {p1, p2, p3} = ∅ and deg(F : D′′ → D) = 2, p1 ∈ D′′. By property
(IV), D′ is isotopically contained in one component B of S2 − Γ1. But
D′ cannot be isotopic to B because either B is one of Dj in which case
B ∩ {p1, p2, p3} 6= ∅, or B is not a disc. So ∂D′ is not homotopic to any
curve in Γ1. By property (II), the curve ∂D′′ must be homotopic to some
curve in Γ1. By (IV), D′′ must be isotopically contained in D, which is a
disc-component of S2 − Γ1. We conclude that ∂D′′ is homotopic to ∂D. As
a consequence, {∂D} ∪ Γ2 is F -invariant with leading eigenvalue equal to
max{1/2, λΓ2

}, which is smaller than 1. This contradicts the maximality
of Γ2. Lemma3.5

Let us return to the proof of Theorem 3.3. We have k = 2 and we may
assume x1, p3 ∈ D1, p1, p2 ∈ D2. Set γ1 = ∂D1 and γ2 = ∂D2. For i = 1 or
i = 2, there are two possibilities for F−1(Di): either
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(a) F−1(Di) consists of only one disc D′
i with deg(F : D′

i → Di) = 3, or
(b) F−1(Di) = D′

i∪B′
i, with D′

i a disc, B′
i an annulus, deg(F : D′

i → Di)
= 1 and deg(F : B′

i → Di) = 2. Moreover, B′
i ∩ {p1, p2, p3} = Di ∩

{p1, p2, p3} 6= ∅.
If (a) happens for some i then D′

i is isotopic to Di by the condition (IV)
and ∂D′

i, being the only preimage of ∂Di, is homotopic to itself by (II). Thus
{∂Di} ∪ Γ2 is F -invariant with leading eigenvalue equal to max{1/3, λΓ2

}
< 1. This contradicts again the maximality of Γ2.

Hence (b) is the only possibility for both D1 and D2.
Suppose now γ1 6= γ2. Set

A = S2 −D1 ∪D2, F−1(A) = A1 ∪A2 ∪A3,

F−1(γ1) = γ11 ∪ γ12 ∪ γ13, F−1(γ2) = γ21 ∪ γ22 ∪ γ23.

Then the situation is shown in Figure 7.

Fig. 7. F−1(A) and F−1(Di)

Since B′
i must be isotopically contained in Di, i = 1, 2 (condition (IV)),

we find that γ21, γ11, γ23, γ13 are either peripheral or homotopic to curves
in Γ2. By (II) we must have γ12 homotopic to γ1 and γ22 homotopic to γ2.
Hence {γ1} ∪ Γ2 is F -invariant with leading eigenvalue 1. This contradicts
the minimality of Γ .

Finally, γ1 equals γ2 and Γ1 consists of only one curve, namely γ1. More-
over, the connected components of F−1(γ1) are disposed as in Figure 6.

R e m a r k. We will see later that degenerate Levy cycles do not occur as
Thurston obstructions for branched coverings constructed from matings and
captures (see next two sections). The next subsection improves the above
theorem under a stronger condition.

3.3. No Thurston obstruction when the basins are attached. Often we
want to construct a postcritically finite Newton map with a specific dyna-
mics; for example, we may want x6 = λ3 or so. Since it is much easier to con-
struct a postcritically finite branched covering than a rational map, we start
with that branched covering and check if it is equivalent to a rational map.
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The next theorem is developed for this purpose. Both the statement and the
proof are similar to a theorem of J. Head ([He], Theorem 4.4.1). The author
would like to thank M. Shishikura for having simplified the original proof.

Theorem 3.6. Let F : S2 → S2 be a cubic postcritically finite branched

covering with three distinct fixed critical points p1, p2 and p3. Assume that

there are disjoint open connected subsets A1, A2 and A3 in S2, together

with continuous maps ϕi from the closed unit disc D to the closure of Ai,
i = 1, 2, 3, such that ϕi : D → Ai is a homeomorphism, ϕ1(1) = ϕ2(1) =
ϕ3(1) = ∞, and for i = 1, 2, 3, the following diagram commutes:

D
z 7→z2

−−−→ D

ϕi

y
yϕi

Ai
F−−−→ Ai

Then either F has a degenerate Levy cycle, or F is equivalent to a Newton

map.

P r o o f. Under the assumption of the theorem we can define Wi as the
connected component of F−1(Ai) disjoint from Ai, for i = 1, 2, 3. Similarly,
we can define ξ1, ξ2,∞ as the first preimages by F of ∞. For i = 1, 2, 3,
the mapping F : W i → Ai is a homeomorphism. Set ψi = F−1 ◦ ϕi. The
mappings ϕi and ψi enable us to define t-rays in Ai and W i, for any angle
t ∈ T. By the same topological argument as we used in Lemma 2.5, one can
get similarly

ξ1 ∈ ∂A1 ∩ ∂A2 ∩ ∂W3, ξ2 ∈ ∂W1 ∩ ∂W2 ∩ ∂A3 .

We can renumber p1, p2 if necessary so that the 0-rays of A1, A2, A3 are
connected at ∞ in counterclockwise order.

Denote by x0 the unique critical point of F distinct from p1, p2, p3. Set
xi = F i(x0). For any t ∈ T, denote by ai(t) the closure of the t-ray of
Ai, and by wi(t) the closure of the t-ray of Wi (i = 1, 2, 3). We have
F−1(ai(t)) = ai(t/2) ∪ ai(t/2 + 1/2) ∪wi(t).

We claim that the angle α is positive, where

α = inf{t ∈ T | a1(t) ∩A2 6= ∅}.
For otherwise there is a sequence of positive angles tn tending to 0 such that
a1(tn) intersects a2(−tn). But the union a1(tn) ∪ a2(tn) tends to the arc
a1(0) ∪ a2(0). There will be no place to put A3 in.

Thus there is a minimal integer l such that

a1(1/2
l) ∩ w2(−1/2l−1) 6= ∅

(compare with Lemma 2.7).
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Assume now that F is not equivalent to a rational map, and F has no
degenerate Levy cycle. By Theorem 3.3 there is a one-curve Levy cycle {γ}
for F such that each component of S2 − γ contains two critical values of F .
And F−1(γ) = γ′ ∪ γ′′ ∪ γ′′′ (Figure 6) with γ′′ the unique component in
F−1(γ) homotopic to γ. Set δ = γ′′. Denote by [γ] the set of closed curves
in S2 homotopic to γ rel PF .

First we want to show that γ can be chosen such that

γ ∩ (a1(1/2) ∪ a2(1/2) ∪w1(0) ∪w2(0)) = ∅.
Choose γ ∈ [γ] such that #γ ∩ (a1(0) ∪ a2(0)) is minimal. Then

#δ ∩ (a1(0) ∪ a2(0)) ≤ #F−1(γ) ∩ (a1(0) ∪ a2(0)) = #γ ∩ (a1(0) ∪ a2(0)).

(It is easy to see that for any two sets A,B such that F |B is of degree one
we have F (F−1(A)∩B) = A∩F (B) and #F−1(A)∩B = #A∩F (B).) But
since δ ∈ [γ], we have #δ ∩ (a1(0) ∪ a2(0)) ≥ #γ ∩ (a1(0) ∪ a2(0)). Hence

#δ ∩ (a1(0) ∪ a2(0)) = #F−1(γ) ∩ (a1(0) ∪ a2(0)) = #γ ∩ (a1(0) ∪ a2(0)).

Since

#γ ∩ (a1(0) ∪ a2(0)) = #δ ∩ (a1(0) ∪ a2(0))

≤ #δ ∩ (a1(0) ∪ a2(0) ∪ a1(1/2) ∪ a2(1/2) ∪ w1(0) ∪ w2(0))

= #F (δ) ∩ (a1(0) ∪ a2(0)) = #γ ∩ (a1(0) ∪ a2(0)),

we have δ ∩ (a1(1/2)∪ a2(1/2)∪w1(0)∪w2(0)) = ∅. Hence γ can be chosen
such that

γ ∩ (a1(1/2) ∪ a2(1/2) ∪w1(0) ∪w2(0)) = ∅,
and #γ ∩ (a1(0) ∪ a2(0)) is minimal. As a consequence,

δ ∩ (a1(1/2) ∪ a2(1/2) ∪ w1(0) ∪ w2(0)) = ∅,
and #δ ∩ (a1(0) ∪ a2(0)) is minimal.

Define by induction γk to be the unique component of F−k(γ) homotopic
to γ. Then for each k, the number #γk ∩ (a1(0) ∪ a2(0)) is minimal, and

γk ∩
( k⋃

j=1

F−j(a1(0) ∪ a2(0)) − a1(0) ∪ a2(0)
)

= ∅.

Let l be the minimal integer such that a1(1/2
l) intersects w2(−1/2l−1).

Denote by C the Jordan curve

a1(1/2) ∪ a1(1/2
l) ∪ w2(−1/2l−1)

∪ w2(0) ∪ w1(0) ∪ w1(1/2
l−1) ∪ a2(−1/2l) ∪ a2(1/2)

in case x0 6∈a1(1/2
l) (which is the Jordan curve in the graph g, see Figure 4′),

or the Jordan curve

a1(1/2) ∪ a1(1/2
l) ∪ a2(−1/2l) ∪ a2(1/2),
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in case l > 1 and x0 ∈ a1(1/2
l), or the arc a1(1/2) ∪ a2(1/2) in case x0 ∈

a1(1/2).
In any case γl∩C = ∅. So γl is contained in one component of S2−C. But

each of these components contains at most one critical point of F . The curve
γl cannot separate p1, p2, p3 and x0 two by two. On the other hand, since
γl−1 is homotopic to γ rel PF , by Theorem 3.3 each component of S2 −γl−1

contains exactly two points of the set {p1, p2, p3, x1}, hence each component
of S2 − γl must contain exactly two points of the set {p1, p2, p3, x0}. This
is impossible.

Corollary 3.7. Assume in addition that the unique free critical point

x0 of F is either periodic, or eventually falls into the set {p1, p2, p3,∞}.
Then F is equivalent to a Newton map.

P r o o f. We need to show that, under the extra hypothesis, the mapping
F cannot have a degenerate Levy cycle. Recall that a degenerate Levy cycle
produces a cycle of disc-components B1, . . . , Bn with #Bi ∩ PF ≥ 2, and
each Bi has a degree-one preimage B′

i isotopic to Bi−1 (with B0 = Bn),
hence

⋃
i Bi contains at least one periodic cycle of PF without any critical

points. This is impossible when x0 is periodic or falls into {p1, p2, p3,∞}.
This corollary enables us to construct some Newton maps. Let α be a

rational angle in S, i.e. 2nα (mod 1) ⊂ [α, 1] for all n. We can construct
a branched covering F modeled topologically by the description in Subsec-
tion 2.3. If α is dyadic, then x0 coincides with the end point of a1(α). If α
is periodic of period k, we can modify F in U so that F k(x0) = x0. In both
cases F is equivalent to a Newton map by the above corollary.

R e m a r k 3.8. We would like to conclude at this point that

1. The Newton map N equivalent to F has Head angle α. Unfortunately,
we do not know how to check it directly.

2. If α is a rational element of S but not on the boundary of any
connected component of T−S (for example, α = 1/6), we can still construct
a branched covering F modeled topologically by Subsection 2.3. But we do
not know whether F has no degenerate Levy cycle.

In the next sections we will develop mating and capture techniques for
the purpose of constructing all postcritically finite Newton maps. At the
end of this paper, as a consequence of these more sophisticated results, we
will be able to give positive answers to the above two questions.

4. Newton maps regarded as matings of polynomials. Mating is a
way to construct branched coverings from pairs of polynomials. If a rational
map is equivalent to a mating, we can get information about its dynamics
from the information about those of the corresponding polynomials. In this
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section we use Theorem 3.3 to study the relationship between Newton maps
and matings of cubic polynomials.

4.1. Definition of matings and general results. Let us recall the defini-
tions of several kinds of matings, using the terminology of [ST], and state
some general results.

Definition 4.1 (formal mating). Let f and g be two monic polynomials
of degree d. Set

C̃ = C ∪ {∞ · e2πiθ | θ ∈ T = R/Z}
We can extend f and g continuously to C̃ by setting

f(∞ · e2πiθ) = ∞ · e2dπiθ, g(∞ · e2πiθ) = ∞ · e2dπiθ

Let

S2
f,g = C̃f ⊔ C̃g/{(∞ · e2πiθ, f) ≈ (∞ · e−2πiθ, g)}

(where ≈ means identification). The formal mating of f and g is defined to
be the branched covering f ⊥⊥ g : S2

f,g → S2
f,g such that

f ⊥⊥ g = f on C̃f and f ⊥⊥ g = g on C̃g.

The set {(∞· e2πiθ, f) | θ ∈ T = R/Z} in S2
f,g is called the equator of f ⊥⊥ g.

In case there is no ambiguity, we write S2 instead of S2
f,g.

From now on we assume that f and g are postcritically finite polynomials
of the same degree and set F = f ⊥⊥ g. Then F is also postcritically finite.

See [DH1] for the definitions of the filled Julia set Kf for a polynomial f
and the external rays in C. For θ ∈ T, denote by Rf (θ) the closure in C̃f of
the external ray of angle θ (note that if f is a postcritically finite polynomial,
then Kf is connected and locally connected, and Rf (θ) is well defined).

In S2
f,g, the external rays Rf (θ) and Rg(−θ) are connected at the point

(∞ · e2πiθ, f).

Definition (ray-equivalence). For x and y in C̃f , we define x ∼f y
to be the equivalence relation generated by x, y ∈ Rf (θ) for some θ. The

equivalence relation ∼g on C̃g is similarly defined. In S2
f,g, let ∼F be the

equivalence relation generated by ∼f on C̃f and ∼g on C̃g. These relations
are called the ray-equivalence relations for f and g and F resp. Denote by
[x]F or simply [x] the ray-equivalence class for ∼F of x ∈ S2.

Definition (matability). We say that two postcritically finite polyno-
mials f and g are matable if F = f⊥⊥g (or a modification of F ) is Thurston-
equivalent to a rational map (we have to modify F slightly if there is a
periodic tree-like ray-equivalence class [x] with #[x] ∩ PF ≥ 2).
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Definition (topological mating). For the ray-equivalence relation ∼F ,
denote by π = πf,g : S2 → S2/∼F the quotient projection, and by F ∗ the
quotient map of F . We say that F ∗ is the topological mating of f and g.

If we denote by γf (θ) (resp. γg(θ)) the landing point of the external ray
Rf (θ) (resp. Rg(θ)). The quotient space S2/∼F is then homeomorphic to
the quotient space

Kf ⊔Kg/{γf (θ) ≈ γg(−θ)},
i.e. the space obtained by gluing together the two filled Julia sets along
their boundaries.

If two polynomials are matable, i.e. their formal mating is equivalent to
some rational map R, then there is a constructive way to get a topological
model of R, namely by topological mating. This is the following theorem of
M. Rees:

Theorem 4.1 ([R3]). Suppose that the formal mating F of the two monic

postcritically finite polynomials g1 and g2 is equivalent to a rational map R.

Then there is a homeomorphism Φ from the quotient space S2/∼F to C

such that Φ ◦ π is conformal on int(Kg1
) ∪ int(Kg2

), and that the following

diagrams commute:
S2 F−→ S2

π

y
yπ

S2/∼F
F∗

−→ S2/∼F

Φ

y
yΦ

C
R−→ C

where F ∗ is the topological mating of g1, g2. In particular , F is semi-conju-

gate to R. Each fiber of the semi-conjugacy is a ray-equivalence class of F .

For a proof of the theorem, we suggest [Sh2].
By the theorem a necessary condition for two polynomials to be matable

is that the quotient space S2/∼F is homeomorphic to the sphere. Although
it is not in general a sufficient condition (as shown by the examples in [ST]),
in some special cases it is: for example, in the quadratic case ([R3], [Ta]),
or in the case that interests us in this work, as we are going to see in
Corollary 4.5 and Theorem 4.6.

4.2. Matings which are equivalent to Newton maps. We study here the
question whether the mating of two cubic polynomials is equivalent to a
Newton map. We will do this by analyzing the ray-equivalence relation.

Denote by f the polynomial z 7→ z3+(3/2)z. It is the unique monic cubic
polynomial (up to affine conjugacy) with two fixed critical points. These two
fixed critical points are u= i/

√
2 and v= −i/

√
2. The point 0 is the unique
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repulsive fixed point of f . The external 0-ray of f lands at this fixed point
from the right side of the vector ~vu, whereas the external 1/2-ray lands at
it from the left side of ~vu.

This polynomial will play a central role in our study of Newton maps.
The Julia set of f is shown on the right of Figure 1.

If a cubic rational map with three distinct fixed critical points (i.e. a
Newton map) is equivalent to the mating of two monic cubic polynomials
f1 and f2, then one of the polynomials, say f1, must have two fixed critical
points, and is hence affine conjugate to f , and f2, the other, must have one
fixed critical point.

Any cubic monic polynomial with one fixed critical point must be affine
conjugate to the polynomial ga, for some a ∈ C, where

(5) ga(z) = z3 − 3a2z + 2a3 + a.

The two critical points of ga are a and −a. We have ga(a) = a. We call
a the distinguished fixed critical point of ga, and −a the free critical point of
ga. Note that ga and g−a are conjugate by φ : z 7→ −z. Since φ◦f ◦φ−1 = f ,
the two matings f ⊥⊥ ga and f ⊥⊥ g−a are topologically conjugate. To see the
matability we only need to check one of them. The filled Julia set of ga is de-
noted by Ka and its boundary by Ja. In case Ka is locally connected (which
is true if ga is postcritically finite, see [DH1], part I, pp. 24–29), we choose
the ϕ-map ϕa : C − D → C − int(Ka) such that ϕa(z)/z → 1 as z → ∞.
Denote by w the distinguished fixed critical point of ga (i.e. w = a). With
these conventions the external 0-ray {ϕa(r) | 1 ≤ r <∞} always lands at a
point of the boundary of the immediate attracting basin of w. We thus get

Lemma 4.2. Any cubic mating f1⊥⊥f2 with three fixed critical points must

be topologically conjugate to f⊥⊥ ga for a∈C. The value of a2 is unique for

f1⊥⊥f2. If f and ga are matable, then f⊥⊥ga is equivalent to a Newton map.

To study the ray-equivalence relation of f ⊥⊥ ga, we first state a general
result about the Hubbard tree which is associated with each postcritically
finite polynomial.

Every monic postcritically finite polynomial g of degree d has a forward
invariant Hubbard tree Hg, which is the convex hull of Pg in Kg. For ex-
ample Hf for f is the segment connecting i/

√
2 and −i/

√
2. For a detailed

description of Hubbard trees, we refer the reader to [DH1], I, pp. 30–36.

Proposition 4.3. Every point x in the Julia set Jg with more than one

external ray eventually falls into the Hubbard tree Hg, under iterations by g.

P r o o f. Set H = Hg, β = γ(0) the fixed point with external angle 0,

β, β1 = γ

(
1

d

)
, β2 = γ

(
2

d

)
, . . . , βd−1 = γ

(
d− 1

d

)
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the preimages of β, H ′ the “convex hull” of {β, β1, . . . , βd−1} in Kg and Ĥ
the convex hull in Kg of Pg ∪ {β, β1, β2, . . . , βd−1}. According to Douady–

Hubbard’s tree theory, H,H ′ ⊂ Ĥ. Moreover, if t and t′, belonging to
different components of

(6) [0, 1] −
{

1

d
,
2

d
, . . . ,

d− 1

d

}
,

are external angles of the same point x, then x ∈ H ′.
Suppose now that x ∈ Jg and x has at least two external angles t, t′

(t 6= t′). Then in the expansions of t, t′ in base d,

t = 0.ε0ε1 . . . εk . . . , t′ = 0.ε′0ε
′
1 . . . ε

′
k . . . ,

there is k such that εk 6= ε′k and hence dkt and dkt′ are in different compo-
nents of (6) and thus gk(x) ∈ H ′.

Now we need to show that every x ∈ H ′ having more than one external
ray eventually falls into H. First of all, there is a unique point a ∈ H such
that ([β, a] − {a}) ∩H = ∅, with a = β if β ∈ H, where [β, a] denotes the
unique regular arc (see [DH1], I, p. 33 for definition) connecting β and a.
Since [β, a] − {a} contains no critical values, we have g(H ′) ⊂ H ∪ [β, a].

If β ∈ H then a = β and g(H ′) ⊂ H, so we are done in this case.
Assume now β 6∈ H. Assume first that [β, a] − {a} contains no critical

points.
If g(a) 6= a, then [β, a] ⊂ [β, g(a)], [a, g(a)] ⊂ H and g : [β, a] → [β, g(a)]

is an expanding homeomorphism, so every point in [β, a] − {β} eventually
falls into [a, g(a)] ⊂ H and then stays in H since g(H) ⊂ H. If g(a) = a, let
a′ be the fixed point in [β, a] closest to β. Then every point in [β, a′]− {β}
is attracted to a′. Hence a′ is an attracting fixed point, which must be in H.
So a′ = a. Therefore points in [β, a] − {β} are contained in the attracting
basin of a, hence disjoint from Jg. Consequently, g(H ′ ∩ Jg) ⊂ H ∪ {β}.

Assume now [β, a]− {a} contains critical points c1,. . . , cl. They are or-
dered in the arc [β, a] as β< c1< c2< . . . < cl< a. The map g is injective
in each of the subarcs. Since g(ci)∈ H, each of the subarcs, except [β, c1],
is mapped homeomorphically onto an arc contained in H. Furthermore
g([β, c1]) ⊃ [β, a]. For the same reason as above, there cannot be fixed
points in [β, c1]− {β}. So every point in [β, c1]− {β} is mapped eventually
into [c1, a]∪H, and is mapped into H after one more iteration.

Now let us examine the ray-equivalence relation of F = f ⊥⊥ ga. We will
let E denote the equator of F .

Lemma 4.4. Let F = f ⊥⊥ ga with ga postcritically finite. There is an

integer K < ∞ such that #[x] ∩ E ≤ K for each ray-equivalence class

[x]. There is an equivalence class [x] containing a closed loop if and only if

γa(0) = γa(1/2). None of the ray-equivalence classes contain more than one
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postcritical point. Furthermore, each ray-equivalence class contains at most

one point of the Hubbard tree of f , and at most one point of the Hubbard

tree of ga.

P r o o f. According to Proposition 4.3 every point x ∈ Ja (resp. x ∈ Jf )
with more than one external angle eventually falls into the Hubbard tree
Ha (resp. Hf ).

The set Hf ∩ Jf is rather simple: it contains only one point β = γf (0) =
γf (1/2) and β has exactly two external angles 0 and 1/2. Hence the ray-
equivalence relation ∼f for f is also very simple: each equivalence class [x]f
contains at most two rays. Moreover, if x ∈ Jf has two external angles θ,
and θ′ then, by the above proposition, x is a preimage of β, and θ and θ′

are preimages of 0 and 1/2 under the mapping θ 7→ 3θ.

The ray-equivalence relation ∼a for ga is a little more complicated. Since
Ha is a topologically finite tree, it has a finite number of branch points,
each with a finite number of branches. Denote by k the maximal number
of branches that a point of Ha can have. According to Douady and Hub-
bard’s counting-angle algorithm, we know that a point x ∈ Ja has at most
2k external angles (the free critical point of ga may double the maximal
number of angles). Hence the equivalence class [x]a contains at most 2k
rays. Moreover, the point γa(0) (resp. γa(1/2)) has either one or two rays:
the 0-ray and/or the 1/2-ray.

To study ∼F we need some notation. For x ∈ Jf ⊔ Ja denote by Ang(x)

the set of external angles of x. Denote by RF (θ) the set Rf (θ) ∪Ra(1 − θ).

For any [x]F containing more than one ray we may suppose that there
is l ≥ 0 such that the intersection [F l(x)] ∩ (Hf ⊔ Ha) contains a point y
with more than one external angle, and these angles are either irrational or
periodic under the mapping Θ3 : T → T, θ 7→ 3θ. We will show that there
are only three topologically equivalent shapes for the set [F l(x)] = [y].

If y ∈ Hf then [y] = RF (0) ∪ RF (1/2). It is a closed curve (type 1) if
γa(0) = γa(1/2), and an arc consisting of two rays (type 2) if not.

Fig. 8. Five possibilities of [x]F

If y ∈ Ha and y = γa(0), then [y] is of type 1.
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If y ∈ Ha and y 6= γa(0), then, for each θ ∈ Ang(y), the point γf (1 − θ)
has only one ray, since 1 − θ is neither a preimage of 0 nor of 1/2. Hence

[y] =
⋃

θ∈Ang(y)

RF (1 − θ).

It is a contractible graph, and [y] ∩ Ha = {y}, [y] ∩ Hf = ∅ (type 3), and
#([y] ∩E) ≤ k.

Now for [x]. Denote by z0 the free critical point of ga (i.e. z0 = −a). If
[x] does not contain a preimage of z0 then it has exactly the same shape as
[y], since F l : [x] → [y] is a homeomorphism. If [x] does contain a preimage
of z0 then F l : [x] → [y] is a double covering. If [y] is of type 1, then [x]
consists of two closed loops (four rays) connected at a point in Ja (type 4).
If [y] is of type 2, [x] consists of four rays connected in a form of the letter
M, hence is contractible (type 5). If [y] is of type 3, then [x] has almost the
same shape as [y] except

#([x] ∩ E) = 2#([y] ∩ E) ≤ 2k

(type 3).
The first assertion of the lemma is now proved by takingK = max{4, 2k}.

The second is also proved by checking each of the five possible types. For
the third one, if z0 is periodic, then each point of PF is in the interior of
the two filled Julia sets, hence contains only itself in its ∼F -class. If z0 is
strictly preperiodic, then [z0] ∩ PF = ∅ since otherwise there is i > 0 such
that F i(z0) ∈ [z0] and there is j ≥ 0 minimal such that F j+i(z0) is periodic
but F j(z0) is not, and they both belong to [F j(z0)]. This is impossible.
Therefore for each i > 0, [F i(z0)] ∩ PF = {F i(z0)}. We are done.

The last statement of the lemma is a direct consequence of the above
discussion.

The following result about matings of general polynomials can be easily
proved using Moore’s theorem (one can find a detailed proof in either [R3]
or [ST]):

For F = f ⊥⊥ g and E the equator of F , if there is K < ∞ such that
#[x]F ∩ E ≤ K for each x ∈ S2

f,g, and if none of the equivalence classes

[x]F contains a closed loop, then S2/∼F is homeomorphic to S2. We write
S2/∼F ≈ S2.

As a consequence of the above observation and Lemma 4.4 we have

Corollary 4.5. Let F = f ⊥⊥ ga with ga postcritically finite. Then

S2/∼F ≈ S2 iff γa(0) 6= γa(1/2).

We are now ready to give the mating criterion:

Theorem 4.6. Let F = f ⊥⊥ ga with ga postcritically finite. The two

polynomials f and ga are matable if and only if γa(0) 6= γa(1/2) (hence if
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and only if S2/∼F ≈ S2). Or equivalently , f and ga are not matable iff

γa(0) = γa(1/2).

R e m a r k. The location of values of parameters a ∈ C with γa(0) =
γa(1/2) can be determined easily, and will be described in Section 5. For
instance, if Re(a) = 0, a 6= 0, and ga is postcritically finite, then γa(0) =
γa(1/2).

P r o o f (of Theorem 4.6). By definition of matability we have to check
when F , or a modification of F , is equivalent to a rational map. Lemma 4.4
asserts that no ray-equivalence class contains more than one point of PF . So
no modification is necessary. Since F has three fixed critical points, it has a
hyperbolic orbifold and we can apply Thurston’s criterion (Theorem 3.1) to
it and claim that F is not equivalent to a rational map iff it has a Thurston
obstruction.

If γa(0) = γa(1/2), then in S2
f ,ga

the set Rf (0) ∪ Rf (1/2) ∪ Ra(0) ∪
Ra(1/2) forms a Levy cycle for F . This Levy cycle will generate a Thurston
obstruction for F (Theorem 3.1).

Suppose now that F has a minimal Thurston obstruction Γ . A con-
vergence theorem stated in [Ta] (Proposition 2.7, p. 597) shows that the
pull backs of any degenerate Levy cycle will converge to a periodic cycle
of ray-classes, each containing at least two postcritical points. Combining
this with Lemma 4.4 we conclude that F cannot have a degenerate Levy
cycle. Applying Theorem 3.3 to Γ , one can see that Γ is decomposed into
{γ} ∪ Γ2 with Γ1 = {γ} a Levy cycle. By the same convergence theorem
stated in [Ta], the pull backs of γ will converge to a closed curve contained
in a periodic ray-equivalence class. The only possibility is then (Lemma 4.4)
γa(0) = γa(1/2), and Ra(0) ∪ Ra(1/2) together with Rf (0) ∪ Rf (1/2) gives
the closed curve.

4.3. From polynomials to Newton maps via matings. Now we ask the
converse question: when is a postcritically finite Newton map N equivalent
to the mating of two cubic polynomials? The answer is quite simple, namely,
when p3 6∈ Or(x0).

Let us recall some results of Section 2.1. The three fixed critical points
of N are labeled p1, p2 and p3. The free critical point is denoted by x0. The
unique non-attracting fixed point is normalized to be ∞. The attracting
basin of pi is denoted by Ai. Assume x0 6∈ A1 ∪A2 ∪A3. Denote by Wi the
component of N−1(Ai) disjoint from Ai, i = 1, 2, 3. The three 0-rays a1(0),
a2(0) and a3(0) are connected at ∞ in counterclockwise order. Moreover,
N−1(∞) = {∞, ξ1, ξ2} with

ξ1 ∈ ∂A1 ∩ ∂A2 ∩ ∂W3.
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We have #∂A1 ∩ ∂A2 = ∞ and A3 ∩ (A1 ∪ A2) = {∞} when ξ1 6= ξ2. Set
xi = N i(x0), Or(x0) = {xi | i ≥ 0}.

Recall from Section 4.2 that u = i/
√

2, v = −i/
√

2 denote the two
critical points of f , so that the external 0-ray of f comes from the right side
of the vector ~vu. Denote by w the distinguished fixed critical point of ga,
by z0 the other critical point, by Ka the filled Julia set of ga and by Ha

its Hubbard tree. Denote by Au, Av, Aw, ϕu, ϕv , ϕw, Ru(t), Rv(t), Rw(t) the
corresponding immediate basin, the linearization mapping, and the internal
ℓ-ray of u, v,w, respectively. Recall that the external 0-ray of ga lands at a
point of Aw. Except in the case where RF (1/3) and RF (2/3) both land at
the same point (which must be z0), only one of RF (1/3) and RF (2/3) lands
at a point of ∂Aw (since ga : ∂Aw → ∂Aw is a degree two covering).

Denote by [N ] the conformal conjugacy class of N . Note that the prop-
erty {p2, p3} ∩ Or(x0) = ∅ is preserved by conjugacy.

Theorem 4.7. There is a well defined surjective mapping m1 from

(7) A = {a | Re(a) > 0, ga is postcritically finite,

γa(0) 6= γa(1/2), γa(2/3) ∈ ∂Aw}
onto

(8) {[N ] | N is postcritically finite, x0 6∈ A1 ∪A2 ∪A3,

{p2, p3} ∩ Or(x0) = ∅}
satisfying : for [N ] = m1(a), and any N in the conjugacy class, there is a

mapping φ : S2 → C with the following properties:

1. φ is continuous.

2. For any z ∈ C, the set φ−1(z) is a ray-equivalence class of f ⊥⊥ ga.

3. φ ◦ (f ⊥⊥ ga) = N ◦ φ, and φ is conformal in int(Kf ) ∪ int(Ka).
4. φ(w) = p1.

Furthermore #m−1
1 ([N ]) = 2 if ∞ ∈ Or(x0) and #m−1

1 ([N ]) = 1 otherwise.

Similarly if we switch p1 and p2, and change 2/3 to 1/3, we can get another

mapping m2 with the same properties.

Corollary 4.8. A postcritically finite Newton map N is equivalent to

a mating if and only if

(9) Or(x0) 6∋ p3.

R e m a r k. Since f ⊥⊥ g0 is equivalent to f , one can naturally extend m1

by setting m1(0) = [f ].

P r o o f (of Theorem 4.7). Take a point a ∈ A. The two polynomials f

and ga are matable by Theorem 4.6. Thus f ⊥⊥ ga is equivalent to a rational
map N , which is certainly a Newton map. Set F = f ⊥⊥ ga. According to
Theorem 4.1, there is a continuous semi-conjugacy φ = Φ ◦π : S2 → C from
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F to N . The mapping φ is conformal in int(Kf )∪ int(Ka). Each fiber of φ is
a ray-equivalence class of F . Now the condition γa(2/3) ∈ ∂Aw shows that
one end of RF (1/3) lands at a point of ∂Au and the other end lands at a point
of ∂Aw. So φ(∂Au) and φ(∂Aw) have at least two common points, ∞ and
φ(RF (1/3)). Thus φ(Au)∪φ(Aw) must beA1∪A2. Considering the cyclic or-
der at ∞, we can then determine that φ(u) = p2, φ(v) = p3, and φ(w) = p1.

Since Or(x0) = φ(Or(z0)) ⊂ φ(Ka), we have {p2, p3}∩Or(x0) = ∅. That
is, [N ] ∈ (8).

Set m1(a) = [N ]. The mapping m1 is then well defined from A into the
set (8).

To get the surjectivity of m1, we need to apply the following Thurston–
Levy mating criterion ([Th], [Le], [W]):

Let F be a postcritically finite branched covering of degree d. Assume
that F has no degenerate Levy cycle. Then F is equivalent to the mating of
two polynomials f and g if and only if there is a closed curve γ ⊂ S2 − PF

such that F−1(γ) = γ′ is again a single closed curve and γ′ is homotopic
to γ rel PF and has the same orientation. Moreover, given such a γ, the
two polynomials f and g are uniquely determined, up to the symmetric
conjugacy: ψj ◦ f ◦ ψ−1

j and ψ−1
j ◦ g ◦ ψj , where ψj : z 7→ e2πij/dz, j =

1, . . . , d− 1.
Let us get back to the proof of Theorem 4.7. Take [N ] in (8), and N a

representative of the class. Set

ℓ = {p2} ∪ a2(0) ∪ {p3} ∪ a3(0) ∪ {∞}.
Suppose first that ∞ 6∈ Or(x0). Then ℓ ∩ PN = {p2, p3} (where PN

denotes the postcritical set of N), and N−1(ℓ) is a connected arc homotopic
to ℓ rel PN . A curve γ around ℓ in a small neighborhood of ℓ satisfies the
condition of the above mating criterion, and will give a uniquely determined
value a2 such that N ∼ f ⊥⊥ ga. We have γa(0) 6= γa(1/2) according to The-
orem 4.6. The mapping φ is also well defined, satisfying the four properties
required. It is easy to show that γa(2/3) ∈ ∂Aw. Since f⊥⊥ga ∼ f⊥⊥g−a (see
the paragraph preceding Lemma 4.2), we may choose a such that Re(a) ≥ 0.

On the other hand, for a ∈ iR, one can use the fact that ga preserves
the imaginary axis to check that either γa(0) = γa(1/2), or the free critical
point of ga is in the basin of the fixed critical point. In other words, there
is no postcritically finite ga with Re(a) = 0, a 6= 0 and γa(0) 6= γa(1/2).

Thus one can choose a with Re(a) > 0 such that N ∼ f ⊥⊥ ga. Therefore
[N ] = m1(a) with a ∈ A.

Suppose now ∞ ∈ Or(x0). There are exactly two non-homotopic ways
(rel PN ) to modify ℓ in a small neighborhood of ∞ in order to avoid ∞.
Applying the mating criterion to them, we get two values a, a′ ∈ A such
that N ∼ f ⊥⊥ ga ∼ f ⊥⊥ ga′ . Thus m1(a) = m1(a

′) = [N ].
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To see that a 6= a′, let k be the minimal integer such that Nk(x0) = ∞.
Then gk

a(z0) is the landing point of the external 0-ray whereas gk
a′(z0) is the

landing point of the external 1/2-ray (or vice versa). Thus the dynamics of
z0 under ga and ga′ are not conjugate. We are done.

Finally, we should check that there are no other values in m−1
1 ([N ]).

Suppose a ∈ A such that f ⊥⊥ ga ∼ N , and the semi-conjugacy φ maps w
to p1. Then the Hubbard tree Hf of f must be projected by φ to ℓ (the
mapping φ maps the t-ray of Au to the t-ray of A2, etc.). The rest follows
from the uniqueness described in the mating criterion.

Examples. 1. NP for P : z 7→ z3 − z is equivalent to f ⊥⊥g0, since a = 0
is the only point in C such that ga has a double critical point.

2. NP for P : z 7→ z3 − 1 is equivalent to f ⊥⊥ g1/2, since ±1/2 are the
only values of a ∈ C such that one critical point of ga has a repelling fixed
point as its image.

5.Newton maps regarded as captures from Kf . Capture is a way to
construct branched coverings from a single polynomial. In this section we will
describe all Newton maps which are equivalent to a capture. Part of the work
was done by J. Head. The rest is a consequence of our results about matings.

Recall that f denotes the polynomial z 7→ z3 + (3/2)z, and u = i/
√

2
and v = −i/

√
2 are the two fixed critical points of f . There are two ways to

define external rays on C−Kf . We choose the one such that the 0-ray comes
from the right side of the vector ~vu. Denote by Rf (θ) the external ray of
angle θ, and by γf (θ) its landing point on ∂Kf . Denote by Au the immediate
attracting basin of u. The mapping f |Au

is conjugate to z 7→ z2. Denote by
Ru(t) the corresponding internal t-ray. The set of connected components of
Kf −Au can be parametrized by the internal angle t of the attaching point
to Au of that conected component. It is called the t-limb. The angle t is
dyadic. If t 6= 0, the mapping f carries the t-limb homeomorphically to the
2t(mod 1)-limb. The critical point v is contained in the 0-limb.

Denote by ξ the preimage of 0 on ∂Au with internal angle 1/2. Note
that the three rays Ru(1/2), Rf (1/3) and Rf (1/6) all land at ξ, and the two
rays Ru(0) and Rf (0) both land at 0, the unique repelling fixed point of f .

Notation. Denote by Y the intersection ofKf with the closed region not
containing v bounded by the curve Ru(0)∪Ru(1/2)∪Rf (1/6)∪Rf (0)∪{∞}.
For any y ∈ Y − {0, γf (1/6)}, denote by y0 and y′0 the two points in Kf

distinct from y such that f(y0) = f(y′0) = f(y). Denote by Y the subset of
Y−{0, γf (1/6)} consisting of (pre)periodic points y such that neither y0 nor
y′0 is periodic.

Let y ∈ Y and set yk = fk(y0). There are then minimal integers l ≥ 1 and
p ≥ 1 such that yl+p = yl. Just as in the construction of Hubbard trees, there
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is a unique convex hull T inKf of the finite set {u, v, ξ, y′0, y0, y1, . . . , yl+p−1}.
Set T (y) = T ∪Rf (0) ∪Rf (1/3) ∪ {∞}. It has the following properties:

1. T (y) is a topological finite graph.
2. T (y) contains the finite set {∞, u, v, ξ, y′0, y0, y1, . . . , yl+p−1}.
3. The extremities of T (y) are contained in {v, y′0, y0, y1, . . . , yl+p−1}.

The two points y0, y
′
0 are extremities of T (y).

4. T (y) is forward invariant under f , i.e. f(T (y)) ⊂ T (y).
5. The polynomial f is injective on each edge of T (y).
6. The local degree of f as a graph-mapping is 2 at ∞, u and v, and 1

at any other vertex of T (y).
7. If y 6= y′, then T (y) and T (y′) do not coincide.

For each y ∈ Y , the next lemma establishes the existence and uniqueness
of a cubic branched covering with a specified dynamics. It is essentially due
to J. Head.

Lemma 5.1 (Head). For any point y in Y , there is a cubic branched

covering F = Fy of S2 with the following properties: F has four critical

points x0, p1, p2 and p3, where p1, p2 and p3 are also fixed points and labeled

in the way such that their immediate basins A1, A2 and A3 are connected at

∞ in counterclockwise order , and that ∂A1 ∩ ∂A2 contains more than one

point. There is a mapping ϕ from T (y) to S2, satisfying

1. ϕ is continuous and injective on T (y)−{y′0}, with ϕ(y0) = ϕ(y′0) = x0.

2. ϕ preserves the cyclic order around each branch point.

3. ϕ(∞) = p1, ϕ(u) = p2 and ϕ(v) = p3.

4. ϕ ◦ f |T (y) = F ◦ ϕ|T (y).

Moreover , any cubic branched covering which satisfies the above conditions

is Thurston-equivalent to Fy. Any such branched covering is called a capture

of f with co-critical point at y.

P r o o f. For the construction of Fy, we will follow the procedure given
by J. Head ([He]) except that we replace her abstract tree by T (y).

Take an embedding ϕ of T (y)/{y0 ∼ y′0} to S2 such that ϕ(0) = ∞ and
ϕ preserves the cyclic order at branch points. The homotopy type of ϕ is
unique. Write ϕ(∞) = p1, ϕ(u) = p2, ϕ(v) = p3, ϕ(y0) = ϕ(y′0) = x0 and
ϕ(T (y)/{y0 ∼ y′0}) = G. Note that S2−G has three connected components,
each homeomorphic to a disc.

Let us construct a cubic branched covering F = Fy : S2 → S2. Set
F |G = ϕ ◦f ◦ϕ−1. For each connected component U of S2 −G, F (∂U) is a
subtree of G so S2−F (∂U) is homeomorphic to an open disc. By Schoenflies’
theorem, there is a homeomorphic extension of F from U to S2. Take an
extension of F for each connected component of S2−G. This gives a cubic
branched covering. The critical points are x0, p1, p2 and p3. We are done.
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The uniqueness of Fy up to Thurston-equivalence is proved by J. Head in
Proposition 4.3.1 of [He], where she uses a more general result of B. Wittner
([W], Theorem 4.4.8). We will skip the proof here.

Recall that a Newton map is a cubic rational map with three fixed critical
points p1, p2 and p3, labeled in the way that their immediate attracting
basins are attached at a common fixed point in counterclockwise order, and
that the immediate basins of p1, p2 have more than one common point on
the boundary. Up to conformal conjugacy, we can assume that the point ∞
in C is the unique non-critical fixed point. Denote as usual by x0 the unique
free critical point, and by [N ] the conformal conjugacy class of N .

Theorem 5.2. There is a well defined surjective mapping c2 (capture)
from Y ∪ {u} onto the set

(10) {[N ] | N is postcritically finite,

x0 is neither periodic nor a preimage of p1}
such that for [N ] = c2(y), there is a mapping φ : T (y) → C with the following

properties:

1. φ is continuous and injective on T (y)−{y′0}, with φ(y0) = φ(y′0) = x0.

2. φ preserves the cyclic order around each branch point.

3. φ(∞) = p1, φ(u) = p2 and φ(v) = p3.

4. φ ◦ f |T (y) = N ◦ φ|T (y).

Moreover , #c−1
2 ([N ]) = 1 if {p2, p3,∞} ∩ Or(x0) 6= ∅.

P r o o f. First set c2(u) = [f ].

We prove that for each y ∈ Y , the branched covering Fy is Thurston-
equivalent to a Newton map N , with [N ] in (10).

We decompose Y into four disjoint subsets:

Y∞ = {y ∈ Y | y0 is a preimage of 0, the unique non-critical fixed point}.
Ysp = {y ∈ Y | y0 is strictly preperiodic, but not eventually fixed}.
Y2 = {y ∈ Y | y0 is a preimage of u}.
Y3 = {y ∈ Y | y0 is a preimage of v}.

The case y ∈ Y2 ∪ Y3 ∪ Y∞ was done by J. Head ([He]), with a proof
similar to that of our Theorem 3.6. The idea is that if F = Fy has a one
curve Levy cycle {γ}, then

γ ∩ ( ~p1ξ ∪ ~ξp2 ∪ ~p2x0 ∪ ~x0p3) = ∅.
So γ cannot separate the four critical points of F two by two. This con-
tradicts Theorem 3.3. Hence F has no non-degenerate Levy cycle. But F
cannot have any degenerate Levy cycle either. Recall that, by definition
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(Section 3), a degenerate Levy cycle must decompose S2 into n ≥ 2 disc-
components B1, . . . , Bn, and zero or one non-disc component. Moreover,
F (PF ∩ Bi) = PF ∩ Bi+1 (mod n). So each PF ∩ Bi contains only periodic
points. By definition, the set ∂Bi should be non-peripheral rel PF , so PF ∩Bi

contains at least two points, each of them being periodic of period at least
2 (note that n ≥ 2). However, if x0 eventually falls into {p1, p2,∞}, then
the postcritical set PF does not contain any non-fixed periodic point.

Thus F is equivalent to a Newton map N . Moreover, because of the dy-
namical numbering of the critical points, the point pi of F must correspond
to pi of N , i = 1, 2, 3. So [N ] is in (10).

To find the mapping φ, we start from N . Denote by ai(0) the 0-ray of
Ai as usual. Given any Newton map N such that Nk(x0) ∈ {p2, p3} for
some minimal integer k > 0, in the connected graph N−k(a2(0) ∪ a3(0))
one can find a minimal invariant graph T such that T contains the whole
postcritical set PN except for p1, and T − {x0} is a topologically finite
tree. It is easy to find z ∈ Y such that there is a homeomorphism φ from
T (z)/{z0 ∼ z′0} to T , preserving the cyclic order at each branch point,
mapping ∞ to p1, u to p2, and v to p3, and satisfying φ ◦ f = N ◦ φ. By
Lemma 5.1, the rational map N is Thurston-equivalent to Fz. SinceN ∼ Fy ,
we have y = z.

For y ∈ Ysp, the same argument shows that Fy cannot have a non-
degenerate Levy cycle. But it does not indicate whether F has a degenerate
Levy cycle. We will take another route, using an argument that works for
y ∈ Y∞ as well.

We will see that for any y ∈ Ysp ∪ Y∞, there is a point a ∈ C such that
Fy is equivalent to the mating f ⊥⊥ ga. Moreover, f ⊥⊥ ga is equivalent to a
Newton map.

Note that Ysp ∪ Y∞ ⊂ ∂Kf . Let y ∈ Ysp ∪ Y∞. Let θ be one external
angle of y. An easy calculation shows that θ ∈ ]0, 1/6[ (by taking account
of the internal angle of y relative to u). Choose a ∈ C such that 1− θ is one
of the external angles of the co-critical point (i.e. the point 2a) of ga. It
is not difficult to see that such a value a exists and is unique and, because
1 − θ ∈ ]5/6, 1[, we have γa(0) 6= γa(1/2) (where γa(η) denotes the landing
point of the external η-ray of ga; we refer the reader to [M1] and [F] for
details). The topological mating of f and ga gives a branched covering F ′

with the properties stated in Lemma 5.1. By uniqueness F ′ is Thurston-
equivalent to Fy. Since f and ga are matable (Theorem 4.6), F ′ is equivalent
to a Newton map. So is Fy.

Now the semi-conjugacy φ given by Theorem 4.7 will be injective on
T (y)− {y′0} since no pair of its points are in the same ray-equivalence class
of f ⊥⊥ ga.

It is quite easy to see that [N ] belongs to the set (10).
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Now set c2(y) = [N ]. The mapping c2 is then well defined from Y into
(10).

We now consider the surjectivity of c2. Take N with its class in (10). If
x0 coincides with one of the roots, then the map N is in the conformal class
[f ] = c2(u). We may now assume x0 6∈ {p1, p2, p3}. We will find y ∈ Y such
that N is equivalent to Fy.

The case where x0 is a preimage of p2 or p3 follows from the above
construction of φ.

For the other cases x0 must be contained in the Julia set JN and is
strictly preperiodic. We again use matings to construct T (y). The mapping
N is topologically conjugate to the topological mating of f and ga for some
a ∈ C. The free critical point of ga is contained in the Julia set of ga.
Let θ be an external angle of the co-critical point. By our choice of p2

and p3 we have θ ∈ ]5/6, 1[. Denote by y the point in Kf with external
angle 1 − θ. Then y ∈ Y and T (y) − {y′0} is embedded in the sphere of the
topological mating by the semi-conjugacy. Applying Lemma 5.1 again, we
get the equivalence between N and Fy.

Concerning the study of c−1
2 ([N ]), we just need to see that for j ∈

{2, 3,∞}, and y, z ∈ Yj , y 6= z, the two graphs T (y) and T (z) cannot
be homeomorphic by an orientation preserving map. In fact, both y and z
have finite addresses relative to u (i.e. a sequence of internal angles). Iterate
the separating point between T (y) and T (z) until it becomes u (or v), then
iterate enough times until the two directions are separated by the union of
the 0-ray and the 1/2-ray of Au (or Av). This shows that T (y) and T (z) do
not have the same cyclic order at u (or v).

6. Gluing captures and matings in the parameter space

6.1. Regions and rays in parameter spaces. Tree classification. Recall
that ga denotes the polynomial z3−3a2z+2a3 +a and Ka denotes the filled
Julia set of ga, more precisely

Ka = {z ∈ C | gn
a (z) 6→ ∞ as n→ ∞}.

In [M1] and [F], the following notions and results are introduced and
described in detail. Denote by C the connectedness locus of the parameter
a-plane, i.e.

C = {a ∈ C | Ka is connected}.
The set C is shown on the left of Figure 1. Note that −a is the unique free
critical point of ga, so the connectedness of Ka is equivalent to −a ∈ Ka

(this is due to a classical result of Fatou: the Julia set of a polynomial is
connected if and only if none of the critical points escapes to ∞). The set
C is compact, full, and contains all postcritically finite polynomials ga.
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There is a natural uniformizing mapping Φ from C − C to C − D. It
carries two foliations to C − C, one with external rays:

Rθ = {Φ−1(re2πiθ) | 1 < r <∞},
and one with equi-potentials: Er = {Φ−1(re2πiθ) | θ ∈ T}. The mapping
Φ has the following property: if, for some θ, the ray Rθ passes through a
point a ∈ C, then in the dynamical plane of ga, the external ray Rθ(a) for
the polynomial ga is well defined above a certain potential level and passes
through the co-critical point 2a (recall that ga(−a) = ga(2a)).

The limit limr→1 Φ
−1(re2πiθ) exists when θ is rational. We denote it by

γC(θ). It is considered as the landing point of Rθ. It is possible that a is
the landing point of more than one ray Rθ. We call the set {θ | γC(θ) = a}
the set of external angles of a. If one external angle of a is eventually fixed
under angle tripling, then a has no other external angle.

The union R1/3 ∪R1/6 ∪R2/3 ∪R5/6 together with their landing points
decompose the a-plane into three connected components. The one contain-
ing 0 coincides with the set

{a ∈ C | γa(0), γa(1/2) are well defined and distinct}
(cf. [M1]). The two lines R and iR divide this component into four sym-
metrical parts. The lower right and the upper left quarters correspond to
values of a such that γa(2/3) ∈ ∂Aw.

Denote by A the closure of C intersecting the lower right quarter. Then
the set A∪{0} is precisely the postcritically finite locus in A (see Figure 1).

Now let us return to the parameter space of Newton maps. Recall that
in Section 1 we have defined a set Ω which is the fundamental domain of
the space of cubic Newton maps.

Notation. Let Λ be the set of λ ∈ Ω − {±1/2} such that Nλ is post-
critically finite (i.e. x0 has finite orbit under Nλ). Note that for any λ ∈ Λ,
the free critical point x0 of Nλ is not contained in {p1, p2, p3}.

Here is a more precise statement of the main theorem.

Theorem 6.1. There is a well defined surjective mapping M : A⊔Y → Λ
with the following properties:

1. For a ∈ A and λ = M(a), the mating f ⊥⊥ ga is equivalent to Nλ, and

x0 is not a preimage of p2 or p3.

2. For y ∈ Y and λ = M(y), the capture of f with co-critical point at y
is equivalent to Nλ, and x0 is neither periodic nor a preimage of p1.

3. M induces a bijection from A ⊔ Y/{γC(η) ∼ γf (1 − η)} to Λ.

P r o o f. What we need is to combine Theorems 4.7 and 5.2.
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Just as in the decomposition of Y , we set

Ap = {a ∈ A | −a is periodic},
Asp = {a ∈ A | −a is strictly preperiodic, but not eventually fixed},
A1 = {a ∈ A | −a is a preimage of a},
A∞ = {a ∈ A | −a is eventually fixed, but not a preimage of a},
Λ1 = {λ ∈ Λ | x0 is a preimage of p1},
Λp = {λ ∈ Λ | x0 is periodic for Nλ},
Λ∞ = {λ ∈ Λ | x0 is a preimage of ∞},
Λsp = {λ ∈ Λ | x0 is strictly preperiodic for Nλ, but not eventually fixed},
Λ2 = {λ ∈ Λ | x0 is a preimage of p2},
Λ3 = {λ ∈ Λ | x0 is a preimage of p3}.

There is a bijection h1 from (8) of Theorem 4.7 to Λ∞ ⊔ Λp ⊔ Λsp ⊔ Λ1

and a bijection h2 from (10) of Theorem 5.2 to Λ∞ ⊔ Λsp ⊔ Λ2 ⊔ Λ3 such
that hi([N ]) = λ iff Nλ ∈ [N ] (i = 1, 2).

For a ∈ A, set M(a) = h1(m1(a)). Then M(A) = Λ∞ ⊔ Λp ⊔ Λsp ⊔ Λ1

according to Theorem 4.7 and the definition of h1. Set λ = M(a). There is
then a continuous semi-conjugacy φ from f ⊥⊥ ga to Nλ with ray-equivalence
classes as fibers. Moreover, φ(w) = p1 and φ(−a) = x0. We also claim that
φ gives rise to a conjugacy from the orbit of −a to the orbit of x0. This is
trivial except in the case a ∈ Asp, when we just need to notice that each ray-
equivalence class contains at most one postcritical point (since each periodic
non-fixed point in the Julia set of f has only one external ray landing at it).
As a consequence, λ ∈ Λj iff a ∈ Aj , j ∈ {∞,p, sp, 1}.

Similarly, for y ∈ Y , set M(y) = h2(c2(y)), where c2 is defined in The-
orem 5.2. Then M(Y ) = Λ∞ ⊔ Λsp ⊔ Λ2 ⊔ Λ3, and M(y) ∈ Λj iff y ∈ Yj ,
j ∈ {∞, sp, 2, 3}.

Denote by ∼ the equivalence relation in A ⊔ Y generated by γC(η) ∼
γf (1 − η). We want to show that for each λ ∈ Λ, the set M−1(λ) coincides
with an equivalence class of ∼.

The class of a point in Ap ⊔A1 ⊔ Y2 ⊔ Y3 consists of the point itself.
For λ ∈ Λp ∪Λ1, we have #M−1(λ) = #M−1(λ)∩A = 1. Similarly, for

λ ∈ Λ2 ∪ Λ3, #M−1(λ) = #M−1(λ) ∩ Y = 1.
For λ ∈ Λ∞, M−1(λ) ∩ Y = {y} by Theorem 5.2. Moreover, y ∈ Y∞.

It has then exactly two external angles η, η′. Set a = γC(1 − η) and a′ =
γC(1 − η′). Since η, η′ are eventually fixed, the point a (resp. a′) has no
other external angle. For f ⊥⊥ ga (resp. f ⊥⊥ ga′), the ray-equivalence class
of the co-critical point contains the point y in the Julia set of f . Thus the
graph T (y) − {y0} is injected into the sphere S2/∼ray. By the uniqueness
stated in Lemma 5.1, both f ⊥⊥ ga and f ⊥⊥ ga′ are equivalent to Fy . So
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a, a′ ∈ M−1(λ). But #M−1(λ) ∩ A = 2 (Theorem 4.7), and finally we get
M−1(λ) = {a, a′, y}. This is an equivalence class of ∼.

For λ ∈ Λsp, M−1(λ) ∩A = {a} by Theorem 4.7. Moreover, a ∈ Asp. It
has then finitely many external rays η1, . . . , ηk. Each of them is preperiodic
but not eventually fixed under angle tripling. Set yi = γf (1−ηi). This point
has no other external angles. Moreover, f ⊥⊥ga and Fyi

are equivalent. Thus
M(a) = M(yi), i = 1, . . . , k.

Conversely, let y ∈ M−1(λ) ∩ Y . By Theorem 5.2 there is a′ ∈ A such
that Fy, f ⊥⊥ ga′ and Nλ are equivalent to each other. But M−1(λ) ∩ A
contains only one element. So a′ = a. By the relationship between a′

and y, we conclude that y coincides with one of the yi. Thus M−1(λ) =
{a, y1, . . . , yk}. This is again an equivalence class of ∼.

Thus M−1(λ) is an equivalence class for each λ. We are done.

R e m a r k. According to the remarks following Theorems 4.7 and 5.2,
one can extend M in a natural way to (A ∪ {0}) ⊔ (Y ∪ {u}) by setting
M(0) = −1/2 and M(u) = 1/2.

P r o o f o f C o r o l l a r y 1.4. Note that for λ ∈ int(Ω), the three fixed
critical points of Nλ have a dynamical numbering p1, p2 and p3 as in Sec-
tion 2, satisfying

p1 = −1/2 − λ, p2 = −1/2 + λ, p3 = 1.

To prove this, we show first that it is true for λ ∈ int(Ω) ∩ iR, with the
help of symmetry, and then for all λ ∈ int(Ω) since the rays a1(0), a2(0),
a3(0), a1(1/2), a2(1/2) and the points ∞, ξ1 move holomorphically in λ (see
Section 2.1 for notations). Since M(A) contains λ such that x0 is attracted
by p1 or x0 is periodic, M(A) ⊃ Λ ∩ (C− ∪D) by definition of C− and D.
The rest is similar.

Conjecture. The mapping M extends to a homeomorphism

A ⊔ Y/{γC(η) ∼ γf (1 − η)} → Ω

satisfying M(0A) = −1/2, M(uY) = 1/2 and M([γf (1/6)]) = 0.

We can now classify all postcritically finite Newton maps by topologically
finite graphs embedded in S2. The importance of these graphs is that they
use finite information to describe the structure of the Fatou components of
C − JN , of which there are in general countablely many. We will use the
property that each ga, a ∈ A, has a forward invariant topologically finite
tree, the Hubbard tree.

Denote by H1
a the convex hull in Ka of the Hubbard tree and γa(0) (the

landing point of the external 0-ray), and by T (a) the tree Hf ⊔H1
a/{γf (0) ∼

γa(0)} embedded in S2 so that the cyclic order around γf (0) is u, v,H1
a .
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Corollary 6.2. Denote by T the set of embedded graphs

{T (a) | a ∈ A} ⊔ {T (y) | y ∈ Y }.
Then M induces a surjective mapping MT from T to Λ. Moreover , for

T ∈ T and λ = MT (T ), the Newton map Nλ has a forward invariant

graph H homeomorphic to T , containing the postcritical set of N . And

N |H is conjugate to the induced self-mapping on T (which is f ⊥⊥ ga in case

T = T (a) and f in case T = T (y)). Furthermore, the fibers of MT are

completely determined by the fibers of M.

Corollary (of the corollary). Each postcritically finite Newton map has

a forward invariant topologically finite graph, containing the postcritical set.

6.2. Finding Head’s angles from captures and matings. In Section 2.3
we have seen the importance of Head’s angles and how (conjecturally) they
classify the components of Ω − B0 ∪G0. Here we try to determine Head’s
angles from matings and captures.

Denote by H0 the connected component of the interior of C containing 0.
It is a hyperbolic component. We call it the main hyperbolic component of
the a-plane.

There is a natural uniformizing mapping Ψ from the set {a2 | a ∈ H0}
to D. We denote again by Ψ the composed mapping a 7→ Ψ(a2) from H0 to
D. This mapping carries two foliations to H0 − {0}, one by internal rays,
the other by equi-potentials. Note that for any t ∈ T there are two rays with
angle t. By the construction of Ψ , this mapping has the following property:
if a point a ∈ H0 is on the internal ray of angle t, then in the dynamical
plane of ga, the internal ray Rt(a) in the immediate basin of the fixed critical
point a is well defined below a certain potential level, and passes through
2a, the co-critical point of ga.

The mapping Ψ extends to a continuous mapping from C to D which is
constant on each connected component of C −H0 (cf. [M1] and [F]).

Denote by rt the set {Ψ−1(re2πit) | r ∈ [0, 1[}∩A. Denote by At the set
{Ψ−1(e2πit)} ∩ A. It is called the t-limb of A.

The set A then coincides with the set r1/2 ∪ r1 ∪ ⋃
t∈]1/2,1[(rt ∪ At). It

is also the intersection of the connectedness locus C with the sector region
bounded by the curve R5/6 ∪ r1/2 ∪ r1 ∪R0. Similarly, the set Y −{γf (1/6)}
coincides with the set of points whose internal angle relative to u is in ]0, 1/2[.

The subset S of T was defined and studied in Subsection 2.2. The Head’s
angle for a Newton map was defined and studied in Subsection 2.3.

Proposition 6.3. Given I = ]β, α[ a connected component of T−S with

α, β rational and 0 < β < α < 1/2, denote by Λ[β,α] the set of λ ∈ Λ such
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that the Head’s angle of Nλ is contained in {β, α}. We have

M−1(Λ[β,α]) =
⋃

t∈[β,α]

(A ∩ At+1/2) ⊔
⋃

t∈[β,α]

(Y ∩ Y1/2−t).

P r o o f. We can easily check the following two facts using Milnor’s algo-
rithm ([M1], Lemma 2.5).

1. For any t ∈ [β, α[∩Q, and any a ∈ A ∩ At+1/2, the point xα ∈ ∂Aw

of internal angle α, for the polynomial ga, has a unique external angle ξ(α)
depending neither on a nor on t. For t = α and a ∈ A∩At+1/2, xα has two
external angles with the larger one equal to ξ(α).

2. For any t ∈]β, α] ∩ Q, and any a ∈ A ∩ At+1/2, the point xβ ∈ ∂Aw

of internal angle β, for the polynomial ga, has a unique external angle ξ(β)
depending neither on a nor on t. For t = β and a ∈ A∩At+1/2, xβ has two
external angles with the smaller one equal to ξ(β).

It is not difficult to check that the external ray Rf (1 − ξ(α)) of f lands
at a point of ∂Au. Hence for any a in

⋃
t∈]β,α](A ∩ At+1/2), and φ the

semi-conjugacy in Theorem 4.7, we have

(11) φ(xα) ∈ φ(Aw) ∩ φ(Au).

Since φ is conformal in int(Kf )∪ int(Ka), it maps internal rays of f and
ga onto internal rays of NM(a) with the same angle. To see that the Head’s
angle of NM(a) is α we only need to show that α is the minimal angle such
that (11) holds. Suppose that the Head’s angle is smaller than α. Then it
should be smaller than or equal to β as it should be in S. Figure 9 shows
that for any s ≤ β, [xs]F ∩ Au = ∅, where xs ∈ ∂Aw is the point with
internal angle s.

There is a unique point a in A ∩ Aβ+1/2. The Head’s angle of NM(a)

is β. The details are omitted.
In the graph T (y), the internal angle of y0 relative to u is s when s−1/2

is the internal angle of y. By assumption, s ∈ [1 − α, 1 − β]. The unique
Jordan curve contained in T (y)/{y0 ∼ y′0} can be seen as a Jordan curve
γ in the dynamics of N = NM(y). Recall that ai(t) denotes the t-ray of
the immediate attracting basin Ai of pi for N . We have γ ∩ A1 = ∅, and
a2(s) ⊂ γ. Let t be the Head’s angle of N , and set s′ = 1 − t. It is enough
to show that s′ = 1−α if s 6= 1−β and s′ = 1− β if s = 1− β. The details
are omitted.

This shows that

M
( ⋃

t∈[β,α]

(A ∩ At+1/2) ⊔
⋃

t∈[β,α]

(Y ∩ Y1/2−t)
)
⊂ Λ[β,α].

The surjectivity is a consequence of the surjectivity of M. We omit the
details again.
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Fig. 9. α is minimal

R e m a r k. Starting from external angles of a ∈ A or of y ∈ Y , we can
find their internal angles. This is then enough to find the Head’s angle of
NM(a) or NM(y) by the above proposition. Given t ∈ S with even denomi-
nator (for example t = 1/6), there is a ∈ A with internal angle t. One can
show similarly that NM(a) has Head’s angle t.
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