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Are initially ω1-compact separable regular spaces compact?

by

Alan D o w (North York, Ont.) and Istvan J u h á s z (Budapest)

Abstract. We investigate the question of the title. While it is immediate that CH
yields a positive answer we discover that the situation under the negation of CH holds
some surprises.

1. Introduction. A topological space is said to be initially ω1-compact if
every open cover of cardinality at most ω1 has a finite subcover. This is well-
known to be equivalent (in the context of Hausdorff spaces) to the property
that the space is countably compact and each subset A of cardinality ω1 has
a complete accumulation point , that is, a point whose every neighbourhood
contains a set of points of A with cardinality |A|.

Since a regular separable space has a base for the topology of cardinality
at most c, it follows immediately from CH that a separable regular space is
compact if it is initially ω1-compact. If the space is in addition first countable
(or even has countable tightness) then this implication has been shown to
hold in several models of ¬CH and only recently been shown to consistently
fail. However, there is a very well known class of examples, discussed below,
which in many models of ¬CH are themselves non-compact initially ω1-
compact separable regular spaces. Hence it seemed reasonable to suppose
that the failure of CH would imply the existence of such a space. In fact,
with some help from Shelah (in the form of Theorem 3.7), we show that if c
has cofinality greater than ω1 then this is indeed the case. However, we also
show that the question is not decided by the assertion that c has cofinality
ω1. Another interesting result (Theorem 2.6) is that it is consistent, with any
value of c, to have that all locally compact such spaces (separable regular
and initially ω1-compact) are indeed compact.

1991 Mathematics Subject Classification: 54A25, 54A35, 54D30.
Research supported by the Hungarian National Foundation for Scientific Research

grant no. 16391.

[123]



124 A. Dow and I. Juhász

For the remainder of the paper we let (I)C denote the assertion “every
separable initially ω1-compact regular space in the class C is compact”. If
we omit the subscript C then we interpret C as the entire class of regular
spaces. We will use LC to denote the class of locally compact spaces, SC to
denote the class of sequentially compact spaces, and CT will be the class
of spaces with countable tightness. A space is sequentially compact if every
infinite set contains a converging sequence. A space is said to have countable
tightness if the closure of every set is equal to the union of the closures of
its countable subsets.

2. On (I)C for special C. As mentioned above the following result is
immediate.

Proposition 2.1 (CH). (I ), i.e. every initially ω1-compact separable
regular space is compact.

Part of the interest in this topic stems from the recent investigations into
spaces of countable tightness which we now summarize.

Proposition 2.2. (I)CT follows from PFA ([2]) and also holds in any
model obtained by adding Cohen reals to a model of CH ([4]). However ,
(I)CT can fail ([10]) and there can even be a first countable example ([8]).

A well-known class of spaces are the so-called Franklin–Rajagopalan
spaces [11], see also [13, §7] or [14, 2.11].

These are constructed as follows.

Example 1. Fix a maximal strictly increasing mod finite well-ordered
chain of co-infinite subsets of ω, say {aα : α < κ}. We assume that κ
is a regular cardinal. Let B be the Boolean subalgebra of P(ω) which is
generated by this chain together with the finite subsets of ω and set K to
be the Stone space of ultrafilters on B. The space K can be regarded as
ω ∪ {xα : α ≤ κ} in which ω is dense, open and discrete, while {xα : α ≤ κ}
is homeomorphic to the ordinal space κ+1. By the maximality of the chain,
it follows that every infinite subset of ω has a subsequence converging to
some xα with α < κ. It follows that both K and K \ {xκ} are sequentially
compact.

Proposition 2.3. If there is a maximal chain mod finite of co-infinite
subsets of ω with cofinality greater than ω1 then there is a non-compact
initially ω1-compact separable regular space which is also locally compact
and sequentially compact , i.e. (I)LC and (I)SC both fail.

P r o o f. If there is such a chain of length κ such that cf(κ) > ω1 then let
K be the space constructed in Example 1 and let xκ denote the same point
as above. Simply set X equal to the space K with the point xκ removed.
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To see that X is initially ω1-compact we just note that no subset of X of
cardinality at most ω1 converges, in K, to xκ.

Clearly then t > ω1, hence MA(ω1), implies the failure of (I)SC and
(I)LC. It is well known that if Cohen reals are added to a model of CH then
there are no such well-ordered mod finite chains. In addition, (I)SC holds in
such models because of the following result which is taken from Theorem 6
of [5].

Proposition 2.4. If Cohen reals are added to a model of CH then every
ω1-compact , sequentially compact , separable regular space is compact. That
is, (I)SC holds in all such models.

It is considerably easier to get (I)LC to fail. First some simple notation.
Analogous to converging ω-sequences, we say that, for an infinite cardinal

κ, a sequence 〈xα : α < κ〉 converges to a point x if for each neighbourhood
U of x, there is a β < κ such that {xα : β < α < κ} ⊂ U . We say that
a point x is a κ-limit if there is some κ sequence of distinct points which
converges to x.

If p is any point of βω \ ω then the space βω \ {p} is an example of a
locally compact initially ω1-compact space which is not compact if and only
if p is not an ω1-limit in βω. More generally, if K is a separable compact
space in which there is a non-isolated point, say x, which is not an ω-limit
nor an ω1-limit in K then X = K \ {x} is also such an example. However,
we have the following two results.

Theorem 2.5. If uncountably many Cohen reals are added (to any model
of ZFC ) then every point p of βω \ ω is an ω1-limit in βω.

Theorem 2.6. If any number of Cohen reals are added to a model of CH
then (I)LC holds. In fact , for every compact separable space K and point p
of K, p is an ω1-limit in K if and only if p does not have a countable local
base.

For a non-empty set S, we let Fn(S, 2) denote the usual Cohen poset
consisting of finite partial functions from S into 2. For an Fn(S, 2)-name, τ ,
of a subset of ω, let the support of τ be the smallest (countable) subset R
of S such that for each n ∈ ω and p ∈ Fn(S, 2),

p ° n ∈ τ iff p¹R ° n ∈ τ.
P r o o f o f T h e o r e m 2.5. We first use the standard factoring lemma

of forcing to observe we may assume that we are forcing with the poset
Fn(ω1, 2). Indeed, if I is any uncountable index set, then Fn(I, 2) is isomor-
phic to Fn(I ∪ ω1, 2). Therefore we first assume that we are forcing with
Fn(I ∪ ω1, 2). Now if G is any generic filter for Fn(I ∪ ω1, 2), we can pass
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to the model V [G∩Fn(I \ω1, 2)] and treat this as our ground model. Thus
the final model is obtained by forcing over this model with Fn(ω1, 2).

In the extension, let p be an ultrafilter on ω and for each α < ω1, let
Fα denote the filter base consisting of all those members F of p for which
there is an Fn(ω1, 2)-name in the ground model with support contained in
α (such that F is equal to the interpretation of the name by the generic
filter). It is easily seen that we can, for each α < ω1, choose an ultrafilter
qα ∈ βω \ {p} such that Fα ⊂ qα. The sequence 〈qα : α < ω1〉 converges to
p since for each A ∈ p, there is a γ (containing the support of a name for
A) such that A ∈ qα for all α ≥ γ.

P r o o f o f T h e o r e m 2.6. We first establish that it suffices to show
the following lemma.

Lemma 2.7. V be a model of CH and G be an Fn(κ, 2)-generic filter. If ,
in V [G], F is a filter on ω which is not countably generated then there are
filters Fα (α < ω1) such that every member of F is a member of all but
countably many of the Fα and there is some a ∈ Fα such that ω − a ∈ F .

Indeed, suppose that X is a compact space and that ω is a dense subset
of X. Also suppose that x in X does not have a countable local base. Set F
to be the filter of all subsets F of ω such that x is not in the closure of ω\F ,
i.e. F is the trace of the neighbourhood filter of x on ω. It should be clear
that F is not countably generated. Let {Fα : α ∈ ω1} be as above. For each
α, choose a point xα in X which is in the intersection

⋂{clX(a) : a ∈ Fα}.
We now verify that the sequence 〈xα : α ∈ ω1〉 converges to x. We prove this
by showing that xα ∈ U for all but countably many α (it should be clear
that xα 6= x for each α). Of course if W ⊂ U is a closed neighbourhood of x,
then a = W ∩ω is a member of F . In addition, for each α such that a ∈ Fα,
we have xα ∈ clX(a) ⊂W , hence xα ∈ U .

P r o o f o f L e m m a 2.7. Let F be an Fn(κ, 2)-name of a filter on ω
and, with no loss of generality, assume that 1 forces that F has no base
of cardinality less than or equal to ω1. Recursively choose ω2 names for
members of F as follows. For each α, let 1 force that Ḟα ∈ F and Ḟα does
not contain any member of F which has an Fn(Iα, 2)-name, where Iα is a
set of size at most ℵ1 which contains the support of each Ḟβ for β < α.

Since V |= CH, we can assume that the above sequence has been thinned
down so that the supports of the Ḟα form a ∆-system with root R and that
all the Ḟα are identical with respect to R. Let Jα denote the countable set
which is equal to the support of Ḟα with R removed. Hence the sets of the
family {Jα : α < ω1} are pairwise disjoint. Note that our assumption on
the enumeration ensures that Ḟα does not contain any member of F whose
support is contained in R. By passing to the extension obtained by forcing
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with Fn(R, 2) we can assume that the support of Ḟα is equal to Jα (hence
the supports are pairwise disjoint).

We are ready to define Fξ for ξ < ω1.
Fξ is generated by those ȧ such that either ȧ = ω− Ḟξ or some condition

forces that ȧ ∈ F and the support of ȧ is disjoint from Jξ.
Since the generators of the Fξ of the latter kind are members of F ,

they are closed under finite intersections (the support of an intersection is
contained in the union of the supports). Therefore to show that Fξ has
the finite intersection property it suffices to show that ȧ− Ḟξ is not empty
for each ȧ ∈ Ḟ such that the support of ȧ is disjoint from Jξ. Otherwise
there is a condition p which forces that ȧ is contained in Fξ. Since these
sets have disjoint supports, it follows that p forces that Fξ contains the set
{n : (∃q < p) q ° n ∈ ȧ}. However, this latter set is in the ground model
V [G∩Fn(R, 2)] and is a member of F . By our assumption, 1 ° Fξ does not
contain any member of F which is a member of V [G ∩ Fn(R, 2)].

3. More on the failure of (I). This section culminates with the result
that (I) fails whenever the cofinality of c is greater than ω1. However, we
first study some other conditions which imply that (I) fails and which seem
to be of independent interest. When we use the symbol 2κ we will mean the
usual product topological space. In this context we will use (2κ)0 to denote
all those members of the product which are eventually equal to 0 and the
obvious analogue, (2κ)f , for arbitrary f ∈ 2κ.

The following lemma is our main tool for constructing examples to wit-
ness the failure of (I).

Lemma 3.1. Suppose that cf(κ) > ω1 and that S ∈ [2κ]ω is such that

1. for all infinite T ⊂ S, cl(T ) ∩ (2κ)0 is not empty , and
2. S has a limit point not in (2κ)0.

Then, for some g ∈ 2κ, the subspace

X = (S \ {g}) ∪ (cl(S) ∩ (2κ)0)

is a witness to the failure of (I).

P r o o f. We choose g ∈ 2κ\(2κ)0 to be any limit of S (which exists by 2).
It follows that X is not compact since it is not closed in 2κ. Obviously X is
separable since S \ {g} is dense in X. By hypothesis 1, every infinite subset
of S has a limit point in X ∩ (2κ)0. Therefore, to show that X is initially ω1

compact, it suffices to show that (2κ)0 is initially ω1 compact. This follows
immediately from the fact that if A ⊂ (2κ)0 has cardinality at most ω1

then A ⊂ (2κ)0. Indeed, since cf(κ) > ω1, there is a λ < κ such that every
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member of A is constantly 0 on [λ, κ). Therefore A is contained in the closed
set 2λ × 〈0, 0, 0, . . .〉.

It is a natural strengthening of the hypotheses of the previous lemma to
ask that cl(T ) ∩ (2κ)f 6= ∅ for all infinite T ⊂ S, for all f ∈ 2κ. This is very
closely related to the notion of an independent splitting family on ω (see
[12]). As we see by the following definition we also have a very close parallel
to the notion of a κ-HFD (see [7, 6.1]).

Definition 3.2. An infinite subset S of 2κ is a (κ, λ)-HFD if for every
infinite T ⊂ S, there is set J ⊂ κ such that |κ \ J | < λ and {t¹J : t ∈ T} is
dense in 2J .

We will say that S is a (κ,→)-HFD if for every infinite T ⊂ S, there is
an α < κ such that {t¹(κ\α) : t ∈ T} is dense in 2(κ\α). Of course the notion
of a (κ, κ)-HFD coincides with that of a (κ,→)-HFD in the case where κ is
regular.

The hypotheses of Lemma 3.1 are easily seen to be fulfilled if S is a
(κ,→)-HFD, hence we have the following result.

Corollary 3.3. The failure of (I) follows from the existence of a (κ,→)-
HFD for any cardinal κ with cofinality greater than ω1.

The existence of (κ, ω1)-HFD’s has been established in models obtained
by Cohen forcing (see [6]).

Proposition 3.4. Forcing with Fn(κ, 2) yields a model in which there
is a (κ, ω1)-HFD.

By combining the previous two results we deduce that (I) fails in any
model in which at least ω2 Cohen reals have been added.

Corollary 3.5. Forcing with Fn(ω2, 2) yields a model in which (I) fails.
Therefore the failure of (I) is consistent with c > ω1 combined with any other
cardinal arithmetic.

It is also standard to show that Martin’s Axiom for countable posets
implies that there is a (c,→)-HFD. This will follow from the next result. We
would like to relate the existence of a (c,→)-HFD to another less familiar
cardinal function on ω. A π-base for an ultrafilter on ω is a family of infinite
subsets of ω with the property that every member of the ultrafilter contains
one (mod finite). The π-character of an ultrafilter is the least cardinal of a
π-base. It was proven by Balcar and Simon [1] that the minimum possible
π-character of a free ultrafilter on ω is equal to the reaping number r. A
family A ⊂ [ω]ω is reaped by b ∈ [ω]ω if a \ b and a ∩ b are infinite for all
a ∈ A. Then r is the least cardinal of a family that cannot be reaped. It is
routine to check that Martin’s Axiom for countable posets implies that r is
equal to c.
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Proposition 3.6. The existence of a (c,→)-HFD follows from r = c.

P r o o f. Let {Tα : α ∈ c} enumerate the infinite subsets of ω. We
inductively choose a family {Aα : α ∈ c} of subsets of ω. We will set
S = {sn : n ∈ ω} ⊂ 2c where sn(α) = 1 if and only if n ∈ Aα. In or-
der to ensure that S is a (c,→)-HFD we will ensure that, for each α < c,
the family {Aβ ∩Tα : α < β < c} is an independent family in P(Tα). This is
easily done. Let Bα be the Boolean subalgebra of P(ω) which is generated
by {Tγ : γ < α} together with {Aγ : γ < α}. Since |Bα| < r, there is a set
Aα such that b∩Aα and b\Aα are infinite for each infinite b ∈ Bα. It follows
easily by induction that S is a (c,→)-HFD.

Question 1. Is there a (c,→)-HFD? Is there a (κ,→)-HFD for some κ?

Of course the existence of a (κ,→)-HFD with cf(κ) > ω1 is much stronger
than the hypothesis of Lemma 3.1 and therefore of the failure of (I). We
established that the failure of (I) followed from the existence of an ultrafilter
with π-character equal to c together with the assumption that cf(c) > ω1

(recall that r = c, the hypothesis of Lemma 3.6, is the assertion that all free
ultrafilters on ω have π-character equal to c). Let us also note that such an
ultrafilter was shown to exist if c > ω1 is regular by Bell and Kunen [3]. (In
fact, they showed that there is an ultrafilter of π-character ≥ cf(c).) Our
result, however, follows from the following stronger result of S. Shelah. This
result is included with Shelah’s permission and was proven by him in the
course of discussions with one of the authors about the results of this paper
and will not be published elsewhere. The result can equally well be stated
in terms of infinite subsets of ω or in the terms of Lemma 3.1.

Theorem 3.7 (S. Shelah). There is a set S ∈ [2c]ω such that

1. for all infinite T ⊂ S, cl(T ) ∩ (2c)0 is not empty , and
2. the constant function 1 is a limit point of S.

P r o o f. As in Lemma 3.6, it is equivalent to find a special family of
subsets of ω.

Indeed, we shall construct a centred family {Aα : α ∈ c} such that for
each infinite T ⊂ ω, there is a γ ∈ c such that {T ∩ (ω \ Aα) : α ∈ c \ γ} is
also centred.

Having done so, we set S = {sn : n ∈ ω} with sn(α) = 1 if and only
if n ∈ Aα. We check that properties 1 and 2 of Lemma 3.1 hold. Since the
family of Aα’s is centred, it follows that the constant sequence ~1 ∈ 2c is a
limit point of S. Similarly, for each infinite T̃ ⊂ S, set T = {n : sn ∈ T̃}.
Let γ be such that {T \ Aα : α ∈ c \ γ} is centred. It follows then that⋂{cl({sn : n ∈ T \Aα}) : γ < α < c} is not empty, so fix any g ∈ 2c in this
intersection. For each α ≥ γ, g is a limit of {sn : n 6∈ Aα}, hence g(α) = 0.
Therefore g ∈ (2c)0.
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We construct the family {Aα : α ∈ c} by induction on α with the aid of
Kunen’s c× c-independent matrix ([9]) (similar to, but easier than, Bell and
Kunen’s [3] construction of an ultrafilter of π-character ≥ cf(c)). A family
{a(α, γ) : α ∈ R, γ ∈ c} is said to be an R× c-independent matrix if for each
α ∈ R and β, γ ∈ c, a(α, γ) ∩ a(α, β) is finite while for each finite H ⊂ R
and each function ϕ ∈ cH ,

⋂{a(α,ϕ(α)) : α ∈ H} is infinite. Kunen proved
in [9] that there is a c × c-independent matrix; let {a(α, β) : α, β ∈ c} be
such a matrix.

Fix an enumeration, {Tβ : β < c}, of [ω]ω. Suppose that α < c and
we have chosen %β ∈ c for each β < α and set Aβ = a(β, %β) so that
{Tξ ∩ (ω \Aβ) : β ∈ α \ ξ} is centred for each ξ < α. Note that {Aβ : β < α}
is centred because the matrix is independent.

For each ξ ≤ α and for each H ∈ [α \ ξ]<ω, choose g(ξ,H) ∈ c so that,
if possible,

Tξ ∩
⋂

ζ∈H
(ω \Aζ) ⊂ a(α, g(ξ,H)) .

Let %α be any member of c which is not equal to g(ξ,H) for any ξ ≤ α and
H ∈ [α \ ξ]<ω. We finish by verifying that, for each ξ ≤ α, {Tξ} ∪ {ω \Aβ :
ξ ≤ β ≤ α} is centred mod finite. If it were not, then there would be some
finite H ⊂ (α \ ξ) such that Tξ ∩

⋂
ζ∈H(ω \ Aζ) is disjoint (mod finite)

from ω \ Aα. Of course this means that a(α, %α) contains mod finite this
intersection. However, this contradicts the fact that a(α, g(ξ,H)) is almost
disjoint from a(α, %α) since, by induction, Tξ ∩

⋂
ζ∈H(ω \Aζ) is infinite.

As indicated, this section culminates with the following quite satisfactory
result.

Corollary 3.8. If c has cofinality greater than ω1, then (I) fails.

4. (I) does not imply CH. In the previous section we established that
(I) implies that c has cofinality ω1, and, by Corollary 3.5, (I) can fail even
if cf(c) is ω1. We now establish that there is a model of the failure of CH in
which (I) holds.

Theorem 4.1. It is consistent with the negation of CH that every sepa-
rable initially ω1-compact regular space is compact.

P r o o f. Consider the Bell–Kunen model constructed in [3]. In this model
of the failure of CH, the following property holds (which implies that every
ultrafilter on ω has π-character equal to ω1):

For each filter F on ω, there is a family {aα : α < ω1} of infinite subsets
of ω such that for each A ∈ F , there is a β < ω1 such that aα \ A is finite
for each α > β.
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The model is constructed by iteratively constructing models Mα (α <
ω1) of Martin’s Axiom in which Mα |= c = ωα+1. The final model M is the
union of these inner models. If F is a filter in the final model, then F ∩Mα

will be “diagonalized” by some aα in the model Mα+1, i.e. aα \ A is finite
for each A ∈ F ∩Mα. If A is any member of F , then A will appear in some
model Mβ and aα will be almost contained in A for all α > β.

Now suppose that X is an initially ω1-compact regular space which has
ω as a dense subset. If X is not compact, then let W be any open cover
which has no finite subcover. Since X is regular we may assume that no
finite subcollection of W has dense union. Let F be the following filter base
on ω: {

ω \
⋃
W ′ :W ′ ∈ [W]<ω

}
.

Let {aα : α < ω1} be the above mentioned converging π-base family for F .
For each α < ω1, there is an xα ∈ X such that xα is a limit point of aα
since X is countably compact. But now, we fix x ∈ X and we show that x
is not a complete accumulation point of {xα : α < ω1}. Let W ∈ W be a
neighbourhood of x and set A = ω \W . By the choice of the aα’s, there is
a β < ω1 such that xα ∈ A for all α ≥ β. Therefore W ∩ {xγ : γ ∈ ω1} ⊂
{xγ : γ < β}.
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