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Ordinary differential equations and descriptive
set theory: uniqueness and globality of

solutions of Cauchy problems in one dimension

by

Alessandro A n d r e t t a and Alberto M a r c o n e (Torino)

Abstract. We study some natural sets arising in the theory of ordinary differential
equations in one variable from the point of view of descriptive set theory and in particular
classify them within the Borel hierarchy. We prove that the set of Cauchy problems for
ordinary differential equations which have a unique solution is Π0

2-complete and that the
set of Cauchy problems which locally have a unique solution is Σ0

3-complete. We prove
that the set of Cauchy problems which have a global solution is Σ0

4-complete and that the
set of ordinary differential equations which have a global solution for every initial condition
is Π0

3-complete. We prove that the set of Cauchy problems for which both uniqueness and
globality hold is Π0

2-complete.

This paper deals with descriptive set-theoretic questions in the theory of
ordinary differential equations (ODEs). Descriptive set theory (DST, from
now on) is, roughly, the study of definable sets in Polish (i.e. separable
completely metrizable) spaces. Definable means here: being Fσ, Gδ, Borel,
analytic, or, more generally, belonging to a “well behaved” collection of sets.
The roots of this subject go back to the work of the analysts of the turn
of the century: Borel, Lebesgue, and Baire in France and Lusin, Suslin, and
Novikov in Russia. After the ’50s DST was revolutionized by the techniques
of mathematical logic: these allowed to solve long standing problems and
changed the perspective of the subject (see [7] and [4] for more on the
history and development of DST).

One of the main trends of current research (see [1] and Sections 23, 27,
33 and 37 of [5]) is the classification of natural sets arising in various parts
of analysis, topology, etc. A couple of clarifications are in order. To classify
here means to pin down the exact complexity of a given set: e.g. to show
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that a set A is Fσ but not Gδ, or that it is analytic (i.e. a continuous
image of a Borel set), but not Borel. The second clarification is about the
concept of being a natural set. This means that the set comes up in actual
mathematical practice, rather than being constructed in an ad hoc way—of
course, this has to do more with the sociology of mathematics than with
mathematics itself.

In this paper we study the complexity of the sets of all Cauchy problems
for ODEs that have a unique solution, and the ones that have a global
solution. (We think that both these sets are natural.) More precisely: given
a continuous function F : R2 → R and (x, y) ∈ R2, consider the following
Cauchy problem:

dϕ

dt
= F (t, ϕ(t)), ϕ(x) = y.

Here and below we denote by C(R2) the set of real-valued continuous func-
tions on R2 with the compact-open topology. Thus C(R2) is a Fréchet space.
Then the set U of (F, x, y) such that there exists a unique solution is a dense
Gδ in C(R2) × R2. Therefore U itself is a Polish space. The set U∀ of all
F ’s such that for every (x, y) ∈ R2 the solution is unique is also a dense
Gδ. (Both statements are true also in the case when F varies in Cc(R2), the
space of all functions constant at infinity, which is a Banach space; in this
case we denote by Uc and Uc

∀ these sets.) The set LUc of (F, x, y) such that
the solution is locally unique is Gδσ (i.e. Σ0

3). The set G of (F, x, y) such
that there exists a global (i.e. defined on all of R) solution is Fσδσ (i.e. Σ0

4).
The set G∀ of all F ’s such that for every (x, y) ∈ R2 there exists a global
solution is Fσδ (i.e. Π0

3). G∩U is Gδ both in C(R2)×R2 and in U ; similarly,
G∀ ∩ U∀ is Gδ both in C(R2) and in U∀.

It is worth noticing that the natural sets which appear for the first time
in the Borel hierarchy at the fourth level are quite rare (and are usually
Π0

4-complete), while there are no natural examples which appear for the
first time at the fifth level (see [5], Section 23). To the best of our knowledge
G is the first example of a natural set which is Σ0

4-complete (and thus Borel
but not Π0

4).
Since all the sets mentioned above are contained in a topological vector

space (C(R2), Cc(R2), or their product with R2) it is natural to ask whether
they inherit the vector space structure. It will follow from our results that
none of them (as well as their sections such as U(x,y), the set of elements
of C(R2) such that (F, x, y) ∈ U) does. Actually, it follows from standard
descriptive set-theoretic results (and from our classification results) that
none of them is even a group.

We will confine ourselves to ODEs in one dimension but it will follow
from our proofs that the results regarding uniqueness we obtain can be
extended without any effort to finite systems of ODEs, i.e. to ODEs in
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finite-dimensional Banach spaces. In contrast with this, the proofs of our
upper bounds for the complexity of G and G∀ rely heavily on the order
structure of R and hence admit no obvious generalizations to the finite-
dimensional case. Indeed, the analogues of G and G∀ in dimension two are
respectively Σ1

1-complete and Π1
1-complete and hence not Borel. These re-

sults will be proved in a forthcoming paper. Similarly, considering ODEs in
infinite-dimensional Banach spaces leads to several new difficulties (e.g. the
failure of the Cauchy/Peano existence theorem) which we will not tackle in
this paper.

Several papers have dealt with the uniqueness problem for regular ODEs
as well as ODEs in Banach spaces, equations with a non-continuous F , and
functional differential equations ([8], [6], [3]) from a viewpoint somewhat
similar to ours. The paper of Orlicz shows that Uc

∀ is comeager when we
restrict ourselves to bounded continuous F ’s. By inspecting the proof one
can see that it shows also that the set is Gδ dense. The other papers deal
with larger function spaces but they focus on Baire category and prove
only that the appropriate analogue of U∀ is a comeager set—it contains a
dense Gδ set. Our other results do not seem to have siblings in the existing
literature.

ODEs have been studied with the techniques of mathematical logic from
a different viewpoint by Simpson in [9]: the goal there was to classify the
Cauchy/Peano and the Ascoli–Arzelà theorems according to their axiomatic
strength.

We tried to make the paper accessible to both logicians and analysts.
In Section 1 we briefly introduce the terminology and techniques of DST
that will be used in the sequel. The reader who already knows the basics of
the subject can safely skip this section and refer back to it when needed. In
Section 2 we start to deal with ODEs by introducing some techniques and
proving some basic facts that will be used several times in the rest of the
paper. Sections 3, 4 and 5 study the complexity of sets related to three of
the basic properties of Cauchy problems for ODEs, respectively uniqueness
of solutions, local uniqueness of solutions and existence of solutions defined
on the whole real line.

1. Descriptive set theory. The purpose of this section is to get the
reader acquainted with some standard concepts and results of DST which
will be used in the rest of the paper. All the facts that will be quoted without
proof can be found in [5].

1.1. Polish spaces. A topological space X is Polish if it is separable and
completely metrizable, i.e. admits a compatible complete metric. For exam-
ple separable Banach spaces, metrizable compact spaces, countable discrete
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spaces are Polish. A subspace A of a Polish space X is Polish (with the rel-
ative topology) if and only if A is Gδ (i.e. a countable intersection of open
sets) in X. The class of Polish spaces is closed under countable products;
in particular, giving the discrete topology to 2 = {0, 1} and to N, the Can-
tor space C = 2N and the Baire space N = NN are Polish. The former is
homeomorphic to Cantor’s 1/3-set, the latter is homeomorphic to R \Q.

For X a topological Hausdorff space F(X) and K(X) are the collections
of all closed, resp. compact, subsets of X. We can endow F(X) with a
compact topology, the so-called Fell topology, which is generated by the sets
of the form

{F ∈ F(X) | F ∩K = ∅& F ∩ U1 6= ∅& . . .& F ∩ Un 6= ∅},
with K ∈ K(X) and U1, . . . , Un open in X. If X is locally compact and
second countable the Fell topology is Polish. If d is a compatible metric on
X we can endow F(X) \ {∅} with the Wijsman topology, i.e. the topology
generated by the maps F(X) \ {∅} → R, F 7→ d(x, F ), for x ∈ X. If d is
such that closed and bounded subsets are compact (e.g. if X = Rn with the
usual metric), then the Wijsman topology coincides with the Fell topology
restricted to F(X) \ {∅}. If X is compact with compatible metric d ≤ 1
the Fell topology on F(X) is the more familiar Vietoris topology on K(X),
generated by the Hausdorff distance

dH(K,L) = max(max{d(x,K) | x ∈ L},max{d(x, L) | x ∈ K}).
For more on the various topologies on F(X) see [2].
A basic way of classifying subsets of a Polish space (or even just of a

topological space) X according to their “smallness” is provided by Baire
category. A subset of X is nowhere dense if its closure has empty interior,
meager (or of the first category) if it is the countable union of nowhere dense
sets, non-meager (or of the second category) if it is not meager, comeager (or
residual) if its complement with respect to X is meager. The Baire category
theorem asserts that no open set in a Polish space is meager or, equivalently,
that the intersection of countably many dense open subsets of a Polish space
is dense.

Most Polish spaces we will deal with will also have some natural algebraic
structure compatible with the topology: mostly they are Fréchet spaces and
hence Polish groups. A subgroup of a Polish group which is Polish is nec-
essarily closed. Hence a Gδ subset of a Polish group which is not closed is
not a subgroup. Moreover, a non-meager Borel subgroup of a Polish group
is Polish and hence a non-meager Borel subset of a Polish group which is
not closed is not a subgroup.

1.2. The Borel hierarchy. For X a Polish space (or even just a topological
space) we can define the collection of Borel subsets of X, B(X). Although
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B(X) is a reasonable playground for most constructions in analysis, it lacks
an important closure property—it is not closed under Borel or even contin-
uous images. A subset A of a Polish space X is analytic if A = f(B) for
some Borel set B in a Polish space Y and some Borel function f : Y → X.
In fact, f can be taken to be continuous and B = Y . Analytic sets are
also called Suslin spaces or Σ1

1 sets; Σ1
1(X) is the collection of all analytic

subsets of X. Although Σ1
1(X) contains B(X), and is closed under Borel

images, countable intersections and countable unions, it is not closed under
complements. The complement of an analytic set is called coanalytic or Π1

1
and we have the class Π1

1(X) of all coanalytic subsets of X. Let us agree
that ∆1

1(X) = Σ1
1(X)∩Π1

1(X). A basic theorem of Lusin says that for X a
Polish space, B(X) = ∆1

1(X).
The elements of B(X) are classified in a hierarchy. Let Σ0

1(X) be the
collection of open sets of X, let Π0

1(X) be the collection of closed sets of
X, and let ∆0

1(X) be the collection of clopen sets of X, i.e. ∆0
1(X) =

Σ0
1(X) ∩Π0

1(X). Next, let

Σ0
n+1(X) =

{ ⋃

i∈N
Ai

∣∣∣ Ai ∈ Π0
n(X)

}
,

Π0
n+1(X) = {X \A | A ∈ Σ0

n+1(X)},
∆0
n+1(X) = Σ0

n+1(X) ∩Π0
n+1(X).

Thus Σ0
2(X) is just Fσ(X) (i.e. the collection of countable unions of closed

subsets of X), Π0
2(X) is Gδ(X), Σ0

3(X) is Gδσ(X), Π0
3(X) is Fσδ, and so on.

If X is Polish then ∆0
n(X) ⊆ Σ0

n(X),Π0
n(X) ⊆∆0

n+1(X). Moreover, if X is
uncountable the inclusions are proper. (If X is countable then every subset
is Σ0

2.) We should also point out that if X is Polish and uncountable, then
the classes Σ0

n(X), Π0
n(X), ∆0

n(X) do not exhaust B(X). In fact, Σ0
α(X),

Π0
α(X), ∆0

α(X) can be defined for every countable ordinal 1 ≤ α < ω1, so
that these classes form a hierarchy and B(X) =

⋃
α Σ0

α(X) =
⋃
α Π0

α(X) =⋃
α ∆0

α(X).
Now that we have defined this zoo of sets it is natural to seek a criterion

to establish that, say, a certain Borel subset A of a Polish space X is a true
Σ0
n set, i.e. it is Σ0

n but not Π0
n. In other words, we have to establish an upper

bound for the complexity of A and then show that no lower complexity is
possible. Computing the upper bound in most (but not all!) cases is a fairly
trivial matter and in any case can be achieved only by studying the original
definition of the set at hand and/or some equivalent definition. We now
turn to a powerful technique to establish lower bounds. Let Γ denote either
Σ0
n, or Π0

n, or Σ1
1, or Π1

1. An easy inspection shows that Γ is closed under
continuous preimages. We introduce the following terminology: for A ⊆ X,
B ⊆ Y , with X, Y Polish, we say that B is Wadge reducible to A (in symbols
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B ≤W A) if there is a continuous f : Y → X such that B = f−1(A). We
say that A ⊆ X is Γ-hard if for every Polish space Y and every B ∈ Γ(Y )
we have B ≤W A. If A is Γ-hard then X \A cannot be in Γ and hence Γ is
a lower bound for the complexity of A. If a Γ-hard set A ⊆ X happens to
be also in Γ(X) we say that A is Γ-complete. In this case we have pinned
down the complexity of A.

A very useful technique for showing that a set A ⊆ X (X Polish) is
Γ-hard is the following: choose a Polish space Y , a known Γ-complete set
B ⊆ Y and show that B ≤W A. To apply this technique we need an array
of examples of Γ-complete sets; the following list provides some examples
which will turn out to be useful in this paper. Details and proofs (together
with more examples) can be found in Section 23 of [5]. Sections 27 and 33
of the same book contain many examples of Σ1

1- and Π1
1-complete sets.

Examples 1.1. ∀∞n and ∃∞n abbreviate respectively “for all but finitely
many n” and “for infinitely many n”.

Q2 = {α ∈ C | ∀∞n α(n) = 0} is Σ0
2-complete;

N2 = {α ∈ C | ∃∞n α(n) = 0} is Π0
2-complete;

S3 = {α ∈ 2N×N | ∃n ∃∞m α(n,m) = 0} is Σ0
3-complete;

P3 = {α ∈ 2N×N | ∀n ∀∞m α(n,m) = 1} is Π0
3-complete;

S4 = {α ∈ 2N×N | ∀∞n ∀∞m α(n,m) = 0} is Σ0
4-complete;

`1 =
{

(xn) ∈ [0, 1]N
∣∣∣
∑

xn < +∞
}

is Σ0
2-complete.

If we are dealing with Fσ’s or Gδ’s we can also resort to the Baire
category theorem to prove Σ0

2- or Π0
2-completeness. Indeed, the intersection

of two dense Gδ’s is non-empty and thus if A and its complement X \A are
both dense A cannot be both Gδ and Fσ; establishing that one of the two
possibilities holds in this case will therefore rule out the other. Notice also
that an Fσ with dense complement is meager.

1.3. Sets of uniqueness. We will now review a few descriptive set-theo-
retic results that will be used in the sequel. The first theorem, in some sense,
motivated much of the present paper. For a proof see e.g. [5], p. 123.

Theorem 1.2 (Lusin). Suppose X and Y are Polish spaces and B ⊆
X × Y is Borel. Then U = {x ∈ X | ∃!y (x, y) ∈ B} ∈ Π1

1(X).

This result gives an upper bound on the complexity of U . Sharper upper
bounds can be obtained by putting restrictions on B. Let us call a space
Kσ if it is a countable union of compact sets. An important theorem by
Arsenin and Kunugui (see [5], p. 297) asserts that if for all y ∈ Y the
section By = {x ∈ X | (x, y) ∈ B} is Kσ, then projX(B) is Borel and hence
U is also Borel.
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We can gain even more control on the complexity of projX(B) and U if
we assume that Y itself is Kσ.

Lemma 1.3. Let X be Polish and Y metrizable and Kσ. If F ⊆ X × Y
is Σ0

2 then projX(F ) is also Σ0
2.

P r o o f. First suppose F is closed. Let Y =
⋃
nKn with Kn compact

and let Fn = F ∩ (X ×Kn). As projX(F ) =
⋃
n projX(Fn), it is enough to

show that each projX(Fn) is closed in X. Let xi ∈ projX(Fn) be such that
xi → x. Pick yi ∈ Kn such that (xi, yi) ∈ Fn. By compactness of Kn we can
find a subsequence (yik)k converging to some y ∈ Kn. By the closure of Fn
we have limk→∞(xik , yik) = (x, y) ∈ Fn, so x ∈ projX(Fn). Thus projX(Fn)
is closed.

The general case follows from the preceding case and from projX(
⋃
i Fi)

=
⋃
i projX(Fi).

The result is false if we replace “F is Σ0
2” with “F is Π0

2”: every Σ1
1

subset of X is the projection of a Π0
2 subset of X × Y , where Y is the

Cantor space.

Theorem 1.4. Let X and Y be Polish with Y Kσ. Let F ⊆ X × Y be
Σ0

2. Then U = {x ∈ X | ∃!y ∈ Y (x, y) ∈ F} is D2(Σ0
2), i.e. the difference

of two Σ0
2 sets. Moreover , if projX(F ) = X, then U is Π0

2.

P r o o f. Let

M = {x ∈ X | ∃y1, y2 ∈ Y [y1 6= y2 & (x, y1) ∈ F & (x, y2) ∈ F ]}.
Then M = projX(

⋃
ε∈Q+ Sε) where

Sε = {(x, y1, y2) ∈ X × Y 2 | d(y1, y2) ≥ ε& (x, y1) ∈ F & (x, y2) ∈ F}
and d is a compatible metric on Y . Y 2 is Kσ, being the product of two Kσ’s,
and Sε is Σ0

2 in X × Y 2. Therefore
⋃
ε∈Q+ Sε is Σ0

2. By Lemma 1.3 both M
and projX(F ) are in Σ0

2(X). Hence U = projX(F ) \M ∈ D2(Σ0
2)(X).

If projX(F ) = X then U = X \M ∈ Π0
2(X).

1.4. Functional Polish spaces. In order to study ordinary differential
equations with the techniques of descriptive set theory we will need to con-
sider spaces of functions defined on R2. These spaces are obviously inter-
esting in their own right and in a forthcoming paper we will prove in detail
and in greater generality some of the facts we just mention here.

For every n let Kn = [−n, n] × [−n, n], so that every compact subset
of R2 is contained in some Kn. We define a metric on C(R2), the set of
continuous functions from R2 to R, by setting, for each F,G ∈ C(R2) and
n ∈ N,

dn(F,G) =
‖(F −G)¹Kn‖∞

1 + ‖(F −G)¹Kn‖∞ ,
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so that dn(F,G) < 1, and then defining

d(F,G) =
∞∑
n=1

dn(F,G)
2n

.

This metric induces the compact-open topology : limk→∞ Fk = F if and only
if Fk converges to F uniformly on each Kn and hence on every compact
subset of X. It is straightforward to check that C(R2) equipped with this
metric is a Polish space.

For various purposes different subspaces of C(R2) will turn out to be
useful; in general, they are not Polish with the topology they inherit from
C(R2), but some of them are Polish with appropriate topologies which ex-
ploit their peculiarities.

For example, let C00(R2) = {F ∈ C(R2) | F has compact support}
equipped with the sup metric and let C0(R2) be the completion of C00(R2).
C0(R2) is Polish (with the sup metric as a complete compatible metric) and
its elements are the functions vanishing at infinity .

C00(R2) is Σ0
2-complete both as a subset of C(R2) and as a subset of

C0(R2), while C0(R2) is Π0
3-complete as a subset of C(R2).

A generalization of C0(R2) is given by the following definition.

Definition 1.5. Let Cc(R2) be the set of all F ∈ C(R2) such that there
exists L ∈ R such that for every ε > 0 there exists n such that for every
(t, u) ∈ R2 \Kn we have |F (t, u)−L| < ε. The elements of Cc(R2) are called
functions constant at infinity .

The sup metric can be used to turn Cc(R2) into a Polish space (homeo-
morphic to C0(R2)× R via the obvious bijection). Cc(R2) has also another
natural topology, namely the one inherited from C(R2), which is not Polish
because Cc(R2) is Π0

3-complete as a subset of C(R2).
Another interesting subset of C(R2) consists of the functions satisfying

the Lipschitz condition. This set is particularly interesting when studying
functions that appear in ordinary differential equations because the Lipschitz
condition is the best known condition that insures the uniqueness of the
solution of these equations. With this in mind we will limit ourselves to the
Lipschitz condition in the second variable.

Definition 1.6. Let Lip2 be the set of functions in C(R2) such that
there exists L such that for all t, u0, u1 ∈ R we have |F (t, u0)− F (t, u1)| <
L|u0 − u1|.

Lip2 is Σ0
2-complete as a subset of C(R2). Moreover, C00(R2), C0(R2),

Cc(R2), and Lip2 are all meager in C(R2).
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2. Generalities on ordinary differential equations. In this section
we begin the study of ordinary differential equations. A Cauchy problem is
a triple (F, x, y) ∈ C(R2)× R2 which gives the initial value problem

ϕ′(t) =
dϕ

dt
= F (t, ϕ(t)), ϕ(x) = y.

The Cauchy/Peano theorem asserts that this problem always has a local
solution (i.e. a solution ϕ defined in some neighborhood of x). Moreover,
if F is bounded (and hence, in particular, if it belongs to Cc(R2), which
has the advantage of being Polish with the sup metric) the Cauchy problem
always has a global solution, i.e. a solution defined on the whole real line.

We first consider Cauchy problems with F ∈ Cc(R2). The solutions of
this kind of ordinary differential equations are continuously differentiable
functions, i.e. elements of C1(R); this is obviously a subspace of C(R) (en-
dowed with the compact-open topology) and is Π0

3-complete (see [5], p. 183).
We could easily give C1(R) a Polish topology, but this will not be needed.

Definition 2.1. Let Sc be the set of all (F, x, y, ϕ) ∈ Cc(R2)×R2×C(R)
such that

ϕ ∈ C1(R) & ∀t ∈ R [ϕ′(t) = F (t, ϕ(t))] & ϕ(x) = y.

If F ∈ Cc(R2) and (x, y) ∈ R2 let

Sc
F,(x,y) = {ϕ ∈ C(R) | (F, x, y, ϕ) ∈ Sc}.

In other words, Sc
F,(x,y) is the set of all solutions of the Cauchy problem

given by (F, x, y).

The Cauchy/Peano theorem implies that for every F ∈ Cc(R2) and
(x, y) ∈ R2 we have Sc

F,(x,y) 6= ∅. In general, there is no uniqueness of the so-
lution of the Cauchy problem, and the classical counterexample (which will
be exploited in what follows) is given by any function F ∈ Cc(R2) such that
in a neighborhood of (0, 0) we have F (t, u) =

√
|u|. For such an F , Sc

F,(0,0)

includes functions ϕ that locally satisfy either ϕ(t) = 0 or ϕ(t) = 1
4 t

2.
In general, if Sc

F,(x,y) is not a singleton then it has the cardinality of the
continuum.

The following lemma is our version of the so-called continuous depen-
dence from parameters of solutions of ODEs.

Lemma 2.2. Sc is closed.

P r o o f. Suppose {(Fn, xn, yn, ϕn)}n is a sequence of elements of Sc and

lim
n→∞

(Fn, xn, yn, ϕn) = (F, x, y, ϕ).

To check that ϕ satisfies ϕ′(t) = F (t, ϕ(t)) fix t and work in the interval
It = [t − 1, t + 1]. The ϕn’s are all C1 on It and their derivatives, being
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Fn(t, ϕn(t)), converge uniformly on It. Therefore ϕ is also C1 on It and
limn→∞ ϕ′n = ϕ′. Given ε > 0, since F is uniformly continuous on Qt =
It × [−K − 1,K + 1], where K = ‖ϕ¹It‖∞, there exists δ > 0 such that
|b − c| < δ ⇒ |F (a, b) − F (a, c)| < ε/2 for every (a, b), (a, c) ∈ Qt. If n is
sufficiently large we have both ‖Fn−F‖∞ < ε/2 and ‖(ϕn−ϕ)¹It‖∞ < δ. For
such an n, the triangle inequality implies that |Fn(t, ϕn(t))−F (t, ϕ(t))| < ε,
for every t ∈ It. This yields

ϕ′(t) = lim
n→∞

ϕ′n(t) = lim
n→∞

Fn(t, ϕn(t)) = F (t, ϕ(t)).

To show that ϕ(x) = y, observe that ϕ is uniformly continuous and that
on some neighborhood of x the ϕn’s converge uniformly to ϕ. Hence for
every ε > 0 if n is sufficiently large we see that |yn − y|, |ϕn(xn) − ϕ(xn)|,
and |ϕ(xn) − ϕ(x)| are all smaller than ε/3. Using the triangle inequality
and ϕn(xn) = yn this yields |ϕ(x) − y| < ε and completes the proof that
(F, x, y, ϕ) ∈ Sc.

It is not true that for every F ∈ C(R2) and (x, y) ∈ R2 there exists
a global solution of the Cauchy problem given by (F, x, y). In fact, in this
case the Cauchy/Peano theorem asserts only the existence of a local solution
and the classical counterexample is F (t, u) = u2, which admits the global
solution ϕ(t) = 0 only when y = 0, while for other initial conditions it has
non-global solutions of the form ϕ(t) = −(t+ c)−1.

A solution of a Cauchy problem is called non-extendible if its domain is
connected and there is no solution properly extending it and having con-
nected domain. An immediate consequence of the Cauchy/Peano theorem is
that the domain of a non-extendible solution is an open interval. The conti-
nuity of F implies that if a ∈ R is a limit of the domain of the non-extendible
solution ϕ, then the vertical line t = a is an asymptote for the graph of ϕ.
This entails that the graph of any non-extendible solution is a closed subset
of R2, i.e. an element of F(R2). Hence we can look for solutions of a Cauchy
problem in F(R2) endowed with the Fell topology.

Definition 2.3. Let C1
par(R) be the set of all C1 functions ϕ defined on

an open non-empty interval (a, b) such that if a > −∞ then limt→a+ ϕ(t) =
±∞ and if b < +∞ then limt→b− ϕ(t) = ±∞. C1

par(R) is endowed with the
topology obtained by identifying ϕ with its graph in F(R2).

The “par” in C1
par(R) stands for “partial”.

Definition 2.4. Let S be the set of all (F, x, y, ϕ) ∈ C(R2)×R2×C1
par(R)

such that

∀t ∈ dom(ϕ) [ϕ′(t) = F (t, ϕ(t))] & x ∈ dom(ϕ) & ϕ(x) = y.
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If F ∈ C(R2) and (x, y) ∈ R2 let

SF,(x,y) = {ϕ ∈ C1
par(R) | (F, x, y, ϕ) ∈ S}.

In other words, SF,(x,y) is the set of all non-extendible solutions of the
Cauchy problem (F, x, y).

The following lemma will turn out to be useful in studying S.

Lemma 2.5. Let {(Fn, xn, yn)}n be a sequence of elements of C(R2)×R2

which converges to (F, x, y). For every n let ϕn ∈ SFn,(xn,yn). Then for all
but finitely many n we have x ∈ dom(ϕn). Moreover , limn→∞ ϕn(x) = y.

P r o o f. Suppose, towards a contradiction, that for infinitely many n,
x 6∈ dom(ϕn); we can extract a subsequence so that x 6∈ dom(ϕn) for every n.
Since either infinitely often xn > x or infinitely often xn < x we can suppose
the first possibility holds (the other can be dealt with symmetrically); by
extracting a subsequence we can assume that for every n, xn > x. This
implies that there exists an such that x ≤ an < xn and t = an is a vertical
asymptote for ϕn. By refining our sequence we may assume that for every n,

lim
t→an+

ϕn(t) = −∞ and xn − x ≤ 2−2n.

(The case limt→an+ ϕn(t) = +∞ is analogous.)
Let zn be such that an < zn < xn, ϕn(zn) = yn − 2−n, and ϕn(t) >

yn − 2−n if zn < t ≤ xn. Let un be such that zn < un ≤ xn, yn ≤ ϕn(un) ≤
yn+ 2−n, and ϕn(t) < yn+ 2−n if zn < t < un. Since ϕn is C1, by the Mean
Value Theorem, there exists wn such that zn ≤ wn ≤ un and

ϕ′n(wn) =
ϕn(un)− ϕn(zn)

un − zn ≥ yn − (yn − 2−n)
xn − x ≥ 2−n

2−2n = 2n

(we used x ≤ an ≤ zn < un ≤ xn and xn−x ≤ 2−2n). Hence (using the fact
that ϕn ∈ SFn,(xn,yn)) we have

Fn(wn, ϕn(wn)) = ϕ′n(wn) ≥ 2n.

Therefore limn→∞ Fn(wn, ϕn(wn)) = +∞.
Since |yn − ϕn(wn)| ≤ 2−n and x < wn ≤ xn, we have {(wn, ϕn(wn))}n

→ (x, y). This and Fn → F imply that limn→∞ Fn(wn, ϕn(wn)) = F (x, y),
contradicting what was shown above, and proving the first part of the
lemma.

We can now suppose that ϕn(x) is defined for every n and prove the
second part of the lemma similarly. Again we suppose that xn > x for every
n. Assume towards a contradiction that the sequence {ϕn(x)}n does not
converge to y. Then for some subsequence and some ε > 0 we can assume
that for all n, ϕn(x) ≤ y − ε (or the symmetric case with ≥ and +) and
yn > y − ε/2. Let zn be such that ϕn(zn) = y − ε and ϕn(t) > y − ε if
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zn < t ≤ xn. As above (using the appropriate un) there exists wn such that
ϕn(wn) ≤ y and

Fn(wn, ϕn(wn)) = ϕ′n(wn) ≥ yn − ϕn(zn)
xn − zn ≥ ε

2(xn − x)
.

Therefore limn→∞ Fn(wn, ϕn(wn)) = +∞ holds also in this case.
Obviously, wn → x, but this time it may not be the case that ϕn(wn)→

y. We can reach a contradiction anyway by noticing that y−ε ≤ ϕn(wn) ≤ y
and hence the sequence {ϕn(wn)}n has an accumulation point.

Lemma 2.6. S is closed in C(R2)× R2 × C1
par(R).

P r o o f. Suppose {(Fn, xn, yn, ϕn)}n is a sequence of elements of S such
that

lim
n→∞

(Fn, xn, yn, ϕn) = (F, x, y, ϕ)

within C(R2) × R2 × C1
par(R). By Lemma 2.5 we may assume that x ∈

dom(ϕn) for every n and that limn→∞ ϕn(x) = y. Denote by Γ the graph
of ϕ and by Γn the graph of ϕn; these are elements of F(R2).

If t ∈ dom(ϕ) then for every ε > 0 we see that Γ intersects the open ball
of center (t, ϕ(t)) and radius ε. Since Γn → Γ in F(R2), for all sufficiently
large n’s, Γn, has non-empty intersection with the same open ball, i.e. there
exists tn ∈ dom(ϕn) such that the distance between (tn, ϕn(tn)) and (t, ϕ(t))
is less than ε. In other words, limn→∞(tn, ϕn(tn)) = (t, ϕ(t)). By Lemma
2.5 this entails that for all but finitely many n’s, t ∈ dom(ϕn) and also that
limn→∞ ϕn(t) = ϕ(t).

In particular, when t = x we have ϕ(x) = limn→∞ ϕn(x) = y and hence
ϕ satisfies the initial condition (x, y).

Now we need to check that ϕ′(t) = F (t, ϕ(t)) for every t ∈ dom(ϕ).
To this end it suffices to restrict ourselves to some compact set and repeat
the argument used in the proof of Lemma 2.2. Let ε > 0 be such that
It = [t − ε, t + ε] ⊂ dom(ϕ) and let Qt = {(r, u) | r ∈ It & |ϕ(r) − u| ≤ 1}.
Qt is compact and for all but finitely many n’s the graph of ϕn restricted
to It is contained in Qt.

The previous lemma is not entirely satisfactory because C(R2) × R2 ×
C1

par(R) is not a Polish space. By identifying a function with its graph, S
can be also viewed as a subset of the Polish space C(R2) × R2 × F(R2);
in this space, S is not closed, but the elements of its closure which do not
belong to it are close to being elements of S, not only topologically but also
from the point of view of the corresponding ODE. Indeed, we are now going
to show that if (F, x, y, Γ ) belongs to the closure of S but not to S then Γ
is the graph of a C1 function whose domain is not connected, but which is
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otherwise a non-extendible solution of the Cauchy problem given by F and
(x, y).

Lemma 2.7. Let {(Fn, xn, yn, ϕn)}n be a sequence of elements of S and
let Γn be the graph of ϕn. If

lim
n→∞

(Fn, xn, yn, Γn) = (F, x, y, Γ )

within C(R2) × R2 × F(R2) then (x, y) ∈ Γ , Γ is the graph of a function
ϕ, and on each connected component of its domain ϕ is a non-extendible
solution of the ODE ϕ′(t) = F (t, ϕ(t)).

P r o o f. First of all notice that (x, y) ∈ Γ follows immediately from the
fact that (xn, yn) ∈ Γn for each n.

Then we need to show that Γ is the graph of a function, i.e. that for each
t there exists at most one u such that (t, u) ∈ Γ . Let u1 and u2 be such that
(t, u1), (t, u2) ∈ Γ . Since Γn → Γ in F(R2), we may assume that for every n
there exist t1n and t2n such that the distance between (tin, ϕn(tin)) and (t, ui)
is less than 2−n. Hence (Fn, tin, ϕn(tin)) converges to (F, t, ui). Lemma 2.5
implies limn→∞ ϕn(t) = ui, which entails u1 = u2.

Let ϕ be the function with graph Γ . The continuity of ϕ can be estab-
lished by an argument similar to the one used in the preceding paragraph.
To prove that ϕ is C1 and satisfies ϕ′(t) = F (t, ϕ(t)) for every t ∈ dom(ϕ)
we can argue exactly as in the proof of Lemma 2.2 (indeed, the arguments
there were of local character).

To prove that on each connected component of its domain ϕ is a non-
extendible solution it suffices to show that these connected components are
indeed open, since it will then follow from the closedness of Γ that at the
endpoints we have a vertical asymptote. Let t ∈ dom(ϕ). By Lemma 2.5 for
all but finitely many n we have t ∈ dom(ϕn) and limn→∞ ϕn(t) = ϕ(t). For
every n such that t ∈ dom(ϕn) let εn be maximal such that (t−εn, t+εn) ⊆
dom(ϕn). If ε = lim inf εn then clearly (t− ε, t+ ε) ⊆ dom(ϕ) and therefore
it suffices to show that ε > 0. If ε = 0, for the sake of simplicity suppose
that for every n, lims→εn− ϕn(t + s) = −∞ and argue for a contradiction
using the continuity of F , as in the proof of Lemma 2.5.

The following lemma will be the basic tool for showing the Wadge re-
ducibility of certain sets of sequences to sets of Cauchy problems.

Lemma 2.8. Let x0, x1, y0, y1 ∈ R with x0 < x1 and y0 < y1 and let
M > 0. There exists a continuous map C → C([x0, x1]× [y0, y1]), β 7→ Gβ ,
such that :

(1) Gβ(t, u) = 0 whenever (t, u) belongs to the boundary of the rectangle
[x0, x1]× [y0, y1];

(2) 0 ≤ Gβ(t, u) ≤M for every (t, u) ∈ [x0, x1]× [y0, y1];
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(3) the constant function ϕ(t) = y0 is a solution to (Gβ , x0, y0) on the
interval [x0, x1]; any other solution ϕ of this Cauchy problem on the right
of x0 is defined on the whole interval [x0, x1] and satisfies ϕ(x1) > y0;

(4) (Gβ , x0, y0) has a unique solution if and only if β ∈ N2 (see 1.1).

P r o o f. It suffices to prove the result for x0 = y0 = 0 and x1 = y1 =
M = 1, since an easy rescaling leads to the general result.

Let g : (0, 1]→ R be a C1 function such that:

(a) g(t) ≥ (
√
t )−1 and g(2−n) =

√
2n;

(b) g′(2−n) = − 1
2

√
23n;

(c)
T2−n
2−n−1 g(t) dt = 1.

For every β ∈ C we define fβ ∈ C([0, 1]) by

fβ(t) =





0 if t = 0,√
t if 2−(n+1) < t ≤ 2−n and β(n) = 1,

1/g(t) if 2−(n+1) < t ≤ 2−n and β(n) = 0,

so that 0 ≤ fβ(t) ≤ √t for every t ∈ [0, 1]. By condition (a) we see that for
every β ∈ C, fβ is continuous and that the map C → C([0, 1]), β 7→ fβ , is
continuous. By condition (b), fβ is C1 on the interval (0, 1]. Define Gβ ∈
C([0, 1]2) by setting Gβ(t, u) = fβ(u). The map C → C([0, 1]2), β 7→ Gβ is
continuous and condition (2) holds.

(3) holds because ϕ(t) = 0 is a solution of the differential equation for
every β ∈ C. If ϕ is a non-zero solution then, since 0 ≤ Gβ ≤ 1, ϕ is non-
decreasing and satisfies ϕ(t) ≤ t. Hence ϕ is defined on [0, 1] and ϕ(1) > 0
holds.

To check that (4) holds as well, notice that as
T1
0 dt/
√
t converges, con-

dition (c) above implies that for every β ∈ C,
1\
0

dt

fβ(t)
< +∞⇔

∑
n

2−n\
2−n−1

dt

fβ(t)
< +∞

⇔
∑

n, β(n)=1

2−n\
2−n−1

dt√
t

+
∑

n, β(n)=0

2−n\
2−n−1

g(t) dt < +∞

⇔ ∀∞n β(n) = 1.

Therefore
1\
0

dt

fβ(t)
= +∞⇔ β ∈ N2.

Thus to establish the first part of the lemma it suffices to show that the
non-uniqueness of the solution of ϕ′(t) = Gβ(t, ϕ(t)) with initial condition
ϕ(0) = 0 is equivalent to the convergence of the integral

T1
0 dt/fβ(t).
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Notice that if the equation has solutions different from ϕ(t) = 0 then,
since Gβ does not depend on the first variable and is positive, there exists
at least one solution such that ϕ(t) > 0 whenever t > 0. For this ϕ we have
ϕ′(t)/fβ(ϕ(t)) = 1 if t > 0 and hence

ϕ(1)\
0

dt

fβ(t)
=

1\
0

ϕ′(s)
fβ(ϕ(s))

ds = 1,

which shows that
T1
0 dt/fβ(t) converges. For the other direction supposeT1

0 dt/fβ(t) converges and let h(y) =
Ty
0 dt/fβ(t); this is a strictly increas-

ing function and hence it has an inverse ϕ(t) which is also strictly increasing
and satisfies ϕ(0) = 0. Moreover, ϕ′(t) = fβ(ϕ(t)) = Gβ(t, ϕ(t)) and hence
ϕ is a non-zero solution of the differential equation.

To verify (1) notice that our construction only ensures Gβ = 0 on
the lower side of the square. If we apply this construction to the square
[1/3, 2/3]× [0, 1/3] we can use the area between the two squares as a “buffer
zone” where Gβ is defined to be Lipschitz in the second variable, so that
(4) still holds. This can easily be done preserving the continuity both of Gβ
itself and of the map β 7→ Gβ .

3. Cauchy problems with a unique solution. Given a Cauchy prob-
lem (F, x, y) we say that (x, y) is a bifurcation point if and only if for every
ε > 0 there exist two solutions to (F, x, y) going through (x, y) which differ
at some point of (x− ε, x+ ε).

3.1. Uniqueness in Cc(R2).

Definition 3.1. Let
Uc = {(F, x, y) ∈ Cc(R2)× R2 | ∃!ϕ (ϕ ∈ Sc

F,(x,y))},
Mc = Cc(R2)× R2 \ Uc;

i.e. Uc is the set of Cauchy problems for which there is a unique solution,
and Mc is its complement.

Theorem 3.2. Uc is Π0
2-complete.

P r o o f. We show that Uc is Π0
2 by showing that Mc is Σ0

2. We have

Mc =
⋃

ε∈Q+

⋃

q∈Q
Dq,ε,

where

Dq,ε = {(F, x, y) | ∃ϕ1, ϕ2 ∈ Sc
F,(x,y) |ϕ1(q)− ϕ2(q)| ≥ ε}.

Thus it suffices to show that Dq,ε is closed. So suppose that {(Fn, xn, yn)}n
is a sequence of elements of Dq,ε which converges to some (F, x, y). We need
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to show that (F, x, y) ∈ Dq,ε. For every n there exist ϕn1 , ϕ
n
2 ∈ Sc

Fn,(xn,yn)
such that |ϕn1 (q)− ϕn2 (q)| ≥ ε. By throwing away finitely many elements of
the sequence we can assume that ‖F −Fn‖∞ < 1 and |x− xn|, |y− yn| < 1.
Therefore the ϕni ’s are all C1 functions with derivative bounded by ‖F‖∞+1
and hence they are equicontinuous. They are also pointwise bounded because
|ϕni (t)−y| ≤ |t−x|(‖F‖∞+1). By applying twice the Ascoli–Arzelà theorem
we can assume that there exist ϕ1 and ϕ2 such that limn→∞ ϕni = ϕi for
i = 1, 2. Clearly, |ϕ1(q)− ϕ2(q)| ≥ ε and ϕ1, ϕ2 ∈ Sc

F,(x,y) by the closedness
of Sc (Lemma 2.2).

We prove that Uc is Π0
2-hard by showing that N2 (see 1.1) is Wadge

reducible to Uc by using the technique of Lemma 2.8. It suffices to take
x0 = y0 = 0, x1 = y1 = 1, M = 1 and map β ∈ C to Fβ ∈ Cc(R2) which
extends Gβ and is zero outside the square [0, 1]2. Clearly, β 7→ (Fβ , 0, 0) is
continuous and hence N2 ≤W Uc.

Corollary 3.3. Uc is comeager in Cc(R2)× R2.

P r o o f. Uc is a dense Gδ as it contains all (F, x, y) with F ∈ Lip2.

Corollary 3.4. Uc is not a group under the operation of addition and
hence not a vector space.

P r o o f. Cc(R2) × R2 = G with the operation of addition is a Polish
group. Since Uc ⊂ G is Π0

2 (i.e. Gδ) but not closed it is not a subgroup.

By inspecting the proof of Theorem 3.2 we can notice that we have also
proved:

Theorem 3.5. For every (x, y) ∈ R2, Uc
(x,y) = {F ∈ Cc(R2) | ∃!ϕ (ϕ ∈

Sc
F,(x,y))} is Π0

2-complete.

Hence Corollaries 3.3 and 3.4 hold also with Uc
(x,y) in place of Uc; in

particular, for every (x, y) ∈ R2, Uc
(x,y) is not a vector space.

We now move on to study equations that have a unique solution every-
where.

Definition 3.6. Let

Uc
∀ = {F ∈ Cc(R2) | ∀(x, y) ∈ R2 (F, x, y) ∈ Uc},

Mc
∃ = Cc(R2) \ Uc

∀ = {F ∈ Cc(R2) | ∃(x, y) ∈ R2 (F, x, y) ∈Mc}.
Theorem 3.7. Uc

∀ is Π0
2-complete.

P r o o f. To see that Uc
∀ is Π0

2 it suffices to show that Mc
∃ is Σ0

2. This
follows at once from Theorem 3.2 and Lemma 1.3 by noticing that R2 is Kσ

and Mc
∃ = projCc(R2)(Mc).
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To see that Uc
∀ is Π0

2-hard inspect the second part of the proof of Theorem
3.2: notice that (Fβ , 0, 0) ∈ Uc implies (Fβ , x, y) ∈ Uc for every (x, y) ∈ R2.
Hence Fβ ∈ Uc

∀ if and only if (Fβ , 0, 0) ∈ Uc if and only if β ∈ N2.

The following corollaries can be obtained from Theorem 3.7 exactly as
Corollaries 3.3 and 3.4 have been obtained from Theorem 3.2.

Corollary 3.8 (Orlicz [8]). Uc
∀ is comeager in Cc(R2).

Corollary 3.9. Uc
∀ is not a group under the operation of addition and

hence not a vector space.

We have Lip2 ∩ Cc(R2) ⊂ Uc
∀ and we know that the two sets, as already

noticed by Orlicz [8], are quite far apart from the point of view of Baire
category: Lip2 ∩ Cc(R2) is meager while Uc

∀ is comeager. Still, the next
theorem asserts that we cannot find a ∆0

2 set containing the former and
contained in the latter. In general, if X is Polish, Γ some class of sets and
A,B ⊆ X are disjoint, we say that A and B are Γ-inseparable if there is no
C ∈ Γ(X) with A ⊆ C and B ∩ C = ∅. For any n > 1 there exist disjoint
Σ0
n sets which are ∆0

n-inseparable (see [5], Theorem 22.16); the following
theorem exhibits an example of this phenomenon involving natural sets.

Theorem 3.10. Lip2 ∩ Cc(R2) and Mc
∃ are ∆0

2-inseparable.

P r o o f. Lip2 ∩ Cc(R2) is dense in Cc(R2) and we claim that Mc
∃ is also

dense. It is easy to see that for every (x, y) ∈ R2 and every z ∈ R there exists
G(x,y),z ∈ Cc(R2) such that G(x,y),z(x, y) = z and (G(x,y),z, x, y) ∈ Mc.
Therefore for any F ∈ Cc(R2) we can change F in a neighborhood of (0, 0)
so that it coincides with G(0,0),F (0,0) there; the functions F̃ obtained this
way are such that (F̃ , 0, 0) ∈Mc and they can be as close as we wish to F .

Thus if C ∈ ∆0
2(Cc(R2)) contains Lip2 ∩ Cc(R2) and is disjoint from

Mc
∃, both C and its complement are dense Gδ, violating the Baire category

theorem.

3.2. Uniqueness in C(R2). When F ∈ C(R2), uniqueness of solutions of
Cauchy problems means obviously uniqueness of non-extendible solutions.

Definition 3.11. Let

U = {(F, x, y) ∈ C(R2)× R2 | ∃!ϕ ∈ C1
par(R) (ϕ ∈ SF,(x,y))};

M = C(R2)× R2 \ U .
Theorem 3.12. U is Π0

2-complete.

P r o o f. We show that U is Π0
2 by showing thatM is Σ0

2. For any q ∈ Q,
ε ∈ Q+ and M ∈ N let DM

q,ε be the set of all (F, x, y) ∈ C(R2) × R2 such
that there exist ϕ1, ϕ2 ∈ SF,(x,y) such that
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q ∈ dom(ϕ1) ∩ dom(ϕ2) & |ϕ1(q)− ϕ2(q)| ≥ ε
& ‖ϕ1¹[x, q]‖∞, ‖ϕ2¹[x, q]‖∞ ≤M

where if q ≤ x we take [x, q] to mean the interval [q, x].
Then we see that (F, x, y) ∈M is equivalent to

∃q ∈ Q ∃ε ∈ Q+ ∃M ∈ N (F, x, y) ∈ DM
q,ε

and it suffices to show that DM
q,ε is closed.

To see this suppose {(Fn, xn, yn)}n is a sequence of elements of DM
q,ε

converging to some (F, x, y). We need to show that (F, x, y) ∈ DM
q,ε.

Either for infinitely many n, q < xn or for infinitely many n, q > xn and
hence we may assume that the same case holds for every n: for definiteness
say that q > xn. For every n there exist ϕn1 , ϕ

n
2 ∈ SFn,(xn,yn) such that

|ϕn1 (q)− ϕn2 (q)| ≥ ε and ‖ϕni ¹[x, q]‖∞ ≤M for every i = 1, 2.
By applying Lemma 2.5 twice we may assume that for every n we have

x ∈ dom(ϕn1 ) ∩ dom(ϕn2 ) and that limn→∞ ϕni (x) = y for i = 1, 2.
Since F(R2) is compact we can assume that ϕni → Γi for i = 1, 2. By

Lemma 2.7, Γi is the graph of a function ϕ∗i and, since limn→∞ ϕni (x) = y,
x ∈ dom(ϕ∗i ). Let ϕi be the restriction of ϕ∗i to the connected component
of its domain which contains x. Since ‖ϕni ¹[x, q]‖∞ ≤ M for every n, we
also have [x, q] ⊂ dom(ϕi) and ‖ϕi¹[x, q]‖∞ ≤ M . |ϕ∗i (q) − ϕ∗2(q)| ≥ ε is
immediate and completes the proof that (F, x, y) ∈ DM

q,ε.
The second part of the proof of Theorem 3.2 shows also that U is Π0

2-
hard. In fact, the map used there has range contained in the set of functions
with support on the square [0, 1]2; for these functions the topology of C(R2)
coincides with that of Cc(R2) and hence the map β 7→ Fβ is continuous also
from C to C(R2).

The following corollary can be obtained from Theorem 3.12 exactly as
Corollaries 3.3 and 3.4 have been obtained from Theorem 3.2.

Corollary 3.13. U is comeager in C(R2)×R2. U is not a group under
the operation of addition and hence not a vector space.

Also in this case by inspecting the proof of Theorem 3.12 we can notice
that we have also proved:

Theorem 3.14. For every (x, y) ∈ R2, U(x,y) = {F ∈ Cc(R2) | ∃!ϕ (ϕ ∈
SF,(x,y))} is Π0

2-complete.

Hence Corollary 3.13 holds also with U(x,y) in place of U ; in particular,
for every (x, y) ∈ R2, U(x,y) is not a vector space.

Moreover, if U∀ = {F ∈ C(R2) | ∀(x, y) ∈ R2 (F, x, y) ∈ U} and M∃ =
C(R2) \ U∀ we can obtain the following results exactly as we obtained 3.7
through 3.10.
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Theorem 3.15. U∀ is Π0
2-complete.

Corollary 3.16. U∀ is comeager in C(R2). U∀ is not a group under
the operation of addition and hence not a vector space.

Theorem 3.17. Lip2 and M∃ are ∆0
2-inseparable.

4. Cauchy problems with a locally unique solution. A problem
connected with that of uniqueness is that of local uniqueness.

Definition 4.1. Let LUc be the set of all (F, x, y) ∈ Cc(R2) × R2 such
that

∃ε > 0 ∀ϕ,ψ ∈ Sc
F,(x,y) ∀t (|t− x| < ε⇒ ϕ(t) = ψ(t)).

In other words, (F, x, y) ∈ LUc if and only if (x, y) is not a bifurcation point
for the Cauchy problem (F, x, y).

Notice that our restriction to Cc(R2) in this case does not detract from
generality: in fact, as the name suggests, when studying local uniqueness
only the “local” behavior of F around (x, y) is relevant and thus any F ∈
C(R2) can be replaced by a G ∈ Cc(R2) which coincides with F in a neigh-
borhood of (x, y).

Theorem 4.2. LUc is Σ0
3-complete.

P r o o f. (F, x, y) ∈ LUc is equivalent to

∃ε ∈ Q+ ∀δ ∈ Q+ ∀q ∈ Q (|q − x| < ε⇒ (F, x, y) 6∈ Dq,δ),

where Dq,δ has been defined in the first part of the proof of Theorem 3.2.
In that proof we showed that Dq,δ is closed and hence LUc is Σ0

3.
To show that LUc is Σ0

3-hard we will prove that S′3 ≤W LUc where
S′3 = {α ∈ 2N×N | ∀∞n ∃∞m α(n,m) = 0}. This is not one of the standard
Σ0

3-complete sets but is a variant of S3 (see 1.1) which can be easily Wadge
reduced to it.

If α ∈ 2N×N we need to define Fα ∈ Cc(R2). We pick an’s and bn’s
such that 0 < bn+1 < an < bn < 1 and lim an = lim bn = 0. Let Tn =
[an, bn] × [0, 1]. We define Fα = 0 outside

⋃
n Tn. For every n we denote

by βn the element of C defined by βn(m) = α(n,m). By Lemma 2.8 for
every n there exists a continuous function Gn defined on Tn, satisfying
‖Gn‖∞ ≤ 2−n, Gn = 0 on the boundary of Tn and such that the Cauchy
problem (Gn, an, 0) has a unique solution if and only if βn ∈ N2. Fα coincides
with Gn on Tn. The map α 7→ Fα is continuous because ‖Gn‖∞ → 0. This
fact also ensures the continuity of Fα at (0, u) for any u ∈ [0, 1].

The fact that α ∈ S′3 is equivalent to (Fα, 0, 0) ∈ LUc follows easily from
the construction.
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Corollary 4.3. LUc is comeager and not a group under the operation
of addition, and hence not a vector space.

P r o o f. The first assertion follows from Uc ⊂ LUc and Corollary 3.3.
The second assertion follows from the first by the fact that LUc is Borel and
by the property of Borel non-meager subgroups mentioned in Section 1.1.

Our proofs establish also the following theorem:

Theorem 4.4. For every (x, y) ∈ R2, LUc
(x,y) = {F ∈ Cc(R2) | (F, x, y)

∈ LUc} is Σ0
3-complete, comeager and not a subgroup.

In this case it does not make sense to study the set of differential equa-
tions such that for every (x, y) ∈ R2 we have a Cauchy problem in LUc:
indeed, this set obviously coincides with Uc

∀.

5. Cauchy problems with global solutions

Definition 5.1. Let

G = {(F, x, y) ∈ C(R2)× R2 | ∃ϕ ∈ SF,(x,y) (dom(ϕ) = R)},
i.e. G is the set of Cauchy problems which have a global solution.

Definition 5.2. Let G∀ = {F ∈ C(R2) | ∀(x, y) ∈ R2 (F, x, y) ∈ G}.
To simplify a bit the notation it will be convenient to study the following

two sets in place of G.

Definition 5.3. Let

G+ = {(F, x, y) ∈ C(R2)× R2 | ∃ϕ ∈ SF,(x,y) (dom(ϕ) ⊃ [x,+∞))},
i.e. G+ is the set of Cauchy problems which have a solution with domain
unbounded above.
G− is defined similarly with (−∞, x] in place of [x,+∞) and is the set

of Cauchy problems which have a solution with domain unbounded below.

G+ and G− are homeomorphic via the map (F, x, y) 7→ (G,−x, y), where
G(t, u) = −F (−t, u), and G = G+∩G−. Therefore to establish upper bounds
for the complexity of G it suffices to establish upper bounds for the com-
plexity of G+ (the classes we use to classify the complexity of sets are closed
under homeomorphisms and finite intersections).

5.1. Globality in presence of uniqueness. We begin the study of G by
considering the set G∩U , i.e. the existence of global solutions of the Cauchy
problem when uniqueness holds as well. In this case the study is simpler
than in the general case and the complexity of G ∩U is lower than that of G.

The study of G ∩ U can be carried on in two different Polish spaces: in
C(R2)×R2, but also in U , since we showed in Theorem 3.12 that the latter
is Gδ in a Polish space. The results we will obtain are not affected by the
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setting we choose and, for the sake of definiteness, we study G∩U as a subset
of U .

Theorem 5.4. G ∩ U is Π0
2-complete in U .

P r o o f. We begin by showing that G ∩ U is Π0
2. By the remarks after

Definition 5.3 it suffices to show that G+ ∩ U is Π0
2. We will actually show

that U \ G+ is Σ0
2.

Notice that (F, x, y) ∈ U \G+ if and only if the unique element of SF,(x,y)
has a vertical asymptote to the right of x. Therefore (F, x, y) ∈ U \ G+ is
equivalent to the existence of q ∈ Q such that for all M ∈ N,

x+ 1 ≤ q & ∃r ∈ R ∃ϕ ∈ SF,(x,y) (x ≤ r ≤ q & r ∈ dom(ϕ) & |ϕ(r)| ≥M).

We will show that, for any q ∈ Q and M ∈ N, the set Rq,M of (F, x, y)
satisfying the above condition is closed in U .

Suppose that {(Fn, xn, yn)}n is a sequence of elements of Rq,M which
converges to (F, x, y). For every n let ϕn and rn witness (Fn, xn, yn) ∈
Rq,M . By extracting a subsequence we may assume that there exists r =
limn→∞ rn. Let Γn be the graph of ϕn. As F(R2) is compact we may assume
that Γn → Γ ∈ F(R2). By Lemma 2.7, Γ is either the graph of a function in
SF,(x,y) or a disjoint union of graphs of functions one of which is in SF,(x,y).
In any case let ϕ ∈ SF,(x,y) be the function with graph contained in Γ . If
r 6∈ dom(ϕ) then ϕ has a vertical asymptote between x and r. Hence there
exists r̃ that together with ϕ witnesses (F, x, y) ∈ Rq,M . If r ∈ dom(ϕ)
then Γn → Γ implies that we can apply Lemma 2.5 and deduce that for
all but finitely many n’s, r ∈ dom(ϕn) and limn→∞ ϕn(r) = ϕ(r). Since
ϕn → ϕ uniformly on compact sets, |ϕ(r)| ≥ M , so that r and ϕ witness
that (F, x, y) ∈ Rq,M .

We now prove that G ∩ U is Π0
2-hard in U . We will show that the com-

plement of `1 (see 1.1) is Wadge reducible to G ∩ U . Given (xn) ∈ [0, 1]N

let, for every n, yn = xn + 2−n > 0, so that (xn) ∈ `1 if and only if∑
yn < +∞. Let now ϕ(xn) be a C1 function with positive derivative defined

on (−∞,∑ yn) such that limt→−∞ ϕ(xn)(t) = −∞ and for every m ∈ N we
have ϕ(xn)(

∑m
n=0 yn) = m. In particular, ϕ(xn) is a bijection between its do-

main and R and hence has an inverse ψ(xn) defined on R. Let F(xn) ∈ C(R2)
be defined by

F(xn)(t, u) = ϕ′(xn)(ψ(xn)(u)).

Since ∂F(xn)/∂u = 1 we have F(xn) ∈ Lip2 and hence for every (x, y) ∈
R2 the Cauchy problem (F(xn), x, y) has a unique solution: this solution is
ϕ(xn)(t + c) for some c ∈ R (depending on (x, y)). Hence (F(xn), 0, 0) ∈ U
for every (xn) and

(F(xn), 0, 0) ∈ G ∩ U ⇔ ϕ(xn) is defined on R⇔
∑

yn = +∞⇔ (xn) 6∈ `1.
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It is easy to see that we can arrange things so that the map (xn) 7→ F(xn)
is continuous.

Our proof shows that for every (x, y) ∈ R2, (G ∩ U)(x,y) is Π0
2-complete

in U(x,y). As we mentioned before, our result holds also if we consider G ∩U
as a subset of C(R2)×R2: in fact, a Π0

2 subset of a Π0
2 set (in this case U)

is Π0
2 and a Π0

2-hard subset of any set is Π0
2-hard.

Moreover, we can study G ∩ (C1(R2)×R2) inside C1(R2)×R2: C1(R2)
is a Polish space by identifying F with

(
F, ∂F∂t ,

∂F
∂u

)
and taking the product

topology of the compact-open topologies on three copies of C(R2). The
proofs of the results above show that G ∩ (C1(R2)× R2) is Π0

2-complete in
C1(R2)× R2.

Corollary 5.5. G∀ ∩ U∀ is Π0
2-complete (either in U∀ or in C(R2));

G ∩ U , (G ∩ U)(x,y), G∀ ∩ U∀, G, G(x,y) and G∀ are not groups under the
operation of addition and hence not vector spaces; G∩U and G are comeager
in C(R2)×R2; (G ∩U)(x,y), G(x,y), G∀ ∩U∀ and G∀ are comeager in C(R2).

P r o o f. The fact that G∀ ∩ U∀ is Π0
2 follows from Theorem 5.4 exactly

as the first part of Theorem 3.7 followed from Theorem 3.2. The fact that
G∀∩U∀ is Π0

2-hard in both U∀ and C(R2) follows from the proof of Theorem
5.4: the map (xn) 7→ F(xn) shows that the complement of `1 (see 1.1) is
Wadge reducible to G∀ by a map whose range is contained in U∀. This
proves both results at once.

It is easy to see that G is dense within U and therefore Corollary 3.13
shows that G ∩U is comeager in C(R2)×R2; a similar argument shows that
G∀∩U∀ is comeager in C(R2). The results about G and G∀ follow immediately,
since any set which contains a comeager set is comeager.

The assertions about the algebraic structures are immediate by the usual
arguments (see Corollaries 3.4 and 4.3) and depend on the fact that all the
sets are Borel in the appropriate space (for G, G(x,y) and G∀ this will be
proved in the next subsections).

5.2. Globality everywhere. Before studying G let us consider G∀, which
turns out to be of lower complexity.

Theorem 5.6. G∀ is Π0
3-complete in C(R2).

P r o o f. We begin by showing that G∀ is Π0
3. First of all notice that

F ∈ G∀ if and only if

(1) ∀(x, y) ∈ R2 ∃ϕ ∈ SF,(x,y) (dom(ϕ) ⊃ [x− 1, x+ 1]).

In fact, if (1) holds then ϕ1 ∈ SF,(x,y) defined on [x−1, x+1] can be connected
to ψ1 ∈ SF,(x+1,ϕ1(x+1)) defined on [x + 1, x + 2] and symmetrically on the
left side to get ϕ2 ∈ SF,(x,y) defined on [x−2, x+2]. Iterating this procedure
we get ϕ ∈ SF,(x,y) defined on R.
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Now observe that condition (1) is in turn equivalent to

(2) ∀(q, r) ∈ Q2 ∃ϕ ∈ SF,(q,r) (dom(ϕ) ⊃ [q − 1, q + 1]).

To see this suppose (2) holds. For any (x, y) ∈ R2 let ϕ ∈ SF,(x,y). Let
q ∈ Q be such that ϕ(q) is defined and x ≤ q; let r0, r1 ∈ Q be such that
r0 ≤ ϕ(q) ≤ r1. By our hypothesis for i = 0, 1 there exists ϕi ∈ SF,(q,ri)
with dom(ϕi) ⊃ [q − 1, q + 1]. Then either for every t ∈ [q, x + 1] we have
ϕ0(t) ≤ ϕ(t) ≤ ϕ1(x) (and in this case dom(ϕ) ⊃ [x, x + 1]) or for some
s ∈ [q, x + 1] and i < 2 we have ϕ(s) = ϕi(s). In the latter case we have
ϕ′(s) = F (s, ϕ(s)) = F (s, ϕi(s)) = ϕ′i(s) and we can define ψ by setting

ψ(t) =
{
ϕ(t) if t ≤ s,
ϕi(t) if t > s,

so that ψ ∈ SF,(x,y) and dom(ψ) ⊃ [x, q + 1] ⊇ [x, x + 1]. A symmetrical
argument shows that we can assume dom(ϕ) ⊃ [x − 1, x]. Therefore (2)
implies that we can assume dom(ϕ) ⊃ [x − 1, x + 1] and hence that (1)
holds.

Since ∃ϕ ∈ SF,(q,r) (dom(ϕ) ⊃ [q − 1, q + 1]) is equivalent to ∃M ∈ N
F ∈ EM , where F ∈ EM if and only if

∃ϕ ∈ SF,(q,r) (‖ϕ¹[q − 1, q + 1]‖∞ ≤M)

it suffices to show that EM is closed. This can be done by the usual argument
(see e.g. the first part of the proof of Theorem 3.12).

We now show that G∀ is Π0
3-hard in C(R2). With any α ∈ 2N×N we will

associate Fα ∈ C(R2) in such a way that

∃∞n βn 6∈ N2 ⇔ Fα ∈ G∀,
where βn(m) = α(n,m). This suffices to prove our result because

P ′3 = {α ∈ 2N×N | ∃∞n ∀∞m α(n,m) = 1} = {α ∈ 2N×N | ∃∞n βn 6∈ N2}
is Π0

3-complete; this is not one of the standard Π0
3-complete sets but is a

variant of P3 (see 1.1) which can be easily Wadge reduced to it.
Consider the vertical semi-strip B = [−1, 2]× (−∞, 1]. We will define Fα

on B so that it is equal to 0 on its boundary and set Fα = 0 outside B.
Pick xni , y

n
i for i = 1, 2 and n ∈ N so that

(a) x0
0 = y0

1 = 0;
(b) xn0 < xn1 < xn+1

0 < 1 and limn→∞ xn0 = 1;
(c) yn1 > yn0 > yn+1

1 and limn→∞ yn0 = −∞.

Let Tn = [xn0 , x
n
1 ] × [yn0 , y

n
1 ] and T =

⋃
n Tn. The behavior of Fα does not

depend on α outside T .
On the interval [yn0 , y

n
1 ] we fix a strictly descending sequence un0 =

yn1 , u
n
1 , u

n
2 , . . . which converges to yn0 . Outside T we draw C1 curves in the

plane according to the following rules (see Figure 1):
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• two distinct curves never intersect;
• the curve ϕn0 starts with slope 0 from (xn1 , y

n
1 ), the upper right corner

of Tn, and reaches some point (2, ϕn0 (2)) on the right side of B, with
slope 0;
• the curve ϕni+1 starts with slope 0 from (xn1 , u

n
i+1) on the right side of

Tn and reaches (xn+1
0 , un+1

i ) on the left side of Tn+1, with slope 0;
• the curve ψn starts with slope 0 from (xn1 , y

n
0 ), the lower right corner

of Tn, and reaches (xn+1
0 , yn+1

0 ), the lower left corner of Tn+1, with
slope 0.

T0

T1

T2

T3

ϕ0
0

ϕ1
0

ϕ2
0

ϕ3
0

ϕ0
1

ϕ1
1

ϕ2
1

ψ0

ψ1

ψ2

ψ3

Fig. 1

Fα is defined on R2\T so that all these curves are (portions of) solutions
of the differential equation given by Fα. Moreover, there are no solutions of
that differential equation which pass through one point on the curve ψn

and then move to the right of it. Similarly, there are no solutions which
pass through one point on the curve ϕn1 and then move to the right of it.
Define Fα on the left of the vertical “barrier” consisting of the ψn’s, so that
through each point left of this barrier there exists a solution of the differential
equation which reaches some point on this barrier. We furthermore want that
Fα = 0 on the boundary of each Tn. All this can be attained by defining Fα
on the union of the graphs of the curves, on appropriate neighborhoods to
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the right of the ψn’s and of the ϕn1 ’s, on the portion of the plane to the left
of the barrier, and on the boundaries of the Tn’s, in the appropriate way
and then using the Tietze extension theorem.

Now that we explained how to define Fα outside T and the behavior of
its solutions in that portion of the plane, we define Fα inside each Tn using
Lemma 2.8 (with M = 1 and β = βn). This completes the construction of
Fα on Tn.

We claim that, regardless of α, for any n and u ∈ (yn0 , y
n
1 ] we have

(Fα, xn1 , u) ∈ G+. To prove this it suffices to show that there exists a solution
through (xn1 , u) which reaches the right side of B. Notice that either u =
yn1 , so that ϕn0 witnesses (Fα, xn1 , u) ∈ G+, or there exists i such that u ∈
[uni+1, u

n
i ). We proceed by induction on i. Suppose for every j < i, n and

u ∈ [unj+1, u
n
j ) we have (Fα, xn1 , u) ∈ G+. If u ∈ [uni+1, u

n
i ) then there exists

a solution through (xn1 , u) whose graph lies between ϕni+1 and ϕni . If this
solution does not reach the boundary of B (and hence witnesses (Fα, xn1 , u) ∈
G+) it reaches the left side of Tn+1 at some point (xn+1

0 , v) with v ≥ un+1
i .

So it suffices to show that (Fα, xn+1
0 , v) ∈ G+. Since Fα is non-negative

inside Tn+1 there exists a solution through (xn+1
0 , v) which exits Tn+1 on

the right side at (xn+1
1 , w) with w ≥ v ≥ un+1

i . Now it suffices to show that
(Fα, xn+1

1 , w) ∈ G+. Since w ∈ [un+1
j+1 , u

n+1
j ) for some j < i this follows from

the induction hypothesis.
We are now ready to show that Fα ∈ G∀ if and only if α ∈ P ′3.
If ∃∞n, βn 6∈ N2, for infinitely many n’s multiplicity occurs at the lower

left corner (xn0 , y
n
0 ) of Tn. If (x, y) lies to the left of the barrier there exists

a solution of the differential equation that leads to the barrier before some
Tn0 . By hypothesis, for some n > n0 multiplicity occurs and hence after
following ψn0 , ψn0+1, . . . , ψn−1 to reach the lower left corner (xn0 , y

n
0 ) of Tn

we have at least one solution which exits Tn at (xn1 , u) with u ∈ (yn0 , y
n
1 ]. By

the claim we proved above, (Fα, xn1 , u) ∈ G+ and hence (Fα, x, y) ∈ G. The
argument to show that we have global solutions also for points lying to the
right of our barrier is simpler. Therefore Fα ∈ G∀.

Now suppose that for all but finitely many n’s we have βn ∈ N2. Let n0

be such that for every n ≥ n0 we have βn ∈ N2 and consider the Cauchy
problem given by (Fα, x

n0
0 , yn0

0 ). Since in each Tn to the right of the initial
condition we have uniqueness, the only solution goes through the various ψn

and hence has a vertical asymptote at t = 1. Therefore (Fα, x
n0
0 , yn0

0 ) 6∈ G
and hence Fα 6∈ G∀.

5.3. Globality of solutions to Cauchy problems. We now turn to G. The
existence of arbitrarily long solutions of a Cauchy problem does not, in
general, suffice to ensure the existence of a global solution of that problem.
For example, we can construct an F such that SF,(−1,0) ⊃ {ϕn | n ∈ N}
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with dom(ϕn) = (−∞, n), limt→0− ϕ0(t) = −∞, and limt→n− ϕn(t) = +∞
when n ≥ 1, so that the Cauchy problem given by (F,−1, 0) has no global
solutions (see Figure 2).

ϕ0

ϕ1 ϕ2 ϕ3 ϕ4

Fig. 2

Lemma 5.7. G is Σ0
4-hard.

P r o o f. We will show that S4 (see 1.1) is Wadge reducible to G. Given
α ∈ 2N×N we will define Fα so that α ∈ S4 if and only if (Fα,−1, 0) ∈ G.

As in the proof of Theorem 5.6, Fα will be independent of α outside a
countable union of rectangles T =

⋃
n Tn, but now Tn = [n + 1/4, n + 3/4]

× [0, 1/2]. Outside T we draw C1 curves in the plane according to the fol-
lowing rules (see Figure 3):

• the curve χ starts from (−1, 0) and has t = 0 as vertical asymptote to
+∞;
• the curve χn starts from the point (−2−n, χ(−2−n)) on χ, and reaches

(n+ 1/4, 0), the lower left corner of Tn, with slope 0;
• the curve ψn starts with slope 0 from (n+3/4, 0), the lower right corner

of Tn, and has t = n+ 1 as vertical asymptote to −∞;
• the curve ϕni starts with slope 0 from (n+3/4, 2−i+1) on the right side

of Tn and reaches (n+ 1 + 1/4, 0), the lower left corner of Tn+1, with
slope 0; at this point it merges with χn+1 and the other ϕnj ’s.
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T0 T1 T2 T3

χ

χ0

χ1

χ2 χ3 χ4

ψ0 ψ1 ψ2

Fig. 3

Obviously, all these curves should be arranged so that at their intersec-
tions they have the same slope and so that the function describing their
derivatives is continuous; this, in particular, requires that ϕni → ψn point-
wise on the interval [n+ 3/4, n+ 1).

Now we define Fα on R2\T by requiring that all these curves are (portions
of) solutions of the differential equation given by Fα. We make sure we avoid
the existence of solutions of the differential equation which pass through
one point on the curve ψn and then move to the right of it. Similarly, there
should be no bifurcation points on the χn’s or the ϕni ’s. There should also
be a solution moving from (−1, 0) to the left to −∞. This can be attained
as in the proof of Theorem 5.6.

The definition of Fα within each Tn follows again the same ideas em-
ployed in the proof of Theorem 5.6 and we are left with showing that this
construction actually works.

First suppose that α is such that ∀∞n ∀∞m α(n,m) = 0. This means
that for all but finitely many n’s we have multiplicity within Tn. Let n0 be
such that this happens for every n ≥ n0. From (−1, 0) follow χ until χn0

splits and follow the latter to (n0+1/4, 0). Now avoid the possibility of being
led to an asymptote by ψn0 by exiting from Tn0 above some ϕn0

i . This can
be repeated for all the following Tn’s thereby constructing a global solution
of the Cauchy problem.

If α is such that for infinitely many n’s we have local uniqueness within
Tn, then no matter which χn0 we will pick to avoid being led to a vertical
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asymptote by χ, we will be led to some other vertical asymptote by ψn

where n ≥ n0 is the first such that uniqueness holds in Tn.

Notice that Lemma 5.7 and Theorem 5.6 show that the complexities of
G and G∀ are different. Contrast this with the fact that the complexities of
U and U∀ are the same (Theorems 3.12 and 3.15).

Our proof shows also that for every (x, y) ∈ R2, G(x,y) is Σ0
4-hard.

The obstacle to the existence of a global solution of the Cauchy problem
whose solutions are depicted in Figure 2 is that limn→∞ ϕn(0) = −∞, i.e.
the ϕn’s drop arbitrarily low. The next lemma shows that if this does not
happen then a global solution does exist. Let us first introduce some helpful
notation and prove an easy proposition.

Definition 5.8. If F ∈ C(R2) and (x, y) ∈ R2 let

S+
F,(x,y) = {ϕ¹[x,+∞) | ϕ ∈ SF,(x,y)}.

In other words, S+
F,(x,y) is the set of ϕ ∈ C1([x, b)) for some b such that

x < b ≤ +∞ satisfying ϕ(x) = y, ϕ′(t) = F (t, ϕ(t)) for every t ∈ [x, b) (in
x we are considering the right derivative), and which are non-extendible to
the right.

Definition 5.9. If {ϕn}n is a sequence of real-valued functions defined
on subsets of R let infn ϕn be the function defined on a subset of

⋃
n dom(ϕn)

by infn ϕn(t) = inf{ϕn(t) | t ∈ dom(ϕn)} (the function is defined only if the
inf is greater then −∞).

Definition 5.10. If ϕ is a real-valued function defined on an interval in
R and b = sup(dom(ϕ)) we denote limt→b− ϕ(t) by lim+ ϕ.

Definition 5.11. If ϕ and ψ are two real-valued functions defined on
subsets of R we write ϕ ≤ ψ if ϕ(t) ≤ ψ(t) whenever t ∈ dom(ϕ) ∩ dom(ψ).
We also define two functions ϕ∨ψ and ϕ∧ψ with domain dom(ϕ)∪dom(ψ).
Both functions coincide with ϕ on dom(ϕ)\dom(ψ) and with ψ on dom(ψ)\
dom(ϕ). If t ∈ dom(ϕ) ∩ dom(ψ) then (ϕ ∨ ψ)(t) = max(ϕ(t), ψ(t)) and
(ϕ ∧ ψ)(t) = min(ϕ(t), ψ(t)).

Proposition 5.12. If F ∈ C(R2), (x, y) ∈ R2 and ϕ,ψ ∈ S+
F,(x,y) are

such that dom(ϕ) ⊆ dom(ψ) then:

(1) lim+ ϕ 6= −∞ implies ϕ ∧ ψ ∈ S+
F,(x,y);

(2) lim+ ϕ 6= +∞ implies ϕ ∨ ψ ∈ S+
F,(x,y).

P r o o f. The condition on lim+ ϕ ensures that ϕ ∧ ψ (resp. ϕ ∨ ψ) is
continuous. The fact that whenever ϕ(t) = ψ(t) we also have ϕ′(t) = ψ′(t)
immediately yields the conclusion.
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The next lemma gives a way to build new solutions of an ODE out of
old ones.

Lemma 5.13. Let (F, x, y) ∈ C(R2)×R2 and let {ϕn}n be a sequence of
elements of S+

F,(x,y) such that lim+ ϕn 6= −∞ for every n. Let T ∈ (x,+∞]
be such that :

(1) [x, T ) ⊆ ⋃n dom(ϕn);
(2) for every t ∈ [x, T ) we have infn ϕn(t) > −∞;
(3) if T < +∞, then infn ϕn(T ) = −∞.

Then infn ϕn¹[x, T ) ∈ S+
F,(x,y). In particular , if T = +∞ then infn ϕn ∈

S+
F,(x,y).

P r o o f. Replacing ϕn by ϕ0 ∧ . . . ∧ ϕn (and using Proposition 5.12) we
may assume that dom(ϕn) ⊆ dom(ϕn+1) and ϕn ≥ ϕn+1. Therefore the
graph of infn ϕn is the limit within F(R2) of the graphs of the ϕn’s. The
conclusion follows by Lemma 2.7.

We now define two subsets of G+.

Definition 5.14. For (F, x, y) ∈ C(R2) × R2 let (F, x, y) ∈ H− if and
only if there are N,h ∈ N such that

∀n ∃ϕn ∈ S+
F,(x,y) ([x, x+N + n] ⊆ dom(ϕn) & ‖ϕn¹[x, x+N ]‖∞ ≤ h)

and

¬∃ϕ ∈ S+
F,(x,y)([x, x+N ] ⊆ dom(ϕ)& ‖ϕ¹[x, x+N ]‖∞ ≤ h&lim+ϕ = −∞).

In other words, (F, x, y) ∈ H− if and only if there exists a rectangle of base
[x, x + N ] and height [−h, h] such that (F, x, y) admits partial solutions
of arbitrary length which are trapped inside the rectangle, but no solution
trapped inside the rectangle has a vertical asymptote going to −∞.
H+ is defined analogously by asking that no solution trapped inside the

rectangle has a vertical asymptote going to +∞.

Lemma 5.15. H− ∪H+ ⊆ G+.

P r o o f. By the symmetry of the definitions of H− and H+ it suffices
to prove H− ⊆ G+. Let (F, x, y) ∈ H− and N,h and {ϕn}n be as in the
definition.

We claim that inf{ϕn(t) | t ∈ dom(ϕn)} > −∞ for every t ∈ [x,+∞).
If t ∈ [x, x + N ] this follows from the fact that ϕn(t) ≥ −h for every
n. Suppose now, towards a contradiction, that t > x + N is such that
inf{ϕn(t) | t ∈ dom(ϕn)} = −∞. Lemma 5.13 implies that for some T ≤ t,
ϕ = infn ϕn¹[x, T ) is an element of S+

F,(x,y) satisfying [x, x+N ] ⊂ dom(ϕ),
‖ϕ¹[x, x + N ]‖∞ ≤ h, and lim+ ϕ = −∞. This contradicts (F, x, y) ∈ H−
and proves the claim.
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The claim and Lemma 5.13 imply that (F, x, y) ∈ G+.

We now define another subset of G+.

Definition 5.16. For (F, x, y) ∈ C(R2) × R2 let (F, x, y) ∈ H∞ if and
only if for all n there exist ϕn, ψn ∈ S+

F,(x,y) such that

[x, x+ n] ⊆ dom(ϕn) ∩ dom(ψn) & lim+ϕn = +∞& lim+ψn = −∞.
In other words, (F, x, y) ∈ H∞ if and only if the Cauchy problem admits
both partial solutions of arbitrary length such that lim+ ϕ = +∞ and partial
solutions of arbitrary length such that lim+ ψ = −∞.

Lemma 5.17. H∞ ⊆ G+.

P r o o f. Suppose (F, x, y) ∈ H∞ and let {ϕn}n and {ψn}n witness this.
If the domain of some ϕn or ψn is unbounded above we are done. Otherwise
let bn and dn be such that dom(ϕn) = [x, bn) and dom(ψn) = [x, dn). We
can suppose that bn ≤ dn < bn+1 for every n. We define inductively two
sequences {ϕ̃n}n and {ψ̃n}n of elements of S+

F,(x,y) as follows:

ϕ̃0 = ϕ0; ψ̃0 = ϕ0 ∧ ψ0;

ϕ̃n+1 = ψ̃n ∨ (ϕ̃n ∧ ϕn+1); ψ̃n+1 = ϕ̃n+1 ∧ (ψ̃n ∨ ψn+1).

Using Proposition 5.12 a straightforward induction shows that

(a) dom(ϕ̃n) = dom(ϕn) and dom(ψ̃n) = dom(ψn);
(b) ϕ̃n ≥ ϕ̃n+1 ≥ ψ̃n+1 ≥ ψ̃n;
(c) lim+ ϕ̃n = +∞ and lim+ ψ̃n = −∞;
(d) ϕ̃n, ψ̃n ∈ S+

F,(x,y).

If t > x let N be such that t < x + N ; for every n such that t ∈
dom(ϕ̃n) we have ϕ̃n(t) ≥ ψ̃N (t). Hence inf{ϕ̃n(t) | t ∈ dom(ϕ̃n)} >
−∞ and we can apply Lemma 5.13 to obtain ϕ̃ = infn ϕ̃n ∈ S+

F,(x,y).
As dom(ϕ̃) =

⋃
n dom(ϕ̃n) =

⋃
n dom(ϕn) ⊇ ⋃n[x, x + n] it follows that

dom(ϕ̃) = [x,+∞). Therefore (F, x, y) ∈ G+.

H− ∪ H+ and H∞ show two different ways in which a Cauchy problem
can have a solution with domain unbounded above. These are actually the
only possible ways this can happen.

Theorem 5.18. G+ = H− ∪H+ ∪H∞.

P r o o f. Lemmas 5.15 and 5.17 show that H− ∪ H+ ∪ H∞ ⊆ G+, so we
need to prove only the reverse inclusion.

Let (F, x, y) ∈ G+ and define

B+ = {b | ∃ϕ ∈ S+
F,(x,y) (dom(ϕ) = [x, b) & lim+ ϕ = +∞)} ∪ {x},

B− = {b | ∃ϕ ∈ S+
F,(x,y) (dom(ϕ) = [x, b) & lim+ ϕ = −∞)} ∪ {x}



Cauchy problems in one dimension 187

and set

b+ = supB+ and b− = supB−.

If b+ = b− = +∞ then clearly (F, x, y) ∈ H∞. Now we will show that
if b− < +∞ then (F, x, y) ∈ H−; a symmetric argument shows that if
b+ < +∞ then (F, x, y) ∈ H+ and completes the proof of the theorem.

Suppose b− < +∞ and let N ∈ N be such that b− < x + N . Since
(F, x, y) ∈ G+ there exists ψ ∈ S+

F,(x,y) such that dom(ψ) = [x,+∞). Fix
such a ψ and let h ∈ N be such that ‖ψ¹[x, x + N ]‖∞ ≤ h. We claim
that N and h witness (F, x, y) ∈ H−. For every n we can set ϕn = ψ so
that the first part of the definition (the existence of solutions of arbitrary
length) is satisfied. On the other hand, the choice of N guarantees that
also the second part of the definition (the non-existence of solutions with
lim+ ϕ = −∞ which are trapped inside the rectangle [x, x+N ]× [−h, h]) is
satisfied.

Theorem 5.18 shows that to find an upper bound for the complexity of
G+ (and hence of G) it suffices to find upper bounds for the complexities
of H− and H∞ (obviously, the complexity of H+ is the same as that of
H−). This is precisely what we are going to do, using the following technical
lemma.

Lemma 5.19. (a) Fix N,h ∈ N. Let A+
N,h be the set of all Cauchy prob-

lems which have a solution bounded by h on the interval [x, x + N ] with a
vertical asymptote to +∞ at some ξ > x+N , i.e.

A+
N,h = {(F, x, y) ∈ C(R2)×R2 | ∃ϕ ∈ S+

F,(x,y)[∃ξ > x+N(dom(ϕ) = [x, ξ))

&lim+ ϕ = +∞& ‖ϕ¹[x, x+N ]‖∞ ≤ h]}.
Similarly we define A−N,h by replacing “lim+ ϕ = +∞” with “lim+ ϕ = −∞”.
Then both A+

N,h and A−N,h are Σ0
2.

(b) Fix N ∈ N. Let A+
N be the set of all Cauchy problems which have a

solution with a vertical asymptote to +∞ at some ξ > x+N , i.e.

A+
N = {(F, x, y) ∈ C(R2)× R2 |

∃ϕ ∈ S+
F,(x,y) [∃ξ > x+N (dom(ϕ) = [x, ξ)) & lim+ ϕ = +∞]}.

Similarly we define A−N by replacing “lim+ ϕ = +∞” with “lim+ ϕ = −∞”.
Then both A+

N and A−N are Σ0
2.

(c) Fix M,N, h ∈ N, with M ≥ N . Let BMN,h be the set of all Cauchy
problems which have a solution of length at least M bounded by h on the
interval [x, x+N ], i.e.
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BMN,h = {(F, x, y) ∈ C(R2)× R2 |
∃ϕ ∈ S+

F,(x,y) [dom(ϕ) ⊇ [x, x+M ] & ‖ϕ¹[x, x+N ]‖∞ ≤ h]}.
Then BMN,h is Σ0

2.

P r o o f. (a) We claim that

(∗) A+
N,h =

⋃

b,l∈Q

⋂

M∈N
DM
b,l

where

DM
b,l = {(F, x, y) ∈ C(R2)× R2 |

∃r ∈ R ∃ϕ ∈ S+
F,(x,y) [x+N ≤ r ≤ x+N + l

& ‖ϕ¹[x, x+N ]‖∞ ≤ h& r ∈ dom(ϕ)

& (∀t ∈ [x, r] ϕ(t) ≥ b) & ϕ(r) ≥M ]}.
In fact, if ϕ witnesses (F, x, y) ∈ A+

N,h let dom(ϕ) = [x, ξ) with ξ > x+N
so that

lim
t→ξ

ϕ(t) = +∞.
Then we can pick b, l ∈ Q such that x+N + l ≥ ξ and b ≤ inf{ϕ(t) | x ≤ t
≤ ξ}. Therefore for every M ∈ N there exists r ∈ [x, ξ) such that ϕ(r) ≥M .
Thus (F, x, y) ∈ DM

b,l.
Conversely suppose (F, x, y) ∈ ⋂M∈NDM

b,l for some b, l ∈ Q. Then for
every M ∈ N there exist rM and ϕM satisfying the conditions in the defi-
nition of DM

b,l. As [x+N,x+N + l] and F(R2) are compact, by extracting
a subsequence we may assume that limM→+∞ rM = r ∈ [x+N,x+N + l]
and limM→+∞ ϕM = Γ ∈ F(R2). By Lemma 2.7 there exists ϕ ∈ S+

F,(x,y)
whose graph is contained in Γ and such that [x, x+N ] ⊂ dom(ϕ) ⊆ [x, r),
‖ϕ¹[x, x+N ]‖∞ ≤ h and ϕ is bounded below by b. Therefore ϕ has a vertical
asymptote to +∞ at some ξ ≤ r, and hence (F, x, y) ∈ A+

N,h.

Notice that in proving (∗) we actually verified that DM
b,l is closed and

therefore A+
N,h is Σ0

2. The result about A−N,h is completely analogous.

(b) follows from (a) and the equalities A+
N =

⋃
h∈NA

+
N,h and A−N =⋃

h∈NA
−
N,h.

(c) The argument is similar to the one used to prove (a), only simpler.
Fix M , N and h. Then

BMN,h =
⋃

`∈Q+

El

with
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El = {(F, x, y) ∈ C(R2)× R2 | ∃ϕ ∈ S+
F,(x,y) [dom(ϕ) ⊃ [x, x+M ]

& ‖ϕ¹[x, x+M ]‖∞ ≤ l & ‖ϕ¹[x, x+N ]‖∞ ≤ h]}.
By Ascoli–Arzelà or, equivalently, by the compactness of F(R2), each El is
closed and hence BMN,h is Σ0

2.

Lemma 5.20. H− and H+ are Σ0
4 and H∞ is Π0

3.

P r o o f. Using the notations of Lemma 5.19 we have

H− =
⋃

h,N∈N

[ ⋂

M≥N
BMN,h ∩ ((C(R2)× R2) \A−N,h)

]
,

H+ =
⋃

h,N∈N

[ ⋂

M≥N
BMN,h ∩ ((C(R2)× R2) \A+

N,h)
]
,

and

H∞ =
⋂

M∈N
(A+

M ∩A−M ).

Therefore H− and H+ are Σ0
4, while H∞ is Π0

3.

By modifying the proof of Lemma 5.7 (notice that in that proof if α ∈ S4

then (Fα,−1, 0) ∈ H+) it is not difficult to show that H∞ is actually Π0
3-

hard, and hence Π0
3-complete. It suffices to delete χ and the various χn’s

with n > 0 and flip the behavior of Fα inside the Tn’s with n odd so that
lim+ ψ

2k+1 = +∞. This construction yields (Fα,−1, 0) ∈ H∞ if and only if
∀n ∀∞m α(n,m) = 0.

Theorem 5.21. G is Σ0
4-complete.

P r o o f. The Σ0
4-hardness of G was proved in Lemma 5.7. Since the finite

union of Σ0
4 and Π0

3 sets is Σ0
4, Theorem 5.18 and Lemma 5.20 show that

G+ is Σ0
4. But then G− is also Σ0

4 and G = G+ ∩ G− is Σ0
4.
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