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Lefschetz coincidence formula on non-orientable manifolds

by

Daciberg Lima G o n ç a l v e s (São Paulo)
and Jerzy J e z i e r s k i (Warszawa)

Abstract. We generalize the Lefschetz coincidence theorem to non-oriented mani-
folds. We use (co-) homology groups with local coefficients. This generalization requires
the assumption that one of the considered maps is orientation true.

1. Introduction. The Lefschetz Fixed Point Theorem may be reformu-
lated to detect coincidences of a pair of maps f, g : M → N between closed
manifolds of the same dimension ([V], Ch. 6, [Bd], Ch. 6). Such a modi-
fication, however, needs the orientability assumption on M and N . In the
same chapter, page 176 of [V], the author says “It should be pointed out the
spaces we consider, closed, orientable manifolds, could be made more gen-
eral. Similar techniques may be applied in the nonorientable case by using
twisted coefficients.” The aim of this work is to present such an extension.
So we drop the assumption that the manifolds are orientable and we only
assume that one of the considered maps, say g, is orientation true, i.e. a
loop α preserves a local orientation of M iff gα preserves a local orientation
of N . However, without the above assumption on g such an extension does
not seem possible.

In Section 2 we prepare some information on (co-) homology with coef-
ficients in a local system. We use them (Section 3) to prove the Poincaré
duality and then to get the promised Lefschetz theorem (Section 4). In Sec-
tion 5 we find a relation between the coincidence index defined there and
the semi-index from [DJ] and [Je]. At the end of this section we sketch how
to define an index for a Nielsen class without restrictions on the maps f
and g. In Section 6 we prove a result about coincidence producing maps as
defined in [BS].
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2. Homology with local coefficients. In this section we recall some
basic information about homology with coefficients in a local system [Wh],
[Sp2]. Let R be a commutative ring with unity, X a topological space and
let Γ be a local system of R-modules over X, i.e. over each point x ∈ X
we have a module Γ (x) and for each homotopy class ω of paths from x0

to x1 we have an R-module homomorphism Γ (ω) : Γ (x0) → Γ (x1). Let
∆∗(X;Γ ) denote the chain complex with coefficients in Γ (i.e. the graded
R-module of sums

∑
γσ · σ where σ is a singular simplex in X with γσ ∈

Γ (σ(v0)), where v0 denotes the leading vertex of the standard n-simplex)
and let H∗(X;Γ ) be its homology module obtained by using the boundary
operators defined on local coefficients. Similarly we consider the cohomology
H∗(X;Γ ∗) with coefficients in the dual system Γ ∗ = Hom(Γ,R) (see [Wh],
[Sp2] for details). Let Γ, Γ ′ be local systems over X and Y respectively.
To get a chain homomorphism induced by a map f : X → Y we need a
morphism of the given local systems, i.e. a commutative diagram

Γ Γ ′

X Y

φ //

²² ²²f //

where the restriction of φ to any fibre is a homomorphism and

φ(ω(1)) · Γ (ω) = Γ ′(fω) · φ(ω(0))

for any path ω in X, where φ(x) is the homomorphism φ restricted to the
fibre Γ (x). We define maps f∗ : ∆∗(X;Γ ) → ∆∗(Y ;Γ ′) by f∗(γ · σ) =
φ(γ) ·fσ and f∗ : ∆∗(Y ;Γ ′∗)→ ∆∗(X;Γ ∗) by (f∗(c)(σ))(γ) = (c(fσ))(φγ).

Recall that there is a natural pairing (Kronecker index)

〈·, ·〉 : Hq(X,A;Γ ∗)⊗Hq(X,A;Γ )→ R.

The symbol ⊗ denotes tensor product over R. We will also denote by R the
constant system with the fibre R.

In this paper Γ , Γ ′, . . . denote one-dimensional local systems, i.e. each
Γ (x) is an R-module isomorphic to R. Then the chain complexes ∆∗(X×Y ;
Γ ×Γ ′) and ∆(X,Γ ) ⊗ ∆(Y, Γ ′) are naturally isomorphic. This yields the
following products:

• the cross product

× : Hp(X,A;Γ )⊗Hq(Y,B;Γ ′)→ Hp+q((X,A)× (Y,B);Γ × Γ ′),
× : Hp(X,A;Γ ∗)⊗Hq(Y,B;Γ ′∗)→ Hp+q((X,A)× (Y,B); (Γ × Γ ′)∗),

(provided X ×B,A× Y is excisive in X × Y ),
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• the cup product

∪ : Hp(X,A;Γ ∗)⊗Hq(X,B;Γ ′∗)→ Hp+q(X,A ∪B; (Γ ⊗ Γ ′)∗),
• the cap product

∩ : Hp(X,A;G)⊗Hn(X,A ∪B;Γ )→ Hn−p(X,B;Γ ⊗G)

(in the cup and cap products we assume that {A,B} is excisive in A ∪B).

For future reference we list some of their properties:

2.1. Let Γ, Γ ′ be local systems on X and let x ∈ Hp(X,A;Γ ∗),
y ∈ Hq(X,B;Γ ′∗). Then

x ∪ y = (−1)pq(y ∪ x).

2.2. Let x ∈ Hp(X,A;Γ ∗), y ∈ Hq(X;R) and a ∈ Hp+q(X,A;Γ ). Then

〈x, y ∩ a〉 = 〈x ∪ y, a〉.
2.3. Let x ∈ Hp(X,A;R), y ∈ Hq(Y,A′;R), a ∈ Hr(X,A ∪ B;Γ ) and

b ∈ Hs(Y,A′ ∪B′;Γ ′). Then

(x× y) ∩ (a× b) = (−1)p(s−q)(x ∩ a)× (y ∩ b)
∈ Hr+s−p−q((X,B)× (Y,B′);Γ × Γ ′).

In the next section we will also use the following lemma (compare the
formula (5.20) on p. 150 of [V]).

Lemma 2.4. Let M be an n-manifold with a compact boundary and fix
U ∈ Hn(M × M,M × M − ∆; (R × Γ )∗) and x ∈ Hp(M,∂M ;R). Let
Ũ ∈ Hn(M ×M,∂(M ×M)− ∂∆; (R× Γ )∗) be the restriction of U and let
1 ∈ H0(M ;R) denote the unit. Then

Ũ ∪ (x× 1) = Ũ ∪ (1× x) ∈ Hn+p(M ×M,∂(M ×M); (R× Γ )∗).

P r o o f. It is enough to show that U ∪ (x×1) = U ∪ (1×x) ∈ Hn+p(M ×
M,M ×M − ∆̇); (R× Γ )∗) (here ∆̇ = ∆− ∂∆). Let us fix:

(i) a collar C = ∂M × [0, 1) ⊂M ;
(ii) a neighbourhood V of ∆ ⊂M ×M such that the projections p1, p2 :

V →M are homotopic rel. ∆ (pi(x1, x2) = xi);
(iii) a neighbourhood V0 of ∂∆ ⊂ M × M such that V0 ⊂ V ∩ (C ×

C), p1(V0) ∪ p2(V0) ⊂ C and the above homotopy is a homotopy of pairs
(V, V0)→ (M,C);

(iv) a collar C1 of ∂∆ ⊂ ∆ contained in V0.
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Set ∆1 = ∆− C1. Consider the commutative diagram

Hn(M ×M,M ×M −∆)⊗Hp(M × (M,∂M)) Hn+p(M ×M,M ×M − ∆̇)

Hn(M ×M,M ×M −∆)⊗Hp(M × (M,C)) Hn+p(M ×M,M ×M −∆1)

Hn(V, V −∆)⊗Hp(V, V ∩ (M × C)) Hn+p(V, V −∆1)

Hn(V, V −∆)⊗Hp(V, V0) Hn+p(V, V −∆1)

//

//

²²

∼=

OO

∼=
²²

∼=

OO

//

²²
=

²²
//

where the horizontal arrows are cup products, the vertical arrows
are induced by the natural inclusions and the coefficients in any line are
(R × Γ )∗ ⊗ (R × R) → (R × Γ )∗. Consider the cup product U ∪ (1 × x)
in the top line. In the bottom line we get U|V ∪ (1 × x)|V (here we de-
note by U|V the image of U under the natural homomorphism Hn(M ×
M,M × M − ∆; (R × Γ ∗)) → Hn(V, V − ∆; (R × Γ ∗)) and we identify
x ∈ Hp(M,∂M) = Hp(M,C)). Considering the similar diagram for the cup
product U ∪ (x× 1), in the bottom line we obtain U|V ∪ (x× 1)|V . But

(1× x)|V = (p∗2x)|V = (p∗1x)|V = (x× 1)|V ∈ Hp(V, V0)

since p1|V , p2|V : (V, V0) → (M,C) are homotopic. Since the right sides of
both diagrams are identical and consist of isomorphisms,

(1× x)|V = (x× 1)|V ∈ Hn+p(V, V −∆1)

implies

U ∪ (1× x) = U ∪ (x× 1) ∈ Hn+p(M ×M,M ×M − ∆̇).

3. Poincaré duality. In this section we prove the Poincaré Duality The-
orem for a pair (K,L) of compact subspaces of a (non-orientable) manifold,
where the Poincaré map goes from Čech cohomology of a pair to homology
by taking the cap product with the fundamental class. This is the form of
the duality that we need in the proof of the Lefschetz coincidence theorem.
The Poincaré Duality Theorem is also proved in [Sp2] (a Poincaré map is
defined by slant product and goes from homology to cohomology) and in
[W1], [W2] (for any local coefficient system and some pairs of subspaces).
In our case we will modify Section VI of [B] for the non-orientable case.
Finally, we define the Thom class in the same fashion as in the orientable
case and consider the case of a manifold with boundary. Let us point out
that the Thom class can also be defined using duality as in [G1].
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Let M be a topological n-manifold without boundary. In the rest of
this paper ΓM will denote the orientation system on M : ΓM (x) = Hn(M,
M − x;R). Then for any x ∈ M the module Hn(M,M − x;ΓM ) has the
canonical generator zM,x corresponding in

Hn(M,M − x;ΓM ) = Hn(M,M − x;Z)⊗Z Hn(M,M − x;R)

to γ⊗γ′ where γ is a generator of Hn(M,M−x;Z) = Z and γ′ is its image in
Hn(M,M−x;R) under the map induced by the unique ring homomorphism
Z→ R.

Lemma 3.1 (fundamental class). For any compact set A ⊂M there exists
a unique element zM,A ∈ Hn(M,M − A;ΓM ) such that for any x ∈ A the
natural homomorphism Hn(M,M − A;ΓM ) → Hn(M,M − x;ΓM ) sends
zM,A to zM,x.

P r o o f. It is enough to check the conditions (i)–(iii) of the Bootstrap
Lemma ([Bd; VI, 7.9]).

Now we can follow Chapter VI of [Bd] to reformulate the Poincaré Du-
ality Theorem for the non-orientable case.

For closed subsets L ⊂ K ⊂M we denote by

Ȟp(K,L;G) = lim−→{H
p(U, V ;G) : (U, V ) ⊃ (K,L), U, V open in M}

the Čech cohomology modules. Let (K,L) ⊂ (U, V ) be as above. Then there
is a cap product

∆p(U, V ;G)⊗ [(∆n(V ;Γ ) +∆n(U − L;Γ ))/∆n(U −K;Γ )]
∩→ ∆n−p(U − L,U −K;Γ ⊗G)

given by f ∩ (b+ c) = f ∩ b+ f ∩ c = f ∩ c. But

H∗((∆∗(V ;Γ ) +∆∗(U − L;Γ ))/∆∗(U −K;Γ )) = H∗(U,U −K;Γ ⊗G)

= H∗(M,M −K;Γ ⊗G)

since {V,U − L} is an open cover of U . Thus we get a cap product

Hp(U, V ;G)⊗Hn(M,M −K;ΓM )→ Hn−p(M − L,M −K;Γ ⊗G).

Thus capping with zM,K ∈ Hn(M,M −K;ΓM ) we get a homomorphism

∩zM,K : Hp(U, V ;G)→ Hn−p(M − L,M −K;Γ ⊗G)

which is compatible with the inclusion of (U, V ). Finally, in the direct limit
we get the duality map

DK,L : Ȟp(K,L;G)→ Hn−p(M − L,M −K;Γ ⊗G).

Theorem 3.2 (Poincaré duality). Let M be an n-manifold and let
K ⊃ L be compact subsets of M . Then the cap product map DK,L :
Ȟp(K,L;G)→ Hn−p(M − L,M −K;Γ ⊗G) is an isomorphism.
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P r o o f. Modify Lemmas 8.1, 8.2 and then follow the proof of Theorem 8.3
of Chapter VI in [Bd].

Now let M be a compact manifold with boundary. We will denote by
ΓM the unique extension of the local system ΓintM onto M . Adding an open
collar C to ∂M we get a manifold without boundary M ′ = M ∪C. Applying
Theorem 3.2 to M ′ with K = M and L = ∅ we get

Corollary 3.3. Let M be a compact manifold. Then the cap product

∩zM,∅ : Hp(M ;G)→ Hn−p(M ′,M ′−M ;ΓM ′⊗G) = Hn−p(M,∂M ;ΓM⊗G)

is an isomorphism.

The element zM ∈ Hn(M,∂M ;ΓM ) corresponding to zM,∅ ∈ Hn(M ′,
M ′ −M ;Γ ′M ) (by the excision isomorphism) will be called the fundamental
class of the manifold M with boundary. In the rest of this paper we put
G = R. Then the isomorphism Hp(M ;R)→ Hn−p(M,∂M ;ΓM ) from Corol-
lary 3.3 will be denoted by DM (x) = x ∩ zM .

Lemma 3.4 (Thom class; [Sp2; 4.7]). Let M be a manifold without bound-
ary. There exists a unique element UM ∈ Hn(M × M,M × M − ∆;
(R× ΓM )∗) whose restriction to any fibre is dual to the fundamental class,
i.e. 〈(jx)∗UM , zM,x〉 = 1 where jx : (M,M − x)→ (M ×M,M ×M −∆) is
given by jx(y) = (x, y).

Let ŨM denote the image of UM under the natural homomorphism
k∗ : Hn(M ×M,M ×M −∆; (R× ΓM )∗)→ Hn(M ×M ; (R× ΓM )∗).

Corollary 3.5. If M is closed then 〈ŨM , 1× zM 〉 = 1.

P r o o f. Consider the commutative diagram

(M, ∅) (M ×M, ∅)

(M,M − x) (M ×M,M ×M −∆)

i

²²

l //

k

²²
k //

where l(y) = j(y) = (x, y), x ∈M fixed. Now

〈ŨM , 1× zM 〉= 〈k∗(UM ), l∗(zM )〉= 〈l∗k∗(ŨM ), zM 〉= 〈(kl)∗(ŨM ), zM 〉
= 〈(ji)∗(ŨM ), zM 〉= 〈j∗(ŨM ), i∗(zM )〉= 〈j∗(ŨM ), zM,x〉= 1.

Lemma 3.6. The inclusion (M × M − ∂∆,M × M − ∆) ⊂ (M × M,
M ×M −∆) is a homotopy equivalence.

P r o o f. It is enough to find a deformation H : (M ×M,M ×M −∆)×
I → (M ×M,M ×M − ∆) satisfying H0 = identity and Ht(M ×M) ⊂
M ×M − ∂∆, t ∈ (0, 1]. Then H1 : (M ×M,M ×M −∆) ⊂ (M ×M − ∂∆,
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M × M − ∆) is a homotopy inverse to our inclusion. First we define a
homotopy h : R+ × R+ × I → R+ × R+ by

h(t, s, τ) =
{

(t+ (1− t− s)τ/2, s+ (1− t− s)τ/2) for t+ s ≤ 1,
(t, s) for t+ s ≥ 1.

This homotopy shifts R+ × R+ into R+ × R+ − {(0, 0)}. Now we fix a
collar ∂M × R+ in the manifold M , identify ∂M × R+ × ∂M × R+ =
∂M × ∂M × R+ × R+ and define a deformation of ∂M × ∂M × R+ × R+

by H(x, y, t, s, τ) = (x, y, h(t, s, τ max(0, 1 − d(x, y))). Since the carrier of
this homotopy is locally compact, it extends (by identity) to the desired
deformation of M ×M .

Corollary 3.7. The inclusion (intM × intM, intM × intM − ∆) ⊂
(M ×M,M ×M −∆) induces a (co-) homology group isomorphism.

P r o o f. The inclusion (intM × intM, intM × intM − ∆) ⊂ (M ×M
− ∂∆,M ×M −∆) is excisive and (M ×M − ∂∆,M ×M −∆) ⊂ (M ×M,
M ×M −∆) is a homotopy equivalence (Lemma 3.6).

Thus we get a commutative diagram of isomorphisms

Hn(M ×M,M ×M −∆; (R× ΓM )∗)

Hn(M × intM,M × intM −∆; (R× ΓM )∗) Hn(intM ×M, intM ×M −∆; (R× ΓM )∗)

Hn(intM × intM, intM × intM −∆; (R× ΓM )∗)

vvmmmmmmmmmmmm QQQQQQQQQQQQ((
QQQQQQQQQQQ(( vvmmmmmmmmmmm

(the upper arrows are induced by excision maps) and denote by

UM

U ′′M U ′M

UintM

zzuuuu IIII$$

IIII$$ zzuuuu

the elements corresponding to the Thom class UintM ∈ Hn(intM × intM,

intM × intM −∆; (R× ΓM )∗) (Lemma 3.4). Let Ũ ′M , Ũ ′′M , ŨM denote the
restrictions of these classes to Hn(intM×(M,∂M)), Hn((M,∂M)× intM),
Hn((M ×M), ∂(M ×M)− ∂∆) respectively.

Lemma 3.8. We have

〈Ũ ′M , 1× zM 〉 = 1

(here 1 ∈ H0(intM ;R) is the unit , and zM ∈ Hn(M,∂M ;ΓM ) is the fun-
damental class).
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P r o o f. Consider the commutative diagram

(M,∂M) (intM ×M, intM × ∂M)

(M,M − x) (intM ×M, intM ×M −∆)

l //

i

²²
k

²²
j //

where l(y) = j(y) = (x, y), x ∈ intM fixed. Now

〈Ũ ′M , 1× zM 〉 = 〈k∗(U ′M ), l∗(zM )〉 = 〈U ′M , k∗l∗(zM )〉 = 〈U ′M , j∗i∗(zM )〉
= 〈j∗(U ′M ), zM,x〉 = 〈j∗(U ′intM ), zintM,x〉 = 1,

where the last equality follows from Lemma 3.4.

We will use the following notation: for a ∈ H∗M and x ∈ H∗M we
denote the corresponding elements by a ∈ H∗(intM) and x ∈ H∗(intM).

Lemma 3.9. Let M be a compact n-manifold. Then for any x∈Hp(M ;R)
and a ∈ Hp(M ;R),

〈Ũ ′M , a× (x ∩ zM )〉 = (−1)pn〈x, a〉.

P r o o f. We have

〈Ũ ′M , a× (x ∩ zM )〉 = 〈Ũ ′M , (1 ∩ a)× (x ∩ zM )〉 (2.3)

= 〈Ũ ′M , (1× x) ∩ (a× zM )〉 (2.2)

= 〈ŨintM ∪ (1× x), a× zM 〉 (2.4)

= 〈ŨintM ∪ (x× 1), a× zM 〉
= 〈Ũ ′M ∪ (x× 1), a× zM 〉 (2.2)

= 〈Ũ ′M , (x× 1) ∩ (a× zM )〉 (2.3)

= (−1)pn〈Ũ ′M , (x ∩ a)× (1 ∩ zM )〉
= (−1)pn〈x, a〉〈Ũ ′M , 1× zM 〉 (3.8)

= (−1)pn〈x, a〉 = (−1)pn〈x, a〉.

Lemma 3.10. Let M be a compact n-manifold. Then for any x ∈ Hp(M,
∂M ;R) and a ∈ Hp(M,∂M ;R),

〈Ũ ′′M , a× (x ∩ zM )〉 = (−1)pn〈x, a〉,
where x∩zM is regarded as an element of Hn−p(intM ;ΓM ) =Hn−p(M ;ΓM).
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P r o o f. We have

〈Ũ ′′M , a× (x ∩ zM )〉 = 〈Ũ ′′M , (1 ∩ a)× (x ∩ zM )〉 (2.3)

= 〈Ũ ′′M , (1× x) ∩ (a× zM )〉
= 〈ŨM , (1× x) ∩ (a× zM )〉 (2.2)

= 〈ŨM ∪ (1× x), a× zM 〉 (2.4)

= 〈ŨM ∪ (x× 1), a× zM 〉 (2.2)

= 〈ŨM , (x× 1) ∩ (a× zM )〉 (2.3)

= (−1)pn〈UM , (x ∩ a)× (1 ∩ zM )〉
= (−1)pn〈x, a〉〈Ũ ′M , 1× zM 〉 (3.8)

= (−1)pn〈x, a〉.

A map g : M → N between two n-manifolds M,N is called orientation
true if each α ∈ π1M preserves a local orientation of M iff gα ∈ π1N pre-
serves a local orientation of N (see [O]). Notice that then any isomorphism
of R-modules φx : ΓM (x)→ ΓN (gx) (for fixed x) admits a unique extension
to a morphism of local systems φ : ΓM → ΓN covering g. For R = Z (the
integers) there are exactly two such morphisms. In the next sections we will
associate with each orientation true map g a morphism φ obtained from
one of the above two morphisms induced by the unique ring homomorphism
Z→ R.

4. The Lefschetz Theorem. In this section we give two extensions
of the coincidence index and Lefschetz number onto pairs of maps f, g :
(M,∂M)→ (N, ∂N) where M,N are compact n-manifolds and g is orienta-
tion true. They generalize the classical cases: M , N closed oriented [V] and
oriented [BS]. In the first approach we assume g(∂M) ⊂ ∂N and we drop a
similar assumption on f . Then we assume f(∂M) ⊂ ∂N . The indices thus
obtained may be different as the following simple example illustrates. Let
f, g : (Dn, Sn−1) → (Dn, Sn−1) be maps of degree k, l respectively. If we
require that only g preserves Sn−1 then f is homotopic to the constant map
and we obtain the index (−1)nl. If we change the roles of f and g the index
obtained equals k. We will show that in general the difference between these
two indices is equal to the index of the restrictions f|, g| : ∂M → ∂N . In
particular, these two indices are equal if M is closed.

First let us focus on the first generalization. We consider f, g : M → N
where g is orientation true and g(∂M) ⊂ ∂N . Since f is homotopic to a
map into intN and any two such deformations are homotopic in intN , we
may assume that f(M) ⊂ intN .
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We define the index of the pair f, g as the image of the fundamental class
zM ∈ Hn(M,∂M ;ΓM ) under the sequence of homomorphisms

Hn(M,∂M ;ΓM )
d′∗→ Hn(M × (M,∂M);R× ΓM )

(f×g)∗−→ Hn(intN × (N, ∂N);R× ΓN )
〈Ũ ′N ,·〉−→ R

and set ind′(f, g) = 〈Ũ ′N , (f × g)∗d′∗(zM )〉. This is an invariant with re-
spect to homotopies ft, gt satisfying gt(∂M) ⊂ ∂N . Moreover, ind′(f, g)
6= 0 implies f(x) = g(x) for an x ∈ M . Its sign depends on the choice of a
morphism of local systems compatible with g.

We are going to define a suitable Lefschetz number.
Consider the homomorphisms

Hq(N ;R)
f∗→ Hq(M ;R) DM−→ Hn−q(M,∂M ;ΓM )

g∗→ Hn−q(N, ∂N ;ΓN )
D−1
N−→ Hq(N ;R)

and define θ′q = D−1
N g∗DMf

∗ (q = 0, . . . , n).
From now on we assume that R is a field. We define the Lefschetz number

of the pair f, g by

L′(f, g) =
n∑
q=0

(−1)q tr θ′q

where the right side denotes the alternating sum of the traces of the endo-
morphisms θq of the finite-dimensional vector spaces Hp(N ;R).

We are going to prove

Theorem 4.1 (normalization). Let f, g : M → N be a pair of maps be-
tween compact n-manifolds with g orientation true and g(∂M) ⊂ ∂N . Then

L′(f, g) = ind′(f, g).

In the proof we will follow [V] (Chapter 6).
Notice that in the definition of L′(f, g) we may consider the sequences

Hq(intN ;R)
f∗→ Hq(M ;R) DM−→ Hn−q(M,∂M ;ΓM )

g∗→ Hn−q(N, ∂N ;ΓN )
D−1
N−→ Hq(intN ;R)

since we may assume that f(M) ⊂ intN .
First we fix homogeneous bases of linear spaces over R:

ai ∈H∗(N ;R), a′i ∈H∗(N, ∂N ;ΓN ), xi ∈H∗(N ;R), x′i ∈H∗(N, ∂N ;Γ ∗N )

such that:

• the bases {ai}, {xi} are dual via the Kronecker index,
• the bases {a′i}, {x′i} are dual via the Kronecker index, and
• DN (xi) = a′i.
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Similarly we fix bases

bi ∈H∗(M ;R), b′i ∈H∗(M,∂M ;ΓM ), yi ∈H∗(M ;R), y′i ∈H∗(M,∂M ;Γ ∗M )

(here DM (yi) = b′i). Suppose that the homomorphisms

f∗ : H∗(intN ;R)→ H∗(M ;R), g∗ : H∗(N, ∂N ;Γ ∗N )→ H∗(M,∂M ;Γ ∗M )

are given by f∗(xj) =
∑
k γjkyk and g∗(x′j) =

∑
i βjiy

′
i. Then the dual

homomorphisms

f∗ : H∗(M ;R)→ H∗(intN ;R), g∗ : H∗(M,∂M ;ΓM )→ H∗(N, ∂M ;ΓN )

are given by f∗(bi) =
∑
k γkiak and g∗(b′i) =

∑
j βjia

′
j .

Lemma 4.2 (cf. [V; 6.10]). For fixed p the following equality holds in
Hn(intN × (N, ∂N);R× ΓN ):

∑

i

ai × g∗DMf
∗(xi) =

∑

j

(f × g)∗(bj × b′j)

where i runs over the set Ip = {i : dim ai = p} and j runs over the set
Jp = {j : dim bj = p}.

P r o o f. It is enough to prove the similar equality
∑

i

ai× g∗DMf
∗(xi) =

∑

j

(f × g)∗(bj × b′j) in Hn(N × (N, ∂N);R×ΓN ),

where f is considered as a map into N .
Consider g∗DMf

∗(xi) ∈ Hn−p(N, ∂N ;ΓN ). Since

〈x′j , g∗DMf
∗(xi)〉 = 〈g∗(x′j), DMf

∗(xi)〉 =
〈∑

k

βjky
′
k,
∑

l

γilb
′
l

〉

=
∑

k,l

βjkγil〈y′k, b′l〉 =
∑

k

βjkγik,

we get

g∗DMf
∗(xi) =

∑

j,k

βjkγika
′
j .

Now
∑

i

ai × g∗DMf
∗(xi) =

∑

i

(
ai ×

(∑

j,k

βjkγika
′
j

))
=
∑

i,j,k

βjkγik(ai × a′j).

On the other hand,
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∑

j

(f × g)∗(bj × b′j) =
∑

j

f∗(bj)× g∗(b′j)

=
∑

j

((∑

i

γijai

)
×
(∑

s

βsja
′
s

))

=
∑

j,i,s

γijβsj(ai × a′s)),

which implies our lemma.

Lemma 4.3 (cf. [V; 6.11]). Under the above notations,

d′∗(zM ) =
∑

j∈J
(−1)|bj |·|b

′
j |bj × b′j

where |b| denotes the dimension of b ∈ H∗(M ;R) and J =
⋃
Jp.

P r o o f. We rewrite the proof of (6.11) in [V]:

〈yk × y′l, d′∗(zM )〉 = 〈yk ∪ y′l, zM 〉 = (−1)|yk|·|y
′
l|〈y′l ∪ yk, zM 〉

= (−1)|yk|·|y
′
l|〈y′l, yk ∩ zM 〉 = (−1)|bk|·|b

′
l|〈y′l, b′k〉

= (−1)|bk|·|b
′
l|δkl = (−1)|bk|·|b

′
k|δkl.

P r o o f o f T h e o r e m 4.1. Fix r = 0, . . . , n. Then

tr θ′r =
∑

i∈Ir
〈θ′r(xi), ai〉

=
∑

i∈Ir
〈D−1

N g∗DMf
∗(xi), ai〉 (3.9)

=
∑

i∈Ir
(−1)nr〈Ũ ′N , ai × g∗DMf

∗(xi)〉 (4.2)

=
∑

j∈Ir
(−1)nr〈Ũ ′N , (f × g)∗(bj × b′j)〉.

Now

L(f, g) =
n∑
r=0

(−1)r tr θ′r (by the above equality)

=
n∑
r=0

(−1)r
∑

j∈Ir
(−1)nr〈Ũ ′N , (f × g)∗(bj × b′j)〉

(since nr + r ≡ |bj | · |b′j | (mod 2) for j ∈ Jr)
=
〈
Ũ ′N , (f × g)∗

(∑

j∈J
(−1)|bj |·|b

′
j |bj × b′j

)〉
(4.3)

= 〈Ũ ′N , (f × g)∗(d′∗(zM ))〉 = ind′(f, g).
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Corollary 4.4. If f, g : M → N where g is orientation true and
g(∂M) ⊂ ∂N then L′(f, g) 6= 0 implies that f and g have a coincidence.

Now we are going to define an alternative index and Lefschetz number.
We consider a pair f, g : M → N where f(∂M) ⊂ ∂N and g is orientation
true. The definitions will be similar to the previous ones but the symmetry
is not full (g is orientation true in both cases) hence we will sketch the proof
of the second version of the Lefschetz theorem.

Consider a pair f, g : M → N where f(∂M) ⊂ ∂N and g is orientation
true. We define the coincidence index of this pair as the image of the funda-
mental class zM ∈ Hn(M,∂M ;ΓM ) under the sequence of homomorphisms

Hn(M,∂M ;ΓM )
d′′∗−→ Hn((M,∂M)× intM ;R× ΓM )

(f×g)∗−→ Hn((N, ∂N)× intN ;R× ΓN )
〈Ũ ′′N ,·〉−→ R

and set ind′′(f, g) = 〈Ũ ′′N , (f × g)∗d′′∗(zM )〉. This is an invariant with respect
to homotopies ft, gt satisfying ft(∂M) ⊂ ∂N . Moreover, ind′′(f, g) 6= 0
implies f(x) = g(x) for an x ∈M .

Now we define the corresponding Lefschetz number. We consider the
homomorphisms

Hq(N, ∂N ;R)
f∗→ Hq(M,∂M ;R) DM−→ Hn−q(M ;ΓM )

g∗→ Hn−q(N ;ΓN )
D−1
N−→ Hq(N, ∂N ;R)

and set θ′′q = D−1
N g∗DMf

∗ (q = 0, . . . , n).
We define the second Lefschetz number as

L′′(f, g) =
n∑
q=0

(−1)q tr θ′′q .

Theorem 4.5 (normalization). Let f, g : M → N be a pair of maps
between compact n-manifolds with g orientation true and f(∂M) ⊂ ∂N .
Then

L′′(f, g) = ind′′(f, g).

Notice that in the definition of L′′(f, g) we may consider the sequences

Hq(N, ∂N ;R)
f∗→ Hq(M,∂M ;R) DM−→ Hn−q(intM ;ΓM )

g∗→ Hn−q(intN ;ΓN )
D−1
N−→ Hq(N, ∂N ;R)

since we may assume that g(M) ⊂ intN .
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First we fix homogeneous bases of linear spaces over R:

ai ∈H∗(N, ∂N ;R), a′i ∈H∗(N ;ΓN ), xi ∈H∗(N, ∂N ;R), x′i ∈H∗(N ;Γ ∗N )

such that:

• the bases {ai}, {xi} are Kronecker dual,
• the bases {a′i}, {x′i} are Kronecker dual, and
• DN (xi) = a′i.

Similarly we fix bases

bi ∈H∗(M,∂M ;R), b′i ∈H∗(M ;ΓM ), yi ∈H∗(M,∂M ;R), y′i ∈H∗(M ;Γ ∗M )

(here DM (yi) = b′i).
Suppose that the homomorphisms

f∗ : H∗(N, ∂N ;R)→ H∗(M,∂M ;R), g∗ : H∗(N ;Γ ∗N )→ H∗(M ;Γ ∗M )

are given by f∗(xj) =
∑
k γjkyk and g∗(x′j) =

∑
i βjiy

′
i. Then the dual

homomorphisms

f∗ : H∗(M,∂M ;R)→ H∗(N, ∂N ;R), g∗ : H∗(M ;ΓM )→ H∗(N ;ΓN )

are given by f∗(bi) =
∑
k γkiak and g∗(b′i) =

∑
j βjia

′
j .

Lemma 4.6 (cf. [V; 6.10]). For fixed p the following equality holds in
Hn((N, ∂N)×N ;R× ΓN ):

∑

i

ai × g∗DMf
∗(xi) =

∑

j

(f × g)∗(bj × b′j)

where i runs over the set Ip = {i : dim ai = p} and j runs over the set
Jp = {j : dim bj = p}.

Lemma 4.7 (cf. [V; 6.11]). Under the above notations, d′∗(zM ) =∑
j∈J(−1)|bj |·|b

′
j |bj × b′j where |b| denotes the dimension of b ∈ H∗(M ;R).

P r o o f o f T h e o r e m 4.5. Fix r = 0, . . . , n. Then

tr θ′′r =
∑

i∈Ir
〈θ′′r (xi), ai〉

=
∑

i∈Ir
〈D−1

N g∗DMf
∗(xi), ai〉 (3.10)

=
∑

i∈Ir
(−1)nr〈Ũ ′′N , ai × g∗DMf

∗(xi)〉 (4.6)

=
∑

j∈Jr
(−1)nr〈Ũ ′′N , (f × g)∗(bj × b′j)〉.
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Now

L′′(f, g) =
n∑
r=0

(−1)r tr θ′′r (by the above equality)

=
n∑
r=0

(−1)r
∑

j∈Jr
(−1)nr〈Ũ ′′N , (f × g)∗(bj × b′j)〉

(since nr + r ≡ |bj | · |b′j | (mod 2) for j ∈ Jr)

=
〈
Ũ ′′N , (f × g)∗

(∑

j∈J
(−1)|bj |·|b

′
j |bj × b′j

)〉
(4.7)

= 〈Ũ ′′N , (f × g)∗(d′′∗(zM ))〉 = ind′′(f, g)〉.
Corollary 4.8. If f, g : M → N where g is orientation true and

f(∂M) ⊂ ∂N then L′′(f, g) 6= 0 implies that f, g have a coincidence.

Now we are going to show a theorem connecting the above two Lefschetz
numbers. We notice (cf. [Bd; VI.9.1]) that the image of the fundamental
class zM ∈ Hn(M,∂M ;ΓM ) under the connecting homomorphism of the
pair (M,∂M) is the fundamental class of the boundary: ∂∗(zM ) = z∂M ∈
Hn−1(∂M ;ΓM ).

Theorem 4.9. Let f, g : (M,∂M)→ (N, ∂N), g orientation true. Then
L′(f, g)− L′′(f, g) = L(∂f, ∂g).

P r o o f. Consider the commutative (up to sign) diagram

Hq−1(∂N ;R) Hq(N, ∂N ;R) Hq(N ;R) Hq(∂N ;R)

Hq−1(∂M ;R) Hq(M,∂M ;R) Hq(M ;R) Hq(∂M ;R)

Hn−q(∂M ;Γ∂M ) Hn−q(M ;ΓM ) Hn−q(M,∂M ;ΓM ) Hn−1−q(∂M ;Γ∂M )

Hn−q(∂N ;Γ∂N ) Hn−q(N ;ΓN ) Hn−q(N, ∂N ;ΓN ) Hn−1−q(∂N ;Γ∂N )

Hq−1(∂N ;R) Hq(N, ∂N ;R) Hq(N ;R) Hq(∂N ;R)

// //

f∗

²²

(−1)q

//

f∗

²²

//

f∗

²²

(−1)q

f∗

²²
// //

D∂M

²²

//

DM

²²

//

DM

²²
D∂M

²²
// //

g∗

²²

(−1)q

//

g∗

²²

//

g∗

²²

(−1)q

g∗

²²
// //

D−1
∂N

²²

//

D−1
N

²²

//

D−1
N

²²
D−1
∂N

²²
// // // //

Composing the vertical arrows we get a self-map of the long exact se-
quence
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Hq−1(∂N ;R) Hq(N, ∂N ;R) Hq(N ;R) Hq(∂N ;R)

Hq−1(∂N ;R) Hq(N, ∂N ;R) Hq(N ;R) Hq(∂N ;R)

// //

θ∂q−1

²²

//

θ′′q
²²

//

θ′q
²²

θ∂q
²²

//

// // // // //

which implies
∑∞
q=0(−1)q[tr θ′′q − tr θ′q + tr θ∂q ] = 0, hence

∞∑
q=0

(−1)q tr θ′′q −
∞∑
q=0

(−1)q tr θ′q +
∞∑
q=0

(−1)q tr θ∂q = 0

and finally

L′′(f, g)− L′(f, g) + L(∂f, ∂g) = 0.

The Lefschetz coincidence number for manifolds with boundary in the
oriented case was introduced in [M]. Notice that Λ(f, g) defined in that
paper is equal to our (−1)nL′′(g, f).

The above theorem implies that in the closed case both Lefschetz
numbers L′(f, g) and L′′(f, g) are equal and it would be natural to expect
that in this case this number satisfies L(f, g) = (−1)nL(g, f) (as in the
oriented case). We will show that this equality is true if g is the identity
map. However, we will give examples showing that it is not true in
general.

Definition 4.10. Let f : M → M be an orientation true map be-
tween closed n-manifolds. We define the degree of f as the natural number
k satisfying f∗(zM ) = k · zN .

We denote it by deg(f). The sign of this number depends on the choice
of a morphism of the local systems. However, in the case of coverings there
is a natural morphism.

Lemma 4.11. If p : M̃ →M is a k-fold covering then deg(p) = k.

P r o o f. Consider the commutative diagram

Hn(M̃ ;Γ
M̃

) Hn(M̃, M̃ − p−1(x);Γ
M̃

) =
⊕
Hn(Ũα, Ũα − x̃α;Γ

M̃
)

Hn(M ;ΓM ) Hn(M,M − x;ΓM ) = Hn(U,U − x;ΓU )

//

²² ²² ²²
∼=

//

and notice that each fundamental class zα ∈ Hn(Ũα, Ũα − x̃α;Γ
M̃

) is sent
by the rightmost vertical arrow to zU,x.
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Corollary 4.12. If pM : M̃ → M and pN : Ñ → N are k-fold cover-
ings and the diagram

Hn(M̃ ;Γ
M̃

) Hn(Ñ ;Γ
Ñ

)

Hn(M ;ΓM ) Hn(N ;ΓN )

f̃∗ //

pM∗

²²
pN∗

²²
f //

commutes then deg(f) = deg(f̃).

P r o o f. Indeed,

k · deg(f) = deg(pM ) · deg(f) = deg(fpM ) = deg(pN f̃ )

= deg(pN ) · deg(f̃ ) = k · deg(f̃ ).

Example 4.13. Let f̃k : S2 → S2 be an odd map (f̃k(−x) = −f̃k(x))
of degree k (k must then be an odd number). This map induces a map
fk : RP 2 → RP 2. By the above corollary deg(fk) = deg(f̃k) = k. On the
other hand, fk induces an isomorphism of fundamental groups and hence is
orientation true. Let us fix two odd integers k, l and compute the Lefschetz
number L(fk, fl) (with rational coefficients R = Q). Since RP 2 is Q-acyclic,
only the sequence

H0(RP 2;Q)
f∗k→ H0(RP 2;Q)→ H2(RP 2;Γ )

f∗l→ H2(RP 2;Γ )→ H0(RP 2;Q)

may have a non-zero contribution to L(fk, fl). Thus L(fk, fl) = deg(fl) = l.
But on the other hand, L(fl, fk) = deg(fk) = k.

Example 4.14. The following example shows that L(f, g) 6= 0 does not
imply L(g, f) 6= 0. Let p, c : S2 → RP 2 where p is the projection and c is a
constant map. It is easy to see that L(p, c) = 0 but L(c, p) = 2.

Despite the above examples, we do have the following positive result:

Proposition 4.15. Let f : M → M be an orientation true map of a
closed n-manifold. Then L(id, f) = (−1)nL(f, id).

P r o o f. Let us denote by (fq, R), (fq, R), (fq, ΓM ) the self-homomor-
phisms induced by f on Hq(M ;R),Hq(M ;R) and Hq(M ;ΓM ) respectively.
Then certainly tr(fq, R) = tr(fq, R).

By the definition given at the beginning of this section,

L(f, id) =
∞∑
q=0

(−1)q tr(fq, R), L(id, f) =
∞∑
q=0

(−1)q tr(fn−q, ΓM ).

Since (−1)q = (−1)n(−1)n−q, it remains to show that
∑∞
q=0(−1)q tr(fq, R)

=
∑∞
q=0(−1)q tr(fq, ΓM ).
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LetK be a cell structure ofM . Recall thatH∗(M ;Γ ) (Γ = R or ΓM ) may
be obtained from the chain complex (Ci, ∂i) where Ci = Hi(Ki,Ki−1;Γ )
with suitable boundary operators ∂i [Wh]. These boundary operators
may be different in the two cases considered but certainly, by excision,
Hi(Ki,Ki−1;Γ ) does not depend on Γ . Let fi : Ci → Ci be the in-
duced maps at the chain level. Now we recall that the Lefschetz num-
ber of a chain map and of the induced homology map are equal. Thus∑∞
i=0(−1)i tr(fi) =

∑∞
i=0(−1)i tr(fi, Γ ). Since the left hand side of this

equality does not depend on the boundary operator, the right hand sides
are equal in the two cases: Γ = R and Γ = ΓM , giving the desired equality.

R e m a r k s. 1) More explicit computations of L(f, g) have been done
for maps f , g between compact surfaces with g orientation true in [GO].
These computations rely basically on Lemma 4.3 or more precisely on its
dual which is Proposition 2.3 of [G1].

2) It is no surprise that the numbers L(f, g) and L(g, f) may be differ-
ent. Notice that in our definition of L(f, g) the homology homomorphism
induced by the map (f, g) has values in the group Hn(M ×M ;R × ΓM )
where the coefficients are not symmetric in the two coordinates. In fact,
L(f, g) and L(g, f) are related to two different geometric situations. More
specifically, the Lefschetz coincidence number is the sum of the indices of
all coincidence points (we may assume that their number is finite). To com-
pute these indices, we first fix a local orientation at a coincidence base point
x0 ∈ M and a local orientation at y0 = f(x0) = g(x0) ∈ N (compare the
definition of semi-index in the next section). Let x1 be another coincidence
point. We join these two points with a path γ and we translate the local
orientation from x0 to x1 along γ. To get the contribution of the coincidence
point x1 to L(f, g) and L(g, f) we translate the local orientation from y0

to y1 = f(x1) = g(x1) along the path g(γ) or f(γ) respectively. If x0 and
x1 do not belong to the same Nielsen class then these paths may not be
homotopic and may give different local orientations.

5. Coincidence index and semi-index. In this section we will define
a local coincidence index for a pair of maps f, g : M → N where M,N are
(possibly non-compact) n-manifolds without boundary, the coincidence set
is compact, and the map g is orientation true. We will also consider homo-
topies F,G : M×I → N with Φ(F,G) = {(x, t) ∈M×I : F (x, t) = G(x, t)}
compact. We will call them Φ-compact pairs of maps and Φ-compact pairs
of homotopies respectively. For any clopen subset C ⊂ Φ(f, g) we will de-
fine the coincidence index generalizing the index from the previous section
(for M , N closed, C = Φ(f, g)). We will show that for any Nielsen
class the absolute value of this index equals the coincidence semi-index
from [DJ], [Je].
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Let U ⊂M be an open subset such that U ∩ Φ(f, g) = C is compact.

Definition 5.1. The coincidence index of C, denoted by ind(f, g;C),
is the image of zM,C by the composition

Hn(M,M − C;ΓM ) = Hn(U,U − C;ΓM )
(f,g)∗−→ Hn(N ×N,N ×N −∆;R× ΓN )

〈U ′N ,·〉−→ R.

The above definition is correct (does not depend on the choice of U) and
it is easy to see that it is homotopy invariant: for any Φ-compact homotopy
F,G : M × I → N and any clopen set C ⊂ Φ(F,G), ind(Ft, Gt;Ct) does not
depend on t.

Now we recall the definition of the semi-index [DJ], [Je].
A pair of maps f, g : M → N will be called transverse if any coincidence

point x0 ∈ Φ(f, g) admits a neighbourhood x0 ∈ U ⊂ N such that f is con-
stant on U while the restriction g|U : U → g(U) is a homeomorphism. Any
pair of maps is homotopic to a transverse pair ([Je; 1.1]). Two coincidence
points x0, x1 ∈ Φ(f, g) are called Nielsen related if there exists a path ω
joining them in M such that fω and gω are homotopic in N as paths with
fixed ends. This relation splits the coincidence set into Nielsen classes.

Assume that A is a Nielsen class of a transverse pair f, g : M → N . Since
A is compact and discrete, A is finite. Let ω be a path joining the points
x0, x1 ∈ A and establishing the Nielsen relation between them and let U
be a neighbourhood of x0 where f is constant and g is a homeomorphism.
Let us fix a generator α0 ∈ Hn(U,U − x0;Z) = Hn(M,M − x0;Z) = Z and
let αt ∈ Hn(M,M − ω(t);Z) be its translation along ω. On the other hand,
β0 = g∗(α0) ∈ Hn(g(U), g(U) − g(x0);Z) = Hn(N,N − g(x0);Z) is also a
generator. Let βt = Hn(N,N − gω(t);Z) be its translation along gω. We
say that ω establishes the R-relation between x0 and x1 if g∗α1 = −β1 ∈
Hn(N,N − g(x1);Z) (we then write x0Rx1).

Let us write

A = {a1, b1, . . . , ak, bk; c1, . . . , cs}
where aiRbi (i = 1, . . . , k) but ciRcj for no i 6= j. Finally, we define the
semi-index of the class A as |ind|(f, g;A) = s. In [DJ] it was proved that the
above definition is correct (i.e. the number s is the same for any presentation
of the class A as above) and that this semi-index is a homotopy invariant
(in particular, if |ind|(f, g;A) 6= 0 then the class A cannot disappear during
any homotopy).

The following lemma gives an interpretation of the coincidence index
(from Section 4) at a transverse coincidence point. In the rest of this section
R = Z (the integers).
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Lemma 5.2. Let x0 be a transverse coincidence point of f, g : M → N ,
g be orientation true and let U be a neighbourhood of x0 where g is a homeo-
morphism and f is constant. Let g∗ denote the composition of isomorphisms

Hn(M,M − x0;ΓM ) = Hn(U,U − x0;ΓM )
(g|U )∗−→ Hn(g(U), g(U)− g(x0);ΓN ) = Hn(N,N − g(x0);ΓN ).

Then g∗(zM,x0) = (ind(f, g;x0))zN,g(x0).

P r o o f. Consider the commutative diagram

Hn(U,U − x0;ΓU ) Hn(N ×N,N ×N −∆;Z × ΓN )

Hn(N,N − g(x0);ΓN )

(f,g)∗ //

g∗
VVVVVVVVVVVVVVVVVV++

if(x0)

OO

where the vertical arrow is induced by the inclusion y → (f(x0), y). Since
zN,g(x0) is a generator, we may write g∗(xM,x0) = r · zN,g(x0). Since g is a
homeomorphism near x0, we have r = +1 or −1. Finally,

ind(f, g;x0) = 〈UN , (f, g)∗zM,x0〉 = 〈UN , (if(x0))∗g∗(zM,x0)〉
= 〈(if(x0))

∗UN , r · zN,g(x0)〉 = r〈(if(x0))
∗UN , zN,g(x0)〉 = r.

Lemma 5.3. Let f, g : M → N be a transverse pair of maps with g
orientation true. Let x0, x1 ∈ Φ(f, g) be Nielsen related. Then

x0Rx1 iff ind(f, g;x0) = − ind(f, g;x1).

P r o o f. Let ω be a path establishing the Nielsen relation between x0

and x1. We will show that ω does not establish the R-relation iff ind(f, g;x0)
= ind(f, g;x1).

Let us fix a continuous family of embeddings σt : ∆n → M such that
ω(t) ∈ σt(int∆n) and coefficients γt ∈ Γ (σt(v0)) satisfying [γt · σt] =
zM,ω(t) ∈ Hn(M,M −ω(t);ΓM ). These singular simplices σt may be chosen
so small that gσ0 and gσ1 are also embeddings. We do not loose generality
assuming that ind(f, g;x0) = +1. Then g∗(zM,x0) = zN,g(x0), in other words,
zN,g(x0) = [φ(γ0) · gσ0] ∈ Hn(N,N − g(x0);ΓN ) (φ : ΓM → ΓN denotes a
fixed morphism associated with the orientation true map g). It remains to
show that zN,g(x1) = [φ(γ1) · gσ1] ∈ Hn(N,N − g(x1);ΓN ) iff ω does not
establish the R-relation.

Consider a continuous family of embeddings τt : ∆n → N and coefficients
δt ∈ Γ (τt(v0)) such that gω(t) ∈ int τt, δ0 = φ(γ0), τ0 = gσ0, τ1(v0) =
gσ1(v0). Then [δ0 · τ0] = zN,g(x0) ∈ Hn(N,N − g(x0);ΓN ) implies [δ1 · τ1] =
zN,g(x1) ∈ Hn(N,N − g(x1);ΓN )

It remains to find out when

(5.4) [δ1 · τ1] = [φ(γ1) · gσ1] ∈ Hn(N,N − g(x1);ΓN ).
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If the simplices σt and τt are chosen sufficiently small then the paths
t → Zτt(v0) and t → gσt(v0) are homotopic, hence δ0 = φ(γ0) implies
δ1 = φ(γ1). Thus (5.4) holds iff [τ1] = [gσ1] ∈ Hn(N,N − g(x1);Z). But the
last equality means exactly that ω does not establish the R-relation.

Theorem 5.5. Let A be a Nielsen class of the pair f, g : M → N (where
g is orientation true). Then |ind(f, g;A)| = |ind|(f, g;A).

P r o o f. Since both sides are homotopy invariant, we may assume that
f, g is a transverse pair. Fix a presentation

A = {a1, b1, . . . , ak, bk; c1, . . . , cs}.
Now 5.2 implies ind(f, g; ai) = − ind(f, g; bi) and

ind(f, g; c1) = . . . = ind(f, g; cs) (= +1 or − 1).

Thus |ind(f, g;A)| = s = |ind|(f, g;A).

Finally, let us sketch how one may obtain an index via obstruction theory.
We will not require here g to be orientation true, but we will consider only
sets C ⊂ Φ(f, g) which are Nielsen classes. To simplify the formulations we
only deal with maps f, g : M → N between closed manifolds.

For any Nielsen coincidence class F ⊂ Φ(f, g) we will define an index
which is either an integer or an element of Z2.

Proposition 5.6. Given f, g as above, the obstruction to deforming f, g
to a coincidence free pair of maps lies in Hn(M ;Z[π]) where π = π1(N) and
the local coefficient system is given by αθ = sign(g#(α))f#(α)θg#(α)−1 for
α ∈ π1(M) and θ ∈ π.

P r o o f. The pair f, g is homotopic to a coincidence free pair iff the
following diagram admits a lift which makes it homotopy commutative:

N ×N −∆

f, g : M N ×N
²²

//

Now the result follows from Theorem 3.1 of [FH] and obstruction theory.

Proposition 5.7. The group Hn(M ;Z[π]) is isomorphic to a sum of
Z’s and Z2’s where the summands are indexed by the Reidemeister classes.

P r o o f. By Poincaré duality (see [W1]), we have Hn(M ;Z[π]) ≈
H0(M, Z̃[π]) where the homology is with the local coefficient system given
by the action

α ◦ θ = sign(α) sign(g#(α))f#(α)θg#(α)−1.
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But H0 is just the quotient of Z[π] by this action. It turns out that this
quotient is either Z or Z2; it is Z2 if and only if there exists an α such that
f#(α)θg#(α)−1 = θ and sign(α) sign(g#(α)) = −1. So the result follows.

Definition 5.8. Given a Nielsen coincidence class F , let [θ] be the
Reidemeister class which corresponds to F . We define i(f, g;F ) to be the
coefficient of [θ] ∈ H0(M ; Z̃[π]) which corresponds to the obstruction to
deforming f, g to a coincidence free pair.

More details about this definition can be found in [G1].

R e m a r k s. 1) The index of a Nielsen class F can also be defined as
above in the situation where f, g : K →M are two continuous maps from a
complex K to a manifold (see [G2]).

2) If g is orientation true then all the indices are integers.
3) The classes which have index in Z2 are called defective in [DJ] and

in [G1].

6. Coincidence producing maps. It is an immediate consequence of
the classical Lefschetz fixed point theorem that any compact acyclic ANR
has the fixed point property [B]. Here we prove a similar result for coin-
cidences. We recall [BS] that a map g : M → N is called a coincidence
producing map if any f : M → N has a coincidence with g.

Theorem 6.1 (cf. [BS; 7.1]). If any of the closed manifolds M , N is
R-acyclic (i.e. Hi(X;R) = 0 for i > 0) over a field R then any orientation
true map g : M → N with deg(g) 6= 0 is coincidence producing.

P r o o f. Let f : M → N . By the R-acyclicity assumption only the com-
position

θ0 : H0(N ;R)
f∗→ H0(M ;R) DM−→ Hn(M ;ΓM )

g∗→ Hn(N ;ΓN )
D−1
N−→ H0(N ;R)

may have a non-zero contribution to the Lefschetz number L(f, g). Now
L(f, g) = tr θ0 = deg(g), hence the assumption deg(g) 6= 0 and Corollary
4.4 give a coincidence.
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[V] J. Vick, Homology Theory, Academic Press, New York, 1973.

[W1] C. T. C. Wal l, Surgery of non-simply-connected manifolds, Ann. of Math. 84
(1966), 217–276.
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