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Abstract. We discuss a generalization of the ∗-product in kneading theory to maps
with an arbitrary finite number of turning points. This is based on an investigation of the
factorization of permutations into products of permutations with some special properties
relevant for dynamics on the unit interval.

1. Introduction. Kneading theory is a powerful symbolic method
used to study the combinatorial aspects of the dynamics of one-dimensional
maps. The foundations of this theory go back to [MTh] (which was circu-
lated as a preprint since 1977), with early precursors in [My] and [MSS].
In the special case of continuous maps on the interval with a single turn-
ing point, or unimodal maps, a particular operation on symbolic sequences,
the ∗-product (cf. [DGP], see also the monograph [CEc]), is of paramount
importance for its utility in the description of renormalization (for a re-
cent review of renormalization, see the monograph [MSt] which contains a
huge bibliography, and [CTr], [TCo], [Fe1], [Fe2] for early references). It
is thus natural to hope for an appropriate generalization of the ∗-product
to maps with an arbitrary number of turning points which would play an
analogous role in a more general theory of renormalization. Previous special
cases of this program appear in [Mu], [LMu1], and [LMu2] for maps with
two turning points. The aim of this paper is to extend the ∗-product to a
large class of renormalizable maps with an arbitrary finite number of turning
points. Extensions of the ∗-product to some kinds of piecewise-continuous
one-dimensional maps appear in [PTT] and [LMu2].
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Some basic material is assembled in Section 2. Most of the discussion
in this paper involves an interplay between kneading theory and the theory
of permutations induced on finite orbits of n points embedded in the real
line; the basic material in Section 2 is presented accordingly. In Section 3
we quickly review the classical theory of the ∗-product in a form suitable
for the rest of this exposition. Section 4 contains a brief discussion of maps
which can occur as a composition of unimodal maps. This is the prelude to
our first main result in Section 5, which explains how to extract unimodal
factors from products. Section 6 then combines the procedure of recovering
unimodal factors in a product with known results in kneading theory to
define a ∗-product for a large class of finite symbolic sequences. We indicate
how this definition can be extended to infinite sequences in Section 7.

The description of the ∗-product is quite explicit in the case of unimodal
maps, both for finite or infinite sequences. In this case we can write down
the formula for the product from the sole knowledge of the symbols of the
factors. The case of a greater number of turning points is different in nature.
Here we must first factor one of the terms entering the ∗-product, so that
the ∗-product cannot be described explicitly in terms of the symbols of its
factors. If one factor has infinite length, its factorization cannot be obtained
directly in a finite number of steps and we offer instead a method to get
successive approximations to the ∗-product.

2. Basics

2.1. A pair (E, f), where E is a non-empty topological space and f :
E → E is a continuous map, constitutes a simple example of a dynamical

system. The semigroup Z
+ acts on E by iteration of the map f . We use

Milnor’s notation:

(1) f◦0(x) = x, f◦1(x) = f(x), . . . , f◦n(x) = f(f◦(n−1)(x)).

The orbit of a point x ∈ E is the set

(2) O(x) = {x, f(x), f◦2(x), . . .}.

We say that f◦n is the nth iterate of f , and that f◦n(x) is the nth iterate of

x. The point x is periodic if O(x) = O(f(x)); the period of x (or of O(x)) is
then the number of elements |O(x)| of the set O(x) (in general, we denote
by |F | the cardinal of the set F ). If the period of x is p, we also say that x
or O(x) is p-periodic.

A morphism (or semi-conjugacy) from (E, f) to (E′, f ′) is a continuous
onto map h : E → E′ such that f ′ ◦ h = h ◦ f . If h is invertible, we call
it a conjugacy and in this case say that the dynamical systems (E, f) and
(E′, f ′) are topologically conjugate, and write this as f ∼= f ′.
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2.2. Let I be an interval in the real line, and assume that the points
x1 < . . . < xp comprise a union of periodic orbits of f : I → I. Then there
exists a permutation σ({x1, . . . , xp}) = σ ∈ Sp, the symmetric group on p
elements, such that

(3) f(xi) = xσ(i).

For instance, if E = {x1, . . . , xp} forms a single periodic orbit, then σ is a
p-cycle in Sp. Let h be any orientation preserving homeomorphism from I
to some interval I ′ containing the integers 1, . . . , p, and such that h(E) =
{1, . . . , p}. If we let g = h ◦ f ◦ h−1, then g|{1,...,p} = σ; we write f |E ∼ σ
and say that σ represents f |E and that f extends σ.

Let k : J → J be another dynamical system for a real interval J and let
F ⊂ J be a finite union of finite orbits. If both f |E and k|F are represented
by the same permutation, then we write f |E ∼ k|F and say that f |E and
k|F are combinatorially equivalent. Define ∆n to be the permutation in Sn

which sends n−j+1 to j, for each j = 1, . . . , n; if |E| = |F | = n, we say that
f |E and k|F are combinatorially similar if both f |E and k|F are represented
by the same permutation σ ∈ Sn, up to conjugacy of σ by a power of ∆n

(notice that (∆n)2 is the identity).
For early occurrences of explicit relationship between permutations and

interval dynamics, see, e.g., [Bl] and [Be]. See also [MNi] and references
therein.

2.3. Let I be the interval [α, β] and f : I → I. If there is a sequence of
extremal points

(4) α = c−1 < c0 < . . . < cm = β

such that

(5)
for − 1 ≤ i ≤ m− 1, f |[ci,ci+1] is strictly monotone,

for − 1 ≤ j ≤ m− 2, f |[cj,cj+2] is not monotone,

we say that f is m-modal. The points c0, c1, . . . , cm−1 are called the turning

points of f , and the intervals l0 = [c−1, c0), l1 = (c0, c1), . . . , lm−1 =
(cm−2, cm−1), lm = (cm−1, cm] the laps of f . Thus f is m-modal if and only
if f has m turning points. If f is m-modal for some m ≥ 0, then we say
that f is multimodal or piecewise monotone. The words amodal, unimodal,
bimodal, etc. are used for m = 0, 1, 2, etc. If f is m-modal, we call m = m(f)
the modality of f . The numbers f(ci) for i = −1, 0, . . . ,m are called the
extremal values of f , and also the turning values if i ∈ {0, 1, . . . ,m− 1}. A
piecewise monotone map is full if it maps each extremal point to a boundary
point of I.

Any multimodal map has a shape s(f) = (s0, s1, . . . , sm), where si ∈
{+,−} and where we write si = + if f is increasing on (ci−1, ci) for 0 ≤
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Fig. 1
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i ≤ m, and si = − if f is decreasing on this subinterval. Define si+1 = si

for + = − and − = +. If s(f) = (s0, s1, . . . , sm) we can say that f is
(s0)-m-modal with no loss of information regarding the shape of f . The
first sign s0(f) in s(f) is called the type of f .

2.4. We define the modality of σ (in Sn), written m(σ), as the smallest
modality of all maps on a real interval which extend σ. For instance, we
have m(∆n) = 0.

We identify the graph of a permutation σ ∈ Sn with the set {(1, σ(1)), . . .
. . . , (n, σ(n))} of integer lattice points in R

2. If σ represents f |E , then the
graph of σ will also be called the graph of f |E , and will be denoted by
Graph(f |E). We define the linear interpolation of a permutation σ ∈ Sn,
denoted by lin(σ), as the map from the interval [1, n] to itself whose graph is
obtained by linear interpolation between the successive points in the graph
of σ; it is easy to check that m(σ) = m(lin(σ)). We also set s(σ) = s(lin(σ)),
and define a turning point of σ as a turning point of lin(σ). As an example,
the permutations in S4 are represented in Figure 1 by their respective graphs;
we have also drawn their linear interpolations and indicated their modalities
and their shapes.

Fig. 2

The graphs of two permutations in Sn can be combined pictorially, as
displayed in Figure 2 for n = 5, to represent the composition (i.e., multipli-
cation) of the two permutations. We call such a representation a composition

machine in Sn. The same picture also provides a means of performing the
composition of extensions of the permutations. In particular, this immedi-
ately shows that the composition of the linear interpolations of two permuta-
tions is in general different from the linear interpolation of the composition
of the permutations; in general, the former is not a linear interpolation.
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When used to compose graphs of continuous maps which extend permuta-
tions in Sn, the composition machine will be called an extended composition

machine in Sn.

R e m a r k. The study of permutations from the point of view of modal-
ity and turning points is reminiscent of, but different from, the notions of
descents and rising sequences of a permutation, which have been studied
in the context of understanding the structure of the group algebra of the
symmetric group as well as other Coxeter groups [So]. This has led to many
interesting results in algebraic combinatorics, among which is a deeper un-
derstanding of the mathematics of card shuffling [BDi]. Similar results have
recently been obtained for the analogously defined turning point algebra

[DRSS].

2.5. With the notation of 2.3, we define the address of x ∈ I, written
a(x), to be one of the symbols Li, 0 ≤ i ≤ m, or Cj , 0 ≤ j < m, according
to:

(6) a(x) =

{
Li if x ∈ li,
Cj if x = cj .

The itinerary of a point x ∈ I is the sequence of addresses

(7) a∗(x) = a(x), a(f(x)), a(f◦2(x)), . . . ,

or equivalently, the (possibly infinite) word in the symbols Li and Cj formed
by concatenating the elements of the sequence (7).

R e m a r k. If we are discussing two maps at the same time, or plan to
use one map in conjunction with another, we may use the symbol K instead
of C, and M instead of L.

We say that an orbit O(x) is critical if it contains at least one turning
point and acritical otherwise. The criticality index of an orbit is the number
of turning points it contains.

2.6. Let A denote the set of possible addresses under f and A′ the set
of lap symbols. We endow A with the order . . . < Ck < Lk+1 < Ck+1 < . . . ,
so that a(x) < a(y)⇒ x < y.

We set P (Li) = + if f is increasing on li, P (Li) = − if f is decreasing
on li, and adopt the obvious multiplication rule for signs. For any finite
word in the symbols Li, W = Li1 . . . Lin

, we naturally define the parity of
W , denoted by P (W ), as

(8) P (W ) = P (Li1) · . . . · P (Lin
),

so that, if W represents the beginning of the itinerary of x, then

• W is even, i.e., P (W ) = +, if f◦n is sense-preserving near x,
• W is odd, i.e., P (W ) = −, if f◦n is sense-reversing near x.
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Let W0 6= W1 be words such that Wi, i ∈ {0, 1}, begins ASi..., where A
is a finite word in A′ and Si ∈ A. We set

(9) W0 < W1 ⇔

{
either A is even and S0 < S1,
or A is odd and S0 > S1.

Hence a∗(x) < a∗(y)⇒ x < y.

For i ∈ {0, 1, . . . ,m− 1}, we set

(10) C+
i = Li+1 and C−

i = Li.

To shorten notation, for a finite word W in the Li’s, we shall write CW
i for

C
P (W )
i and C−W

i for C
−P (W )
i . It is easy to check that

(11) WC−W
i < WCi < WCW

i .

2.7. The itinerary of any point x of a p-periodic orbit is a periodic word
whose period divides p. Let W (x) be the word of length p that coincides
with the beginning of a∗(x). If y ∈ O(x), then W (y) is obtained from
W (x) by a cyclic permutation of the letters. For any such word W (x), the
cyclic word S(O(x)) is defined to be the set of the images of all such cyclic
permutations of the symbols; we sometimes identify this set with any of its
elements and conversely. We also say that S(O(x)) is the symbol of the
p-periodic orbit O(x). More generally, the symbol of a set of periodic orbits

is the corresponding set of symbols of individual periodic orbits.

2.8. The kneading data of the m-modal map f consists of s(f) together
with the (m + 2)-tuple

{a∗(f(c−1)), a
∗(f(c0)), . . . , a

∗(f(cm))}

of itineraries of the extremal points. Two maps are called monotone equiv-

alent if they have the same kneading data. We denote by Mon(f) the
monotone equivalence class of f .

3. Renormalization and the ∗-product

3.1. Renormalization group theory was first explicitly adapted from
statistical mechanics to dynamical systems theory in [CTr] and [TCo] (see
also [Fe1], [Fe2] for similar material). Since then, various formulations have
arisen, their precise definitions often depending on the intended applica-
tion. Here, we reproduce the notion of renormalizability following [BORT]
but only at a level of generality necessary for this discussion. The more
“conventional” approach to renormalization group theory, adapted to con-
tinuous maps acting on an interval or some subinterval, is reviewed at length
in [MSt], for instance. This conventional approach merely corresponds to
what we call C-renormalizability below. Our more general framework is
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needed for applying combinatorial analysis to restrictions of a map on the
interval to finite or Cantor subsets.

For any positive integer n ≥ 1, let (Z/nZ,+1) denote the dynamical
system where +1 stands for the translation by 1 on the group Z/nZ with
the discrete topology, i.e.,

(12) +1 : Z/nZ→ Z/nZ, j 7→ j + 1 (mod n).

Let I be an interval, f : I → I, and E be a closed, f -invariant subset of
I. We say that (E, f |E) (or f |E) is n-renormalizable if there is a morphism
φ from (E, f) to (Z/nZ,+1) such that the fibers of φ are contained in n
disjoint intervals, which we can denote as I0 < I1 < . . . < In−1. Note
that this implies that each Ej = Ij ∩ E is f◦n-invariant. Then we say that
f◦n|Ej

is the jth renormalization of f . We say that f |E is renormalizable

if it is n-renormalizable for some n 6∈ {1, |E|}. Set E′ = I0 ∪ I1 ∪ . . . ∪
In−1. If E′ is f -invariant and (E′, f |E′) is also renormalizable, we say f |E
is C-renormalizable. Finally, if (E, f |E) is both n-renormalizable and C-
renormalizable we say that it is n-C-renormalizable.

R e m a r k s. 1. The subscript i of Ii is understood as belonging to Z/nZ,
so that any arithmetic involving indices is to be performed mod n.

2. Instead of translation by 1, any transitive permutation of the n el-
ements of Z/nZ could have been used in the definition of renormalization:
the rationale for this particular choice will appear in Section 7 when we
define infinitely renormalizable maps (see also [BORT]).

3.2. Here we describe an approach to the ∗-product for unimodal maps.
The following proposition, formulated with the generality we need, is well
known:

Proposition 1. Assume O is a critical p-periodic orbit of the unimodal

map f . Assume furthermore that f |O is q-C-renormalizable for some q 6∈
{1, p}. Then the maps fj = f◦q|Ij

are topologically conjugate to each other.

P r o o f. Notice that all but at most one of the f |Ii
’s are homeomor-

phisms. The proof now follows by comparing the formulas for the fj ’s
written as products of the f |Ii

’s. More precisely, assume that C0 ∈ Ik and
let σ represent f |O. Then we have the list:

fk = f |I
σ(n−1)(k)

◦ . . . ◦ f |I
σ2(k)

◦ f |Iσ(k)
◦ f |Ik

,

fσ−1(k) = f |I
σ(n−2)(k)

◦ . . . ◦ f |I
σ2(k)

◦ f |Iσ(k)
◦ f |Ik

◦ f |I
σ(n−1)(k)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fσn−1(k) = f |Ik
◦ f |I

σ(n−1)(k)
◦ . . . ◦ f |Iσ2(k)

◦ f |Iσ(k)
.

Since f |Ik
is the only non-homeomorphic restriction, each map in the list,

except for the first, is obtained from the previous one by a conjugacy.
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Using the notation of Proposition 1, and assuming that f is (+)-unimo-
dal, let g denote a (+)-unimodal map, conjugate to a fixed f◦q|Ij

. Then
g has a critical (p/q)-periodic orbit O′′ and we let σR = g|O′′ ∈ S(p/q).
We also write σ for σ(O) (cf. Section 2.3) and σG for the element of Sq

describing the way in which the Ei’s are permuted by f , i.e.,

(13) f(Ej) = EσG(j).

Let h be a (+)-unimodal map with a critical periodic orbit O′ such that
σ(O′) = σG.

Renormalizability implies that the symbols (cf. Section 2.7) of the vari-
ous orbits O,O′, and O′′ are related. So let

(14) A = S(O′) = A′C0, B = S(O′′), W = S(O).

With ΣA standing for the symbolic substitution

(15) L0 7→ A′C−A′

0 , L1 7→ A′CA′

0 , C0 7→ A′C0,

we define

(16) A′ ∗B = ΣA(B).

If f is (−)-unimodal, we assume the same for g and h. Then, with ΣA

standing for the symbolic substitution

(17) L0 7→ A′CA′

0 , L1 7→ A′C−A′

0 , C0 7→ A′C0,

we define, as in the (+)-unimodal case,

(18) A′ ∗B = ΣA(B).

Then we have

Proposition 2. W = ΣA(B).

P r o o f. By inspection; see, e.g., [CEc], [BORT].

Notice that σ is 1-modal while σG and σR are either 0- or 1-modal.
Accordingly, we can extend the ∗-product to cyclic permutations of modality
at most one by writing

(19) σ = σG ∗ σR.

Note that a cyclic permutation can be 0-modal only in the case of n ∈ {1, 2}.
The ∗-product for unimodal maps appeared in [DGP]. See also [Mi] and

[JR] for related ideas, and, e.g., [CEc], [BORT] for detailed expositions. The
reinterpretation of the ∗-product as a substitution is from [PTT] (see also
[BORT]).

3.3. Assume now that h is m-modal with m ≥ 1 and that O′ is a critical
n-periodic orbit of h with criticality index 1, so that S(O′) = A = A′Ci for a
single turning point ci such that O′ = O(ci). Let O′′ be a critical p-periodic
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orbit of some (s)-unimodal map g, where s = si, and let S(O′′) = B. If we
define the substitution ΣA by

(20) L0 7→ A′CsiA
′

i , L1 7→ A′CsiA
′

i , C0 7→ A′Ci,

it is easy to check that ΣA(B) is the symbol of an n-renormalizable critical
np-periodic orbit O with criticality index 1 of an m-modal map f . Conse-
quently, we define

(21) A′ ∗B := ΣA(B).

This solves the ∗-product construction for this special, essentially unimodal
case. We leave the parallel discussion in terms of permutations to the reader.
We will consider more general cases starting in Section 5, after we present
some preparatory material in Section 4.

4. Topologically even maps

4.1. Let f : I → I be a continuous map. We say f is topologically

even if there exists an even map g : [−1, 1] → [−1, 1] such that f ∼= g. The
following result is elementary.

Proposition 3. Let f : I → I be a piecewise monotone map (hence not

constant on any non-trivial subinterval J ⊆ I). Then f is topologically even

if and only if the collection of turning points and the boundary points of I
can be written as

{c−r, c−(r−1), . . . , c0, c1, . . . , cr} with f(ci) = f(c−i), i = 1, . . . , r.

P r o o f. Necessity is obvious, so we only prove sufficiency. This is ob-
tained by using the metric d which is the usual one on the right of c0, and de-
fined on the left of c0 so that d(ci, c0) = d(c−i, c0), and, for y ∈ (c−(i+1), c−i)
and x ∈ (ci, ci+1) with f(y) = f(x), d(y, c0) = d(c0, x). It is also possible to
use the metric defined in 4.2 below.

In particular, every unimodal endomorphism f of I = [α, β] such that
f(α) = f(β) ∈ {α, β} is topologically even. The turning point c0 is called
central.

4.2. Given a topologically even map f , conjugated by h to the even
map g, we will need to measure the distance from a point in the inter-
val to the central point c0, in such a way that x is closer to c0 than y
(in this distance) if and only if h(x) is closer to 0 than h(y) in the usual
sense. Thus, let f be topologically even with extremal points c−r < . . . <
c0 < . . . < cr and laps l−r < . . . < l−1 < l1 < . . . < lr, where lk =
(min(ck, ck−|k|/k),max(ck, ck−|k|/k)). For x in the closure of lk, we define
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(22) df (x, c0) = |k| − 1 +
f(x)− f(ck−|k|/k)

f(ck)− f(ck−|k|/k)
.

The associated metric for such a distance is simply defined by ‖x − y‖f =
|df (x, c0)− df (y, c0)|.

It is now easy to check the following.

Proposition 4. df (x, c0) < df (y, c0)⇔ |h(x)| < |h(y)|.

4.3. We also have

Proposition 5. The composition of n topologically even unimodal maps

is topologically even, has at most 2n−1 turning points and at most n turning

values.

P r o o f. Assume f is topologically even. From the proof of Proposition
3 or from Proposition 4, f can be rewritten as an even map in the proper
metric (e.g. ‖ · ‖f defined above). In such a metric, for any map g we have

f(−x) = f(x)⇒ g(f(−x)) = g(f(x)).

Hence, if f is topologically even, so is g ◦ f for any g. The first statement in
the proposition follows. The two other statements are obtained by induction,
using the chain rule.

R e m a r k. Whenever we want to exploit the fact that a map is topo-
logically even, we use the notation of this section for turning points and
laps.

5. Peeling

5.1. A multimodal map f : I → I is a captive map if it maps the
boundary ∂I to itself. If the modality of f is odd, f maps the boundary
to one of the endpoints, while if the modality of f is even, f either fixes
or exchanges the endpoints. It is clear that captive maps form an invariant
class under composition, and that f ◦ g and f are of the same type (in the
sense of 2.3) whenever the modality of f is odd.

Assume f : I → I is a captive map, and that S = {O1, . . . , OM} is
a set of periodic orbits of f such that each turning value of f belongs to
some Oi in S. Let E = O1 ∪ . . . ∪ OM , and assume furthermore that f has
no turning points outside the interval [minE,max E]. In this case we call
(f,E) a fundamental pair (based on E).

5.2. Assume f , g0 and g1 are captive maps on I, and that (f,E),
(g0, E) and (g1, E) are fundamental pairs based on the same set E. Assume
furthermore f = g1 ◦ g0, where g0 is a map with modality at most one and
g1 is amodal or has odd modality.
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Lemma 1. The monotone equivalence classes of g0 and g1 are uniquely

determined and can be computed from the knowledge of the kneading data of

f , the set E, and the type of g0.

P r o o f. The cases when g0 or g1 is amodal are trivial, hence in the rest
of the proof we assume that g0 is unimodal and that g1 is not amodal. We
set N = |E|. With no loss of generality, we can assume that I = [0,N + 1]
and E = {1, . . . , N}. Using the extended composition machine in Sn (see
2.4) as a factoring machine, we are going to present an algorithm to compute
Graph(g0|E). Notice that this algorithm does not require us to know the
modality of g1 beforehand, but that the process yields this modality. We
first collect three simple observations:

(a) The map f is topologically even with central point c0 ∈ E.

(b) We assume s0(f) = s0(g0) = +, the other cases being treated simi-
larly (the type of f is also the type of g1; see 5.1).

(c) If we think of E × E as an N by N checkerboard, the graph of g0|E
will have exactly one point in each row and on each column; we take the
rows parallel to the source and the columns parallel to the target.

From (a), (b), (c), the construction of Γ = Graph(g0|E) starts with

(23) (c0, N) ∈ Γ.

From (c), we know that one of the points (c0 − 1,N − 1), (c0 + 1,N − 1) is
in Γ ; clearly, the former case corresponds to df (c0 − 1, c0) < df (c0 + 1, c0)
and the latter to the reverse inequality.

Now assume that the first Q points of Γ have been recognized; their
abscissae are consecutive, say R,R+1, . . . , R+Q−1, and the ordinates are
N,N − 1, . . . , N −Q + 1. One of the points (R− 1,N −Q), (R + Q,N −Q)
is in Γ with the former case corresponding to

(24) df (R− 1, c0) < df (R + Q, c0)

and the latter to the reverse inequality.

Knowledge of Γ entails the knowledge of the critical point and critical
value of g0, thus the extended composition machine setting allows us next to
locate as well the critical points and critical values of g1. Since the modality
of g0 is one, the behavior of g0 out of [min E,max E] just depends on its
type. Similarly, since the modality of g1 is odd, the behavior of g1 out of
[min E,max E] just depends on its type.

5.3. With the notation of 5.2, we say that Mon(g0) and Mon(g1) have
been obtained from Mon(f) by peeling off Mon(g0). Iterating the peeling
procedure, we have the following theorem.
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Theorem 1. We can completely recover the factors of any product of

captive maps of given types and given modalities in {0, 1}, assuming the

maps are part of fundamental pairs based on the same set.

R e m a r k. The necessity of going beyond the case of a single periodic
orbit in S comes from the fact that the condition that the permutation f |E
is cyclic is generally not inherited by g1|E (nor by g0|E). Thus, to iterate
the peeling algorithm as formulated in the proof of Lemma 1, we needed to
formulate it for permutations.

5.4. Example. Consider the 6-cycle σB = (156342), with symbol
M−3K2M4K0M1K−1 (see the Remarks in 2.5 and 4.2). Figure 3 shows
how to successively extract the permutations

• σ1, unimodal of type −,
• σ2, unimodal of type +,
• σ3, unimodal of type +,

such that

(25) σB = ∆6 ◦ σ3 ◦ σ2 ◦ σ1.

Fig. 3

We have (in classical cycle notation)

(26) σ1 = (15423)(6), σ2 = (1)(2346)(5), σ3 = (135246).

6. Generalized ∗-products of finite sequences

6.1. Hypothesis H1. Let f : I → I have a periodic orbit O of period
p and criticality index n, and assume f |O is q-C-renormalizable for some
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proper divisor q of p. With the notation of 3.1, assume furthermore that
each of the intervals I0, I1, . . . , Iq−1 contains at most one turning point of
f , and that any turning point in an Ii belongs to O.

We propose to generalize the unimodal ∗-product to the cases covered by
H1, by describing how to compute the symbol S(O) of O from the symbolic
description of

(i) the way f permutes the Oi’s, with Oi = Ii ∩O

and of

(ii) any of the renormalized maps f◦q|Ij
.

The next two subsections are devoted to making precise the notion of
“symbolic descriptions of (i) and (ii)”.

6.2. Let σG be the cyclic permutation describing the way f permutes
the Oi’s, i.e., f(Oj) = OσG(j). Let f ′ be a map with the same modality
as f , and assume f ′ has a periodic orbit O′ such that f ′|O′ ∼ σG . Write
O′ = {x0, x1, . . . , xq−1} with x0 < x1 < . . . < xq−1 and assume furthermore
that O′ is chosen so that

(27) a(xi) =

{
Lj if Ii ⊂ lj ,
Cj if cj ∈ Ii.

We write

(28) A = S(O′) = W0Ck0
W1Ck1

. . . Wn−1Ckn−1
,

where the Wi = Wi,1Wi,2 . . . Wi,u(i)−1’s are words in A′.

6.3. Now choose j ∈ {0, 1, . . . , q − 1}, and let B be the symbol of Oj ,
considered as a periodic orbit of f◦q|Ij

. Since in general the f◦q|Ii
’s are

not topologically conjugate to each other, we must keep track of which j is
chosen.

A key point in our discussion is that only symbols are relevant, and that
the maps f and f ′ can be deformed as long as such deformations do not
affect symbols; this is exploited in Lemma 2 to choose a deformation F of
f with some specific properties. Furthermore, we need to check that, for
the Ii’s well chosen, the F ◦q|Ii

’s are endomorphisms of the Ii’s, and more
precisely captive maps (see Lemma 3). Once such Ii’s are selected, the
peeling technique allows us to extract the f |Oi

’s from B, hence S(O) from
A, B and j (see Theorem 2).

6.4. With the notation of 6.1, we say the map F is an O-compatible

deformation of f if F has the same shape as f and gives the same symbol
to O. It is plain that O-compatibility is an equivalence relation, and that
the star product formulae only depend on the equivalence classes of this
relation. This motivates the next two lemmata.
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Lemma 2. Assuming the notation of 6.2, we can find an O-compatible

deformation of f which has a periodic orbit O′
− with symbol

A− = S(O′
−) = W0C

−skn−1
W0

k0
W1C

−sk0
W1

k1
. . . Wn−1C

−skn−2
Wn−1

kn−1
,

and for each v ∈ {0, 1, . . . , n − 1}, u(v) the length of the block WvCkv
, and

j ∈ {1, 2, . . . , u(v) − 1}, find points with itineraries

a∗(P+
v,u(v)) = C

skv−1
Wv

kv
Wv+1C

−skv Wv+1

kv+1
. . .

. . . Wv−1C
−skv−2

Wv−1

kv−1
Wv(C

−skv−1
Wv

kv
Wv+1C

−skv Wv+1

kv+1
. . .

. . . Wv−1C
−skv−2

Wv+1

kv−1
Wv)

∞,

and

a∗(P+
v,j) = Wv,jWv,j+1 . . . Wv,u(v)−1C

skv−1
Wv

kv
Wv+1C

−skv Wv+1

kv+1
. . .

. . . Wv−1C
−skv−2

Wv−1

kv−1
Wv,1Wv,2 . . . Wv,j−1(Wv,jWv,j+1 . . .

. . . Wv,u(v)−1C
−skv−1

Wv

kv
Wv+1C

−skv Wv+1

kv+1
. . .

. . . Wv−1C
−skv−2

Wv+1

kv−1
Wv,1Wv,2 . . . Wv,j−1)

∞.

P r o o f. The proof is a simple but tedious kneading theory argument, so
we merely sketch it, leaving details to the reader.

Start with a map G with the same shape as f , but full (see 2.3) and
with slopes greater than one in absolute value in all laps. We can construct
from G stunted maps as described in Figure 4 (see [DGMT] and references

Fig. 4

therein). We stunt G only at the turning points whose symbolic name ap-
pears in S(O), and just enough so that S(O) is the symbol of an orbit. Call
this map F . We assume the convention in which we consider the middle
point of each plateau to be a critical point. It remains to check that the
map F satisfies the properties we seek. This check could be done by brute
force computations, using the order on symbolic sequences defined in 2.6.
Instead, we offer a more geometrical approach, based on elementary bifurca-
tion theory considerations. To simplify this discussion, we leave unchanged
the names of orbits which are deformed as a result of deforming maps, as
long as their symbols do not change.
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First, continue to stunt F to a map F1, until O is deformed to an orbit
O1 of F1 characterized as follows: O1 contains a boundary of each of the
plateaus retracted from those plateaus of F which contain a (necessarily
critical) point of O.

Deforming F1 back to F , O1 splits into two orbits, O′ and O′
−: O′

− has
the same symbol as O1 and O′ contains a point of each plateau retracted
from where O contains a critical point.

Clearly, to write the symbol of O′
−, we replace each Cki

by the neighbor
of Cki

in A′ chosen so that the image of the corresponding point in the orbit
is:

(1) smaller if the plateau is a maximum, and

(2) bigger if the plateau is a minimum.

Consider now the qth iterate of F near each plateau containing a point
of O. The locally unimodal graph cuts the diagonal at a point P−

v,u(v) or

P−
v,j , according to whether or not the plateau we consider contains a critical

point of F . We denote accordingly by P+
v,u(v) or by P+

v,j the point on the

other side from P−
v,u(v) or P−

v,j of the plateau of F ◦q which has the same

image under F ◦q as does P−
v,u(v) or P−

v,j .

An easy check now confirms that these geometrical considerations lead
to the formulas stated in the lemma.

Notice that the map F constructed in the proof is such that to each point
P+

v,l there corresponds a single point P−
v,l in O′

− whose itinerary is the same

as that of P+
v,l, except for the (u(v)− l + 1)st letter, which reads C

−skv−1
Wv

kv

instead of C
skv−1

Wv

kv
. Another simple but tedious kneading theory argument

then shows that the sets {P−
v,l, P

+
v,l} furnish the bounds of the intervals Ii

which we seek. This is formulated in the following lemma, which is easily
confirmed using the geometrical discussion in the proof of Lemma 2.

Lemma 3. The sets {P−
v,l, P

+
v,l} are boundaries of a set of Ii’s such that

f(Ii) ⊂ IσG(i), and such that the F ◦q |Ii
’s are captive maps.

6.5. Putting together the peeling results and the previous lemma, we
get the following.

Theorem 2. Under the hypothesis H1, S(O) can be computed from A
and B.

6.6. Example.We consider the case of a (+)-trimodal map, with A =
C1C0C2L3 and B = M−3K2M4K0M1K−1 at c1. The computations in 5.4
give the desired peeling of the renormalized map near the turning point c1.
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We can then compute the following products:

(29)

σB1
= σ1 ◦∆6 ◦ σ3 ◦ σ2 = (123546),

σB2
= σ2 ◦ σ1 ◦∆6 ◦ σ3 = (134562),

σB3
= σ3 ◦ σ2 ◦ σ1 ◦∆6 = (143562).

From the knowledge of the σi’s, i = 1, 2, 3, we also extract the following
facts:

F1: the turning point of σ1 is at 3,

F2: the turning point of σ2 is at 4,

F3: the turning point of σ3 is at 4, and

F4: σ1(3) = 1, σ2(1) = 1, σ3(1) = 3.

Fig. 5
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As we now explain, the facts F1–F4 are all we need to compute S(O) =
S1 . . . S24.

First, in relation to the information we chose to put in F4, we take the
symbol for c1 as S1.

Using the formula for B and F1 we have:

(30) S1 = C1; S5 = L2; S9 = L1; S13 = L1; S17 = L2; S21 = L2.

Using the formula for σB1
in (29), and facts F2 and F4 we have:

(31)
S2 = L0; S6 = L0; S10 = L0;

S14 = L1; S18 = C0; S22 = L1.

Using the formula of σB2
in (29), F3 and F4 we have:

(32)
S3 = L2; S7 = L2; S11 = C2;

S15 = L3; S19 = L3; S23 = L2.

It is straightforward that:

(33)
S4 = L3; S8 = L3; S12 = L3;

S16 = L3; S20 = L3; S24 = L3.

Collecting (30)–(33), we obtain (see Figure 5)

(34) S(O)

= C1L0L2L3L2L0L2L3L1L0C2L3L1L1L3L3L2C0L3L3L2L1L2L3.

7. Generalized ∗-products and infinitely renormalizable maps

7.1. Up to this point, we have considered exclusively the case of finite
orbits. In the unimodal case, the substitution also works when B is an
infinite string. In any modality, results for the case when B is an infinite
aperiodic sequence representing the itinerary of some point P can in general
be obtained from the finite case by considering, as usual, longer and longer
periodic approximations of the orbit of P , obtained by closing the orbit
at the successive closest returns to P . The next subsection is devoted to
the class of infinite sequences which is most important in the context of
∗-products considerations.

7.2. With the notation of 3.1, assume that f |E is n0-renormalizable
with n0 6∈ {1, |E|} and that the f◦n0 |Ej

’s are all n1-renormalizable with
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n1 6∈ {1, |Ej |}, in such a way that f |E is n1n0-renormalizable with n1n0 6∈
{1, |E|}. We then say that f |E is twice renormalizable. We say that f |E is
m-fold renormalizable if the f◦n0 |Ej

’s are all (m − 1)-fold renormalizable,
and k-renormalizable with k = nm−1nm−2 . . . n1 in such a way that f |E
is kn0-renormalizable with kn0 6∈ {1, |E|}. If f |E is n-fold renormalizable
for each n > 0, we call it infinitely renormalizable. In this case there is a
morphism φ from (E, f |E) to (G,T ), where

(i) G is a group given as an inverse limit

ẐQ = lim←−
i

Z/qiZ,

where Q stands for a supernatural number

Q =
∏

p

pkp where, for all p prime, 0 ≤ kp ≤ ∞,

and the qi = nini−1 . . . n0’s form a sequence of divisors of Q ordered by
divisibility, and

(ii) the map T is addition of 1 on G = ẐQ, i.e., a generalized adding
machine, where the usual adding machine corresponds to the case when
ni ≡ 2.

The set E is then a Cantor set, and f |E is a homeomorphism if the fibers
of φ are points (for a thorough discussion see [BORT]).

Notice that in this most important case when f |E is infinitely renormal-
izable while all the fibers of φ are points, m-fold renormalized maps from
f |E for m large enough are all supported in intervals containing at most one
turning point of f , so that Hypothesis H1 is automatically satisfied. Then
the symbol of an orbit in E can be obtained by iterating the operation on
finite symbols described in Section 6, i.e., like in the unimodal case (see
[DGP, CEc, BORT]), no further approximation method is necessary.
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