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Abstract. A combinatorial statement concerning ideals of countable subsets of ω1
is introduced and proved to be consistent with the Continuum Hypothesis. This statement
implies the Suslin Hypothesis, that all (ω1, ω

∗
1)-gaps are Hausdorff, and that every co-

herent sequence on ω1 either almost includes or is orthogonal to some uncountable subset
of ω1.

1. Introduction. Many combinatorial problems about ω1 can be re-
duced to questions of the following sort. (Q) Given a family I of subsets of
ω1, is there an uncountable A ⊆ ω1 such that A ∩ I is finite for all I ∈ I,
or dually, (Q∗) is there an uncountable B ⊆ ω1 such that every countable
subset of B is included in some element of I? Clearly, there is no loss of
generality in assuming that I is an ideal of subsets of ω1 in order to answer
the version (Q) of the question, while for its dual form (Q∗) the assumption
sometimes makes a difference. It is clear that the answer to (Q) is negative if
we can decompose ω1 into countably many sets {Sn} with the property that
[Sn]ω ⊆ I for all n. Therefore it is quite natural to consider the following
possible answer to (Q):

(A) For every nonprincipal ℵ1-generated ideal I on ω1, either

(1) there is an uncountable A ⊆ ω1 such that A ∩ I is finite for all
I ∈ I, or

(2) ω1 can be decomposed into countably many sets Sn (n < ω) such
that [Sn]ω ⊆ I for all n.

The corresponding answer to the dual question (Q∗) would therefore
have the following form:
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(A∗) For every nonprincipal ℵ1-generated ideal I on ω1, either

(1) there is an uncountable A ⊆ ω1 such that [A]ω ⊆ I, or
(2) ω1 can be decomposed into countably many sets Sn (n ∈ ω)

such that Sn ∩ I is finite for all n ∈ ω and I ∈ I.

The statements (A) and (A∗) are rather strong combinatorial principles
about ω1 which decide many problems about the uncountable. They are
both consistent with MAℵ1 (in fact, consequences of PFA) and they both
easily imply the negation of CH (see [16], [17]). Note that under MAℵ1 , the
statement (A) is stronger than its dual form (A∗) since the poset of all finite
approximations to the decomposition (A∗)(2) is ccc if we assume (A) and
the negation of (A∗)(1).

Since we are interested here in partition properties of ω1 consistent with
CH it seems natural to try to weaken the statement (A∗). First of all note
that (A) and (A∗) are really statements about ideals consisting only of count-
able subsets of ω1. So we shall assume from now on that all our ideals consist
only of countable sets. Moreover, we implicitly assume that I contains all
finite subsets of ω1. Such an ideal I is called a P -ideal if it is σ-directed
under the relation ⊆∗ of inclusion modulo the ideal of finite sets, i.e., for
every sequence In (n < ω) of elements of I there exists J ∈ I such that
In ⊆∗ J for all n < ω. Call a set A ⊂ ω1 orthogonal to I if A ∩ I is finite
for all I ∈ I. The following weakening of (A∗) is the subject of our study in
this paper.

(∗) For every P-ideal I on ω1, either

(1) there is an uncountable A ⊆ ω1 such that [A]ω ⊆ I, or
(2) ω1 can be decomposed into countably many sets orthogonal to I.

It is interesting that in statements (A) and (A∗) above ω1 can be replaced by
any set S without making the statements inconsistent, but the assumption
that the ideal I is ℵ1-generated is essential in (A) and (A∗). On the other
hand, if we assume I is a P-ideal (on an arbitrary set S rather than only
on ω1) then the assumption that the ideal be ℵ1-generated is not needed.
This strong form of (∗), where ω1 is replaced by an arbitrary set S while
I is still a P-ideal of countable subsets of S, has now some large-cardinal
strength (see [15; (1.14)] and the proof of 4.1 below). The methods devised
to prove that (A) and (A∗) are consistent statements (see [14], [16; §8] and
[17; §8]) show that PFA also implies this strengthening of (∗). The main
purpose of this paper, however, is to show that (∗) is consistent with CH
and that it is still strong enough to decide many problems. But one can go
further and use the methods of this paper and prove the consistency with
CH of the stronger form of (∗) granting the same large cardinal used in the
consistency proof of PFA (see [13]).
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2. Consequences of (∗). It turns out that many of the standard con-
sequences of (A∗) are also consequences of its weaker version (∗) as we shall
now see.

2.1. Suslin Hypothesis

Theorem 2.1. If (∗) holds then there are no Suslin trees.

Let T be an ω1-tree, i.e., a tree of height ω1, countable levels and with
the property that every node of T has successors in any level of T bigger
than its own. Let I1 be the set of all countable a ⊆ T such that every node
of T has only finitely many predecessors in a.

Claim 1. I1 is a P-ideal.

P r o o f. Given {In} ⊆ I1 let Tα be the level of T such that In ⊆ T ¹α for
all n. Let ti (i < ω) be an enumeration of Tα. Let Iω be the union of the
In’s and for s ∈ Iω let ns = min{n : s ∈ In}. Finally, let

J = {s ∈ Iω : s 6<T ti for all i ≤ ns}.
Then it is easily checked that J ∈ I1 and that In ⊆∗ J for all n.

Since every countable antichain of T is clearly a member of I1, no set
orthogonal to I1 can contain an infinite antichain, and therefore, each such
set must be the union of countably many chains. This means that the al-
ternative (∗)(2) cannot happen if T is to have uncountably many splitting
nodes. So we are left with the alternative (∗)(1). Since every A ⊆ T with
the property [A]ω ⊆ I1, considered as a subtree of T , has height ≤ ω, the
alternative (∗)(1) means that T has an uncountable antichain.

2.2. Hausdorff gaps. A pregap in P(ω)/fin is a double sequence 〈~a,~b〉 =
〈aξ, bξ : ξ ∈ I〉 of subsets of ω indexed by some uncountable I ⊆ ω1 such
that

(a) aξ ⊆∗ aη ⊆∗ bη ⊆∗ bξ for all ξ < η in I.

A pregap 〈~a,~b〉 is a gap in P(ω)/fin if there is no x such that aξ ⊆∗ x ⊆∗ bξ
for all ξ ∈ I. Hausdorff ([7], [8]) was the first to construct such an object
which had the additional property that

(b) {ξ ∈ I ∩ α : aξ \ bα ⊆ n} is finite for all α ∈ I and n ∈ ω.

Gaps with this property are called Hausdorff’s gaps. It is easily seen that
gaps having this property of Hausdorff remain gaps in any ω1-preserving
extension of the universe. The indestructibility condition by itself has been
later reformulated by Kunen [9] in the following more transparent form:

(c) there is an uncountable J ⊆ I such that a′ξ 6⊆ b′η or a′η 6⊆ b′ξ for every
ξ < η in J ,
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where for ξ ∈ I we let a′ξ = aξ ∩ bξ and b′ξ = bξ. This reformulation suggests
that (without loss of generality) from now on we consider only pregaps
〈aξ, bξ : ξ ∈ I〉 which have the additional property that

(d) aξ ⊆ bξ for all ξ ∈ I.

Kunen [9] also showed that for every gap 〈~a,~b〉 the natural poset which
forces an uncountable subset I ⊆ ω1 with property (c) is a ccc poset. Sim-
ilarly, one can show that the natural poset of finite approximations to an
uncountable subset I ⊆ ω1 for which the corresponding subgap satisfies the
Hausdorff condition (b) is also ccc. Thus, under MAℵ1 every gap 〈~a,~b〉 con-
tains a Hausdorff subgap or a subgap with the property (c). [Note that every
Hausdorff gap has the property (c).] These results of Kunen led to discov-
eries of many analogies between gaps and Aronszajn trees. For example, it
has become clear that Suslin trees correspond to gaps which can be filled in
a ccc forcing extension, or equivalently in any ω1 preserving extension, or
equivalently to gaps which have the following property (in addition to (d)):

(e) For every uncountable J ⊆ I there exist ξ < η in J such that aξ ⊆ bη
and aη ⊆ bξ.

Roughly speaking, we have the following analogies:

Aronszajn trees special Suslin . . .

(ω1, ω
∗
1)-gaps Hausdorff destructible . . .

Note that, in particular, the existence of destructible gaps implies that
the ccc property is not productive, which should be compared with the
fact that the ccc property of a Suslin tree is not productive. This analogy
was further enhanced with the discovery that destructible (ω1, ω

∗
1)-gaps can

be constructed with the aid of Jensen’s �-principle which was originally in-
tended for the purpose of constructing various Suslin trees. Also, destructible
gaps exist in any forcing extension of the universe V obtained by adding a
single Cohen subset ċ ⊆ ω. To see this, take any ground model gap 〈~a,~b〉
with the property (d) and show that

〈aξ ∩ ċ, bξ ∩ ċ : ξ ∈ I〉
is a destructible gap. Yet another route to destructible gaps is the obser-
vation that similarly to Suslin trees their existence is expressible using the
Magidor–Malitz quantifier Q2. Thus, one can use the Completeness Theorem
for L(Q2) to prove the existence of destructible gaps from the �-principle (see
[10]). Of course, direct �-construction of destructible gaps is quite routine.

Having in mind Jensen’s celebrated result that SH is independent of
CH (see [3], [13]) one arrives at the natural question whether CH alone is
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sufficient to give us a destructible (ω1, ω
∗
1)-gap in P(ω)/fin. It should be

noted that the interest in the question whether a given gap is destructible
or not is based not only on the analogy between gaps and Aronszajn trees.
Analysis of this kind of questions forms an essential part of several important
consistency results involving the embeddability properties of the algebra
P(ω)/fin (see [9], [2], [16]). Thus, finding another way of making a given
(ω1, ω

∗
1)-gap indestructible, and in particular, doing this without adding any

new reals, might give us some new information about these embeddability
properties of P(ω)/fin. So the following result adds some further motivation
to the consistency of (∗) with CH.

Theorem 2.2. If (∗) holds, then every (ω1, ω
∗
1)-gap contains a Hausdorff

subgap.

Let 〈aξ, bξ : ξ < ω1〉 be a given gap. Let I2 be the set of all countable
A ⊆ ω1 such that

(f) {ξ ∈ A ∩ α : aξ \ bα ⊆ n} is finite for all α < ω1 (equivalently, for all
α ≤ sup(A)) and n < ω.

Claim. I2 is a P-ideal.

P r o o f. Let {Ai} ⊆ I2 be a given sequence and let α0 < ω1 be large
enough such that An ⊆ α0 for all n. Let αj (j < ω) be an enumeration of
α0 + 1. For i, j, n < ω, set

Fij(n) = {ξ ∈ Aj ∩ αj : aξ \ bαj ⊆ n}.
By our assumption Fij(n)’s are all finite sets, so if for i < ω we set

Bi = Ai \
⋃

j≤i
Fij(i)

we get a set which is almost equal to Aj . So B =
⋃
i<ω Bi almost includes

all Ai’s. To see that B ∈ I2 it suffices to check (f) for α ≤ α0. But any such
α is equal to some αj so by the choice of Bi for i ≥ max{j, n}, the set

{ξ ∈ B ∩ α : aξ \ bα ⊆ n}
is disjoint from any such Bi. It follows that this set is covered by finitely
many finite sets

{ξ ∈ Ai ∩ α : aξ \ bα ⊆ n} (i < max{j, n}).
Since the alternative (∗)(1) is clearly equivalent to the conclusion of

Theorem 2.2, we are left with showing that (∗)(2) is impossible. In fact, we
shall show that there is no uncountable I ⊆ ω1 orthogonal to I2. For suppose
there is such an I ⊆ ω1. We have already noted that there is a ccc forcing
extension which contains uncountable J ⊆ I such that 〈aξ, bξ : ξ ∈ J〉 is
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Hausdorff. Let J0 be the first ω ordinals of J and let α0 = sup(J0) + 1.
Thus, J0 is an infinite subset of I ∩ α0 which has the property (f) for every
n < ω and α ≤ α0, a fact which is clearly absolute between the universe
and the forcing extension. So, I contains an infinite subset which is in I2,
contradicting our initial assumption that I is orthogonal to I2.

In a conversation, S. Shelah suggested to us a formally stronger property
than (b):

(g) {ξ < α : |aξ \ bα| ≤ n} is finite for all α < ω1 and n < ω.

It should be clear that the above proof also shows that (∗) implies that
every gap contains a subgap with this stronger property (g). For this one
also needs the fact that for a given gap 〈~a,~b〉 the natural poset for forcing
a subgap 〈aξ, bξ : ξ ∈ I〉 of 〈~a,~b〉 with property (g) is indeed a ccc poset.
This is proved by essentially the same argument used to prove this for the
formally weaker property (b).

2.3. Coherent ω1-sequences. A sequence Aα ⊆ α (α < ω1) is said to
be coherent if Aα =∗ Aβ ∩ α whenever α < β. Note that in this case the
sequence Ac

α = α \Aα (α < ω) of complements is also coherent. A coherent
sequence {Aα} is trivial if there is a set A ⊆ ω1 such that Aα =∗ A ∩ α for
all α < ω1. Thus, coherent sequences correspond to the notion of a pregap in
the structure [ω1]ω, i.e., 〈Aα, ω1\Ac

α : α < ω1〉 forms a pregap in 〈[ω1]ω,⊆∗〉,
while the notion of nontrivial coherent sequence corresponds to the notion
of a gap in this structure.

In fact, this notion of special form of gaps in [ω1]ω is even more closely
tied to the notion of an Aronszajn tree than the notion of an (ω1, ω

∗
1)-

gap in P(ω)/fin seen in the previous subsection. For example, note that
if {Aα} is a nontrivial coherent sequence on ω1, then the tree T{Aα} of
all finite changes of members of the sequence χAα : α → 2 (α < ω1) of
characteristic functions is an Aronszajn tree, the correspondence which re-
duces the nontriviality condition to the nonexistence of a cofinal branch
of T{Aα}. As expected, there is a nontrivial coherent sequence in ZFC
with proof closely resembling the proof of the existence of an Aronszajn
tree ([18]). In fact, T{Aα} can represent the whole spectrum of different
Aronszajn trees starting from Suslin and ending with the class of special
Aronszajn trees (see [15; §6]). Note that Hausdorff’s conditions (b) and (g)
discussed above reduce to the following requirement on a coherent sequence
{Aα}:
(h) {ξ < α : |Aξ 4 (Aα ∩ ξ)| ≤ n} is finite for all α < ω1 and n < ω.

Similarly to the proof of Theorem 2.2 we can show the following fact.
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Theorem 2.3. If (∗) holds then every nontrivial coherent sequence on
ω1 contains an uncountable subsequence with the property (h).

It can be shown that if a coherent sequence {Aα} has the Hausdorff
property (h) then the corresponding Aronszajn tree T{A} is special. This
gives still further evidence to the close relationship between Hausdorff gaps
and Aronszajn trees. However, the main goal of this subsection is to discuss
another set of problems related to coherent sequences. To state this, let us
say that a set X ⊆ ω1 is almost included in a coherent sequence {Aα} if
X ∩ α ⊆∗ Aα for all α. Let us also say that a set X ⊆ ω1 is almost disjoint
from {Aα} (or is orthogonal to {Aα}) if X ∩ Aα is finite for all α. Thus,
saying that there is no uncountable X ⊆ ω1 which is orthogonal to {Aα} or
is almost included in {Aα} is stronger than just saying {Aα} is nontrivial.
So one naturally comes to the following question apparently first considered
by Galvin [5]:

(P) Is there a coherent sequence {Aα} such that no uncountable subset
of ω1 is almost included in, nor is orthogonal to, {Aα}?

A positive answer to (P) is given in [5] but only under the assumption
of Jensen’s combinatorial �-principle (see also [4]). This of course leads to
two natural questions which ask whether such a coherent sequence can be
constructed in ZFC or at least using CH ([5], [6]). The negative answer to the
first question is given by Todorčević [14], while the following fact together
with the main result of this paper shows that indeed CH is not sufficient for
a positive answer to (P).

Theorem 2.4. If (∗) holds, then either every coherent sequence on ω1

almost includes an uncountable subset of ω1, or ω1 can be decomposed into
countably many sets orthogonal to it.

To see this, note that the ideal I3 generated by a coherent sequence is
clearly a P-ideal and that the alternatives (1) and (2) of (∗) in this case
are exactly the alternatives from the conclusion of Theorem 2.4. In fact, all
results about coherent sequences in the PFA context given in [16; §8] can
be proved to hold in the CH-model constructed in the last section of this
paper. We refer the reader to [18], [1; §14], [4] and [16] for the topological
meanings behind the notion of a coherent sequence, which involves the space
of subuniform ultrafilters on ω1.

3. Consistency of (∗) with CH. Under CH any P-ideal I ⊆ [ω1]≤ω is
generated by an ω1-tower Aα (α < ω1) of sets such that Aα ⊆∗ Aβ whenever
α < β. Clearly, we may assume that the tower {Aα} is such that Aα ⊆ α
for all α < ω1. In these terms the statement (∗) reduces to:
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(∗) For every ⊆∗-tower Aα (α < ω1) of countable subsets of ω1, either
there is an uncountable set X ⊆ ω1 almost included in {Aα}, i.e.,
every countable subset of X is almost included in some Aα, or ω1 can
be decomposed into countably many sets orthogonal to {Aα}.

In this section we use forcing to prove the consistency of (∗) with CH.
Starting with a universe V of GCH, we iterate ω2 posets taking countable
supports. The iteration will add no new reals and it will satisfy the ℵ2 chain
condition. So we will be able to deal with all ⊆∗-towers Aα (α < ω1) which
occur in the course of iteration. Since the mechanism for dealing with all
possible towers {Aα} is standard, we concentrate on the basic step of the
iteration. So given a tower Aα (α < ω1) with the property that ω1 cannot be
decomposed into countably many sets orthogonal to it, we produce a poset
P = P{Aα} such that:

I. In V P there is an uncountable X ⊆ ω almost included in {Aα}.
II. The poset P is of size 2ℵ1 and satisfies the properness-isomorphism-

condition.
III. P is α-proper for every countable ordinal α and is complete with

respect to some simple σ-complete completeness system.

This will finish the consistency proof since by results of Shelah [13; Ch. V]
posets with these properties can be iterated ω2 times preserving the ℵ2 chain
condition and without adding reals. For the convenience of the reader we
shall reproduce here all relevant definitions from [13; Ch. V].

The poset P = P{Aα} is the set of all pairs p = 〈xp,Xp〉 where

(i) xp is a countable subset of ω1.
(j) Xp is a countable collection of uncountable subsets of ω1 called

promises.

The ordering of P is defined by letting q ≤ p (q extends p) when

(k) xp≤· xq (xq end-extends xp).
(l) Xp ⊆ Xq.
(m) For every X ∈ Xp the set {ξ ∈ X : xq \ xp ⊆ Aξ} is uncountable and

it belongs to Xq.
The relation q ≤ p is transitive but not necessarily separative. Provided we
show P preserves ω1, the following extension lemma shows that P introduces
an uncountable subset of ω1 which is almost included in {Aα}.

Lemma 3.1. For every p ∈ P and γ < ω1 there is an extension q of p
such that xq \ γ 6= ∅.

P r o o f. Otherwise, for every large enough β < ω1 there is a promise
X ∈ Xp such that β 6∈ Aξ for all but countably many ξ in X. Let Xn

(n < ω) be an enumeration of Xp and let Bn be the set of all β < ω1 such
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that β 6∈ Aξ for all but countably many ξ ∈ Xn. Then each Bn is orthogonal
to {Aα} and they cover a cocountable subset of ω1. This of course contradicts
our initial assumption about the tower {Aα}.

Lemma 3.2. P is proper.

P r o o f. Let θ be a given large enough regular cardinal and let M be a
countable elementary submodel of Hθ containing P and a condition p0 of
P. We need to find an M -generic condition q extending p0. Let δ = M ∩ ω1

and let Dn (n < ω) be an enumeration of all dense open subsets of P that
are in M . Starting from p0 we shall define a sequence pn = 〈xn,Xn〉 (n < ω)
of stronger and stronger conditions from P ∩M such that pn+1 ∈ Dn for
all n. This will be done in such a way that there will be a condition q of
P extending all the pn’s. Such a condition q will obviously be M -generic.
Having in mind an even stronger completeness property of P to be proved
later, we choose an arbitrary B ⊆ δ such that Aα ⊆∗ B for all α < δ and we
try to construct the sequence of pn’s such that the following two conditions
are satisfied when we let xω be the union of the xn’s:

(n) xω \ x0 ⊆ B.
(o) For every n < ω and X ∈ Xn the set Z(X,n) = {ξ ∈ X : xω \ xn ⊆

Aξ} is uncountable.

If we succeed in constructing such a sequence, then q = 〈xq,Xq〉 can be
defined by letting

xq = xω and Xq = {Z(X,n) : n < ω, X ∈ Xn} ∪
⋃
n<ω

Xn.

It is clear that such a condition q will be as required. To ensure (o), we
shall use some enumeration device which will give us for every n < ω and
X ∈ Xpn an integer m > n such that X will be taken care of while defining
pi for i > m. We first let

X1 = {ξ ∈ X : xm \ xn ⊆ Aξ}.
Since pm ≤ pn this set is uncountable and is a member of Xm. Since Aδ ⊆∗
Aξ for all but countably many ξ ∈ X1 there is an uncountable X2 ⊆ X1

(now, not in M) and a finite set F ⊆ δ such that Aδ ⊆ Aξ∪F for all ξ ∈ X2.
So, if we are able to find an extension pm+1 of pm in Dm ∩M such that
xm+1 \xm is included in (Aδ ∩B) \F and, moreover, keep xi+1 \xi disjoint
from F at any later stage i ≥ m, this will ensure that Z(X,n) includes the
uncountable set X2. So, it suffices to satisfy the following two demands for
a given finite set F ⊆ δ:

pm+1 ∈ Dm ∩M,(p)

xm+1 \ xm ⊆ (Aδ ∩B) \ F.(q)
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For this we have the following lemma.

Lemma 3.3. Suppose M ≺ Hθ is countable and it contains P. Let δ =
M ∩ω1, p0 ∈ P ∩M and let D ∈M be a dense open subset of P. Let A ⊆ δ
be such that Aα ⊆∗ A for all α < δ. Then there is an extension p of p0 in
D ∩M such that xp \ xp0 ⊆ A.

P r o o f. Suppose such a p cannot be found. Let X be the set of all γ < ω1

for which there is a finite set F ⊆ γ such that there is no p ∈ D extending p0

such that xp \xp0 ⊆ Aγ \F . Note that every ordinal γ < δ is a member of X
since for such γ the finite set Aγ \A works. Since X is clearly an element of
M this means that X is actually equal to ω1. By the Pressing Down Lemma
there is a stationary set S ⊆ ω1 in M and a finite set F ⊆ δ such that F
witnesses γ ∈ X for all γ ∈ S. Then p1 = 〈xp0 ,Xp0 ∪ {S}〉 is a member of
P ∩M which clearly extends p0, so by the extension Lemma 3.1 there is
β0 ∈ (max(F ), δ) such that

p2 = 〈xp1 ∪ {β0},Xp1 ∪ {{ξ ∈ X : β0 ∈ Aξ} : X ∈ Xp1}〉
is a member of P ∩M extending p1. Since D ∈ M is a dense subset of P,
we can find p ∈ D ∩M extending p2 and therefore p1. It follows that

S1 = {γ ∈ S : xp \ xp0 ⊆ Aγ}
is uncountable. Since min(xp \ xp0) = β0 is above max(F ), this means that
for γ ∈ S1 we actually have the stronger inclusion

xp \ xp0 ⊆ Aγ \ F,
contradicting the fact that for any such γ, the set F witnesses that γ belongs
to X.

The proof of Lemma 3.2 can be modified to give us the following stronger
result.

Lemma 3.4. P is α-proper for all α < ω1.

P r o o f. This means that for every continuous ∈-chain Mξ (ξ < α) of
countable elementary submodels of some large enough structure Hθ every
condition p0 ∈ P ∩M0 can be extended to a condition q which is Mξ-generic
for all ξ < α. This is done by induction on α with the following inductive
hypothesis.

(r) For every continuous ∈-chain Mξ (ξ ≤ α) of countable elementary
submodels of Hθ, every p0 ∈ P ∩M0 and every finite set F ⊆ δ, where
δ = Mα ∩ ω1, there is q ∈ P extending p0 which is Mξ-generic for all
ξ < α and which has the property that xq \ xp0 ⊆ Aδ \ F .

We have just seen this when α = 1 during the course of the proof of Lemma
3.2. The successor step is done similarly using the inductive hypothesis. So
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let us assume α is a limit ordinal and fix an increasing sequence αi (i < ω)
cofinal with α. Let δi = Mαi∩ω1 and Fi = Aδi\Aδ. We will define a sequence
pi (i < ω) of stronger and stronger conditions such that pi+1 ∈ Mαi+1 ∩ P
is Mξ-generic for all ξ ≤ αi and such that

xpi+1 \ xpi ⊆ Aδi \ (Fi ∪ F ∪ Ei),
where Ei is an additional finite set given by some book-keeping device as
in the proof of Lemma 3.2 in order to ensure that the sequence {pi} will
have an extension q. The condition pi+1 is obtained by working in Mαi+1

and applying the inductive hypothesis (r) for α = αi to the condition pi ∈
P ∩Mαi−1+1, the finite set F ∪ Fi ∪ Ei, and the chain Mξ (αi−1 ≤ ξ ≤ αi)
of countable elementary submodels of Hθ (α−1 = 0).

To prove the completeness property of P which together with α-pro-
perness ensures that the countable support iteration of such posets does not
add reals we need to review the relevant definitions from [13; Ch. V]. For
a countable elementary submodel M of some large enough structure Hθ,
a poset P ∈ M and p0 ∈ P ∩M let Gen(M,P, p0) denote the set of all
M -generic filters G ⊆ P ∩M containing p0, i.e., filters G of P ∩M such
that G ∩ D 6= ∅ for every D ∈M which is dense open in P. A completeness
system is a function which with every triple (M,P, p0) associates a filter
of nonempty subsets of Gen(M,P, p0). Such a system is called simple if it
can be described by a single second-order formula ψ(Y1, Y2; y1, y2, y3) in the
∈-language so that for some fixed parameter a ∈ Hθ, the filter associated
with a given triple 〈M,P, p0〉 such that a ∈ M is generated by the sets of
the form

GψX = {G ∈ Gen(M,P, p0) : M ² ψ(G,X;P, p0, a)},
where X is an arbitrary subset of M . We say that the simple completeness
system given by a formula ψ(Y1, Y2; y1, y2, y3) and a parameter a ∈ Hθ is
σ-complete if all filters are in some sense σ-complete, or, more precisely, if
for every a,P, p0 ∈ M ≺ Hθ and every sequence Xn (n < ω) of subsets of
M there is a G ⊆M such that M ² ψ(G,Xn;P, p0, a) for all n < ω. Finally,
we say that the poset P is complete with respect to the simple completeness
system given by a formula ψ(Y1, Y2; y1, y2, y3) and a parameter a ∈ Hθ iff
for every countable M ≺ Hθ, a,P, p0 ∈ M , there is an X ⊆ M such that
every element G of GψX has an extension in P.

Lemma 3.5. The poset P = P{Aα} defined above is complete with respect
to some simple σ-complete completeness system.

P r o o f. To see what the formula ψ(Y1, Y2; y1, y2, y3) should say in order
that every member of GψX , for suitably chosen X, is an extendable (and
sufficiently generic) filter, let us fix some countable elementary submodel
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M ≺ Hθ containing {Aα}, P and some p0 ∈ P. Suppose X is a subset of M
which codes in some standard way the following objects:

(1) an enumeration Dn (n < ω) of all dense open subsets D of P which
are members of M ,

(2) an enumeration Xn (n < ω) of all uncountable subsets of ω1 which
are members of M ,

(3) a function F : ω → [δ]<ω where δ = M ∩ ω1, and
(4) a subset B ⊆ δ such that Aα ⊆∗ B for all α < δ.

We let the formula ψ(G,X;P, p0, {Aα}) say that when we decode X to give
us objects of (1)–(4), then G is a filter generated by a sequence pn (n < ω)
of stronger and stronger conditions which starts from p0 such that for all
but finitely many m the condition pm+1 belongs to the intersection of all Di
(i ≤ m) and xpm+1 \ xpm is a subset of B which is disjoint from any finite
set F ⊆ δ of the following form: There exists i ≤ m such that Xi belongs to
Xpj for some j ≤ m and if k is the minimal such j, then F = F (l) where l
is the minimal integer such that

Xl = {ξ ∈ Xi : xpm \ xpk ⊆ Aξ}.
This definition is of course based on the proof of Lemma 3.2 where the
function F : ω → [δ]<ω is given by letting F (i) be the minimal finite subset
F of δ such that

{ξ ∈ Xi : Aδ ⊆ Aξ ∪ F}
is uncountable. Thus any X ⊆M which codes this particular F : ω → [δ]<ω

and whose set B of (4) is equal to Aδ will have the property that any G
such that

M ² ψ(G,X;P, p0, {Aδ})
will be an M -generic filter containing p0 and having extensions in P. In other
words, such an X ⊆M will witness the fact that P is complete with respect
to the completeness system determined by ψ and the parameter {Aα}.

It remains to be shown that the completeness system is σ-complete. So
let Xn (n < ω) be a given sequence of subsets of M . We need to find a filter
G such that for all n < ω,

M ² ψ(G,Xn;P, p0, {A0}).
So G will be generated by a sequence pn (n < ω) of stronger and stronger
conditions which is constructed almost exactly as in the proof of Lemma 3.2
except that now going from pm to pm+1 we take care about all of the finitely
many requirements obtained by decoding the sets Xn (n ≤ m). For example,
pm+1 will be a member of the intersection of all Dni (n, i ≤ m) extending pm
and having the property that xpm+1 \ xpm is a subset of

⋂
n≤mB

n avoiding
all of the finitely many finite sets F ⊆ δ which can be obtained from one of
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the sets Xn
i (n, i ≤ m) via the process described above, i.e., F = Fn(l) for

a suitably chosen l depending on some i ≤ m. Note that the general form of
Lemma 3.3 is exactly what is needed in order to show that such a condition
pm+1 can always be found.

Finally, it remains to prove the ℵ2 chain condition of the countable sup-
port iteration of our posets. For this it suffices to show the following (see
[13; p. 262]).

Lemma 3.6. The poset P = P{Aα} satisfies the properness isomorphism
condition.

P r o o f. This means that if we are given two countable elementary sub-
models M0,M1 ≺ Hθ such that P ∈M0∩M1 and an isomorphism h between
M0 and M1 which is equal to the identity on M0 ∩M1 then for every p in
P ∩M0 there is an extension q of p and h(p) which is M0-generic and which
forces that the mapping h sends Ġ∩M0 isomorphically onto Ġ∩M1, where
Ġ is the canonical name for the generic filter. The condition q is obtained as
the extension of a sequence pn (n < ω) of conditions constructed similarly
to those in the proof of Lemma 3.2 but working only inside the model M0.
Of course, we let p0 = p and construct pm+1 from pm as in the proof of
Lemma 3.2 but now at various stages taking care not only about promises
appearing in some Xpi but also about their h-images. Thus, at a given stage
m where we have to take care about some X ∈ Xpi (i ≤ m) we additionally
take care about h(X) by first setting

X1 = {ξ ∈ h(X) : xpm \ xpi ⊆ Aξ}
and noting that this is indeed an uncountable subset of h(X). It follows that
there is a finite set F ⊆ δ (= M0 ∩ ω1 = M1 ∩ ω1) such that

X2 = {ξ ∈ X1 : Aδ ⊆ Aξ ∪ F}
is uncountable. This will be another finite set which we have to avoid while
constructing pn for n > m. When this is done, we set xω =

⋃
n xn and

q =
〈
xω,

⋃
n

(X ∗n ∪ (h′′Xn)∗)
〉
,

where for n < ω,

X ∗n = Xn ∪ {{ξ ∈ X : xω \ xn ⊆ Aξ} : X ∈ Xn}, and

(h′′Xn)∗ = h′′Xn ∪ {{ξ ∈ h(X) : xω \ xn ⊆ Aξ} : X ∈ Xn}.
Then q is an M0-generic condition which extends not only the pn’s but also
their h-images h(pn)’s and, therefore, it forces that Ġ ∩M0 is generated by
{pn} while Ġ ∩M1 is generated by {h(pn)}.
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4. Concluding remarks. One way of strengthening the principle (∗)
would be trying to approximate (A) and (A∗) more closely. Such approxi-
mation should imply as many consequences of (A) and (A∗) as possible, e.g.,
those presented in [0] concerning the chromatic number of the Hajnal–Maté
graph and uniformizable ladder systems on ω1. Similarly one may consider
the consequences of (A) and (A∗) presented in [16; §8] and [17] and related to
the Moore–Mrówka problem from topology. That the methods of this paper
might be relevant is most easily seen by considering the standard example
from this area, the Ostaszewski space ([12]). This example is so closely tied
to the �-principle that many attempts to construct such a space using only
CH have failed so far. For example, in [11; Problem 174] one finds a combi-
natorial principle about [ω1]ω (due to S. Watson) which together with CH
implies the existence of an Ostaszewski space, so the natural question was
whether the principle is a consequence of CH or not. The result of this paper
shows that the answer is negative, since it is easily seen that the ideal gen-
erated by “small” sets of [11; Problem 174] is a P-ideal of countable subsets
of ω1 so the alternatives of (∗) would contradict the four properties required
in [11; Problem 174].

However, there might be another possible line to strengthen the principle
(∗). To see this, let us reformulate (∗) in terms of integer-valued functions
defined on (sets of) ordinals. For two such functions f and g, set f ≤0 g
iff dom(f) ⊆ dom(g) and the function g is unbounded on any subset X ⊆
dom(f) on which the function f itself is unbounded. Call a family F of
integer-valued functions unbounded if there is no g such that f ≤0 g for
all f ∈ F . A typical example of an unbounded family is a sequence eα :
α → ω (α < ω1) of finite-to-one functions. Such a sequence is, of course,
≤0-increasing, i.e., eα ≤0 eβ for α < β. The following fact shows that any
other≤0-increasing unbounded ω1-sequence of functions will essentially have
to look like this one.

Theorem 4.1 (CH). The statement (∗) is equivalent to the statement
that for every ≤0-increasing unbounded sequence fα : α→ ω (α < ω1) there
is an uncountable X ⊆ ω1 such that fα¹X is finite-to-one for all α < ω1.

To see the direct implication, let I4 be the set of all countable X ⊆ ω1

such that fα¹X is finite-to-one for all α < ω1. It is easily checked that
I4 is a P-ideal and that the alternative (∗)(1), applied to I4, gives us the
uncountableX ⊆ ω1 such that fα¹X is finite-to-one for all α. The alternative
(∗)(2), however, is equivalent to the boundedness of fα (α < ω1) and is
therefore impossible by our assumption about the sequence.

To see the reverse implication, let I be a given P-ideal of countable
subsets of ω1 and (using CH) fix a tower {Aα : α < ω1} ⊆ I which generates
I. Choose also a sequence eα : α → ω (α < ω1) of finite-to-one functions,
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and define a new sequence fα : α→ ω (α < ω1) as follows:

fα(ξ) =
{
eα(ξ) if ξ ∈ Aα,
0 otherwise.

It is clear that {fα} is an ≤0-increasing sequence of functions. If g : ω1 → ω
is an upper bound of {fα}, the sets g−1(n) (n < ω) would form a decompo-
sition of ω1 into countably many pieces orthogonal to I. So we may assume
{fα} is unbounded and, therefore, we can find an uncountable X ⊆ ω1 such
that fα¹X is finite-to-one for all α. Going back to the definition of {fα}, it
is clear that this means that X ∩ α ⊆∗ Aα for all α.

The ordering ≤0 is one of the many orderings which can be considered
in this context. For example, another natural ordering would be as follows:

f ≤1 g iff dom(f) ⊆ dom(g) and f(α) ≤ max{m, g(α)}
for a fixed m < ω and all α ∈ dom(f). One may also consider larger families
of functions, e.g., of cardinality ℵ2 or bigger, and consider the problem when
they contain an ω1-subsequence which behaves like the prototype eα : α→ ω
(α < ω1) of finite-to-one functions. Note that this must necessarily involve
something stronger than the assumption of the consistency of ZFC alone
(see [15; (1.14)]).

Theorem 4.1 suggests another version of our combinatorial principle in
terms of (ω, θ)-matrices of sets Anα (n < ω, α < θ). We shall say that such a
matrix of sets is coherent if it satisfies the following conditions:

(s) Anα ⊆ An+1
α ⊆ α for all n < ω and α < θ,

(t)
⋃∞
n=0An = α for all α < θ,

(u) for every α < β < θ and n < ω there is m < ω such that Anβ∩α ⊆ Amα .

If θ is a countable ordinal then it is easily seen that every coherent (ω, θ)-
matrix extends to a coherent (ω, θ + 1)-matrix, but if θ is uncountable this
is not so clear. For example, if θ = ω1 and if there is an uncountable subset
X of ω1 which is orthogonal to (i.e., it has finite intersection with) every
member of the matrix, then it is easily seen that the matrix cannot be
extended to a coherent (ω, ω1 + 1)-matrix . So it is natural to formulate the
following dychotomy principle:

(∗∗) A coherent (ω, ω1)-matrix of sets can be extended to a coherent
(ω, ω1 + 1)-matrix of sets if (and only if) no uncountable subset of
ω1 is orthogonal to it.

The relation between coherent (ω, θ)-matrices of sets and ≤0-increasing
θ-sequences of functions fα : α→ ω (α < θ) should be apparent. Given the
matrix Anα (n < ω, α < θ) define fα : α→ ω (α < θ) by

fα(ξ) = min{n : ξ ∈ Anα}.
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The key condition (u) on the matrix translates to the condition fα ≤0 fβ ,
i.e., to the fact that fβ is unbounded on any subset X of α on which fα
is unbounded. Thus, the matrix Anα (n < ω, α < θ) can be extended to
a coherent (ω, θ + 1)-matrix if and only if there is fθ : θ → ω such that
fα ≤0 fθ for all α < θ. On the other hand, a set X ⊆ θ is orthogonal to
Anα (n < ω, α < θ) if and only if fα¹X is finite-to-one for all α. Conversely,
given an ≤0-increasing sequence fα : α → ω (α < θ) of functions we define
a matrix Anα (n < ω, α < θ) as follows:

Anα = {ξ < α : fα(ξ) ≤ n}.
Then the condition that fα ≤0 fβ for α < β < θ reduces to the condition
(u) on the matrix, and again we see that a set X ⊆ θ is orthogonal to Anα
(n < ω, α < θ) if and only if fα¹X is finite-to-one for all α. This makes it
clear that the statement in Theorem 4.1 is equivalent to (∗∗). We suggest
that the reader tries to apply (∗∗) directly to the problems considered in §2.
It might be that for some of these applications it is easier to use (∗∗) than (∗).
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