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A Nielsen theory for intersection numbers

by

Christopher K. M c C o r d (Cincinnati, Ohio)

Abstract. Nielsen theory, originally developed as a homotopy-theoretic approach to
fixed point theory, has been translated and extended to various other problems, such as
the study of periodic points, coincidence points and roots. In this paper, the techniques of
Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number,
the Nielsen intersection number NI(f, g), is introduced, and shown to have many of the
properties analogous to those of the Nielsen fixed point number. In particular, NI(f, g)
gives a lower bound for the number of points of intersection for all maps homotopic to f
and g.

1. Introduction. Nielsen fixed point theory, a homotopy-theoretic ap-
proach to fixed-point theory, grew out of Nielsen’s work in the 1920’s on
surface homeomorphisms. From those origins, Nielsen fixed point theory has
grown into a richly developed theory for fixed points. Moreover, the methods
of Nielsen theory have been translated from fixed point problems into other
domains, such as the study of periodic points, coincidence points, roots, etc.
That is, there are Nielsen coincidence numbers, Nielsen root numbers, etc.,
defined in the similar fashion, and with similar properties, to the original
Nielsen fixed point number. In this paper, we consider another translation
of the Nielsen machinery into a new setting: intersections of maps.

Given f : X → Z and g : Y → Z, the intersection set of f and g is

Int(f, g) = {(x, y) ∈ X × Y | f(x) = g(y)}.
In general, the intersection set can be quite complicated, and the problem
of “describing Int(f, g)” correspondingly intractable. In some settings, such
as the study in algebraic geometry of the intersection of algebraic varieties,
there are highly developed theories which are tailored to that setting. Here,
we will focus on the topological setting, and will assume that all of the
spaces involved are compact, Hausdorff, path-connected and admit universal
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covering spaces. In this setting, the intersection set is clearly compact, and
our attempt to describe it will be limited to counting its components.

Actually, it is not exactly “counting components” for a single pair of
maps f and g that we are interested in. If either f or g is deformed by
a homotopy, the intersection set will change. In particular, we can create
arbitrarily large intersection sets via homotopies of f and g. To discount the
contribution of such spurious intersection points, we instead study

MI(f, g) = min{|π0(I(f ′, g′))| | f ′ ' f, g′ ' g}.
Note that we count path components, rather than the cardinality of the set,
so that MI(f, g) does not become “trivially infinite” when the intersection
set has positive dimension. Even so, and even if X, Y and Z are all compact,
it is not clear that MI(f, g) must be finite. However, in one important setting,
it will be. Namely, if X, Y and Z are manifolds, then an arbitrarily small
perturbation of f and/or g makes the two maps transverse at all intersection
points. In particular, if dim(X) + dim(Y ) = dim(Z), then Int(f, g) will be
discrete, and hence finite.

Now, just as the Nielsen fixed point number provides a lower bound
for MF(f), we will develop a Nielsen intersection number NI(f, g) that will
provide a lower bound for MI(f, g). In broad terms, the development of a
Nielsen theory for intersections parallels that of fixed point theory. It is
patterned even more strongly after the Nielsen theory for coincidences [1],
and the Nielsen theory for roots and generalized roots [2, 4]. The reason
for this is that there is an important property that distinguishes fixed point
theory from both coincidence theory and intersection theory: the ability to
define a fixed point index in great generality. A fixed point index can be
defined for any self-map on a polyhedron. In contrast, a coincidence index is
only defined when the domain and range are compact orientable manifolds
of the same dimension; and an intersection index is only defined when X, Y
and Z are compact orientable manifolds with dim(X) + dim(Y ) = dim(Z).
Since the fixed point index plays an essential role (pun intended) in the
development of Nielsen fixed point theory, the lack of an index forces the
development of coincidence theory down a different path, and suggests that
intersection theory should follow that path.

We begin with a quick survey of the intersection index for manifolds.
Even though this index can only be used in a special case, it is an impor-
tant special case, and will be a valuable tool when available. The Nielsen
intersection number is defined in §3, and its basic properties are established
in the remaining sections. §4 explores the Wecken theorem and §5 estab-
lishes the Jiang condition for intersection numbers. The next three sections
deal with the functoriality of Nielsen intersection numbers, and the ability
to move the computation of Nielsen intersection numbers from one triple of



A Nielsen theory for intersection numbers 119

spaces to another. §6 provides some of the general functoriality results, while
§§7 and 8 apply these results to intersection number formulas for covering
spaces and fibrations respectively. For all of these topics, the treatment here
should be considered a preliminary effort. More can be proven about all of
these topics, and there are many other aspects of Nielsen theory that are
not considered at all in this paper. The last section surveys some of the open
questions and directions for development that lie ahead for the theory.

2. The intersection index. The intersection index, like the fixed point
and coincidence indices, can be constructed from either a differential [7]
or homological [5] point of view. In either approach, we require that X,Y
and Z are compact, orientable manifolds of dimensions p, q and n = p + q
respectively. Fix orientations for X, Y and Z. A set J ⊂ Int(f, g) is an
isolated set of intersections if there exists a neighborhood U ⊂ X × Y of J
such that Int(f, g) ∩ U = J .

In the differential definition of the index, we can, by an arbitrarily small
perturbation of f and g, assume that the maps are smooth and transverse
at every point of intersection. For every (x, y) ∈ J , take a basis {v1, . . . , vp}
for TxX and a basis {w1, . . . , wq} for TyY . Then

{Dfx(v1), . . . , Dfx(vp), Dgy(w1), . . . , Dgy(wq)}
forms a basis for Tf(x)Z. If this basis has the same orientation as that fixed
for Z, we define Ind(f, g; (x, y)) = 1; if it has the opposite orientation, we
define Ind(f, g; (x, y)) = −1. We then define

Ind(f, g;J) =
∑

(x,y)∈J
Ind(f, g; (x, y)).

Clearly, Ind(f, g;J) = (−1)pq Ind(g, f ;J). Of course, to show that this is
well-defined, it must be shown that the quantity Ind(f, g;J) is independent
of the transverse approximations of f and g chosen.

For the homological definition of Ind(f, g; J), choose neighborhoods J ⊂
U ⊂ V in X × Y such that U ⊂ V ◦ and such that V ∩ Int(f, g) = J . Then
consider the composition

Hn(X × Y )→ Hn(X × Y,X × Y \ U)
∼=← Hn(V, V \ U) (f×g)∗−−−→Hn(Z × Z,Z × Z \∆(Z))

in integer homology. Since X×Y and Z are compact orientable n-manifolds,

Hn(X × Y ) ∼= Hn(Z × Z,Z × Z \∆(Z)) ∼= Z,

so the image of the generator of Hn(X × Y ) under this composition gives
an integer quantity Ind(f, g; J). Of course, here the index must be shown to
be independent of the neighborhoods U and V chosen.
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Omitting a number of proofs (including the proof that the two definitions
coincide), we have an integer index with the following properties:

1. Given F : X × [0, 1] → Z and G : Y → Z, consider the “fat homo-
topies” F : X × [0, 1] → Z × [0, 1] and G : Y × [0, 1] → Z × [0, 1], defined
by F(x, t) = (F (x, t), t), G(y, t) = (G(y, t), t). If J ⊂ Int(F,G) is an isolated
set of intersections, then so is every Jt0 = J ∩ {t = t0}, and Ind(Ft, Gt; Jt)
is independent of t.

2. If J = ∅, then Ind(f, g;J) = 0.
3. If J1, . . . , Jn are disjoint isolated intersection sets, then

Ind
(
f, g;

n⋃

k=1

Jk

)
=

n∑

k=1

Ind(f, g; Jk).

4. Suppose X = X1×X2, Y = Y1×Y2, and Z = Z1×Z2, with dim(Xi)+
dim(Yi) = dim(Zi). Given fi : Xi → Zi and gi : Yi → Zi and isolated
isolated intersection sets Ji ⊂ Int(fi, gi), define f = f1× f2, g = g1× g2 and
J = J1 × J2. Then

Ind(f, g; J) = Ind(f1, g1;J1) Ind(f2, g2; J2).

5. If (x, y) is an isolated intersection of f and g with Ind(f, g; (x, y)) = 0
and U × V is a neighborhood of (x, y) in X × Y , then there are homotopies
F and G such that F0 = f , and G0 = g; Int(F1, G1) = ∅; and Ft = F0 and
Gt = G0 on X \ U and Y \ V respectively. Moreover, these homotopies can
be chosen arbitrarily close to f and g.

The index of the total intersection set LI(f, g) = Ind(f, g; Int(f, g))
(#(f, g) in [7]) is the (Lefschetz ) intersection number of f and g. It should
be thought of as an analogue to the Lefschetz number for fixed points or
coincidences. From the properties above, it is clear that

Theorem 2.1. LI(f, g) is a homotopy invariant , and if LI(f, g) 6= 0,
then for every f ′ ' f , g′ ' g, Int(f ′, g′) is nonempty.

However, LI(f, g) also suffers from the same limitations as the Lef-
schetz number: when nonzero, it does not estimate the number of inter-
sections; and when zero, it does not guarantee that f and g are intersec-
tion-free. Consider the example from [7, Figure 5-3] shown in Figure 1. Let
X = Y = S1, Z = T 2 # T 2, and consider the submanifolds M and N to be
the images of embeddings f, g : S1 → T 2 # T 2. There are two intersections
of opposite orientation, so LI(f, g) = 0. That is, LI(f, g) = 0 does not imply
that f and g are intersection-free. Moreover, it appears that no deformation
of f or g will remove the intersections, so LI(f, g) = 0 does not even imply
that f and g can be deformed to be intersection-free. This picture is, in some
sense, a motivating example: neither intersection point can be removed indi-
vidually by a deformation of f or g; and the two intersection points cannot
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Fig. 1. Essential intersections in the double torus

be “cancelled” because we cannot deform the image of f into the image
of g. The essence of the definition of the Nielsen intersection number lies in
making these ideas precise and general.

3. Nielsen intersection numbers. As with any Nielsen-type number,
the basic steps in the definition of the Nielsen intersection number are to
partition the intersection set into intersection classes, define a notion of an
essential class, and count the number of essential classes. The data required
consists of compact, path-connected spaces X, Y and Z, and continuous
functions f : X → Z and g : Y → Z. We define an equivalence relation on
Int(f, g) by (x0, y0) ∼N (x1, y1) if there exist paths α in X from x0 to x1

and β in Y from y0 to y1 in Y such that fα ' gβ rel{0, 1}. Alternatively,
we can think of this as requiring a path ω in X ×Y from (x0, y0) to (x1, y1)
such that (f × g)ω is homotopic rel{0, 1} to a path in the diagonal ∆(Z) in
Z × Z. Equivalence classes will be called intersection classes and the set of
intersection classes will be denoted by I(f, g).

Proposition 3.1. I(f, g) is finite, and each intersection class J is a
union of components of Int(f, g).

There is also a covering space approach to this partitioning of Int(f, g)
into intersection classes. If X̃, Ỹ and Z̃ are the universal covers of X,Y and
Z, and (x, y) ∈ Int(f, g), choose x̃ ∈ p−1

X (x) and ỹ ∈ p−1
Y (y). Then there

exists a covering transformation γ ∈ D(Z) such that f̃(x̃) = γg̃(ỹ).

Proposition 3.2. For every γ ∈ D(Z), (pX × pY )(Int(f̃ , γg̃)) is an
intersection class. Further , (pX × pY )(Int(f̃ , γg̃)) = (pX × pY )(Int(f̃ , γ′g̃))
if and only if there exist α ∈ D(X), β ∈ D(Y ) such that (f#α)γ = γ′(g#β).
Otherwise, (pX × pY )(Int(f̃ , γg̃)) and (pX × pY )(Int(f̃ , γ′g̃)) are disjoint.
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P r o o f. First, suppose (x̃, ỹ), (x̃′, ỹ′) ∈ Int(f̃ , γg̃). Choose a path ω̃ from
(x̃, ỹ) to (x̃′, ỹ′) in X̃ × Ỹ . Then ω = (pX × pY )ω̃ is a path from (x, y) =
(pX × pY )(x̃, ỹ) to (x′, y′) = (pX × pY )(x̃′, ỹ′). Since (f̃ × γg̃)ω̃ has its
endpoints in ∆(Z̃), it is endpoint-homotopic to a path in ∆(Z̃). Clearly, its
image (f × g)ω is then endpoint-homotopic to a path in ∆(Z).

On the other hand, suppose (x, y) ∈ (pX×pY )(Int(f̃ , γg̃)), and (x, y) and
(x′, y′) are in the same intersection class, with a path ω connecting them.
Let ω̃ be the lift of ω in X̃ × Ỹ based at (x̃′, ỹ′) ∈ (pX × pY )(Int(f̃ , γg̃)).
Let (x̃′, ỹ′) = ω̃(1). Since (f×g)ω is endpoint-homotopic to a path in ∆(Z),
its lift based at (f̃(x̃), γg̃(ỹ)) is endpoint-homotopic to a path in ∆(Z̃). But
since its endpoint is (f̃(x̃′), γg̃(ỹ′)), the point (f̃(x̃′), γg̃(ỹ′)) lies in ∆(Z̃),
and (x̃′, ỹ′) ∈ Int(f̃ , γg̃).

This establishes that (pX×pY )(Int(f̃ , γg̃)) is an intersection class. Clear-
ly, any two such sets either coincide or are disjoint. If (pX×pY )(Int(f̃ , γg̃)) =
(pX×pY )(Int(f̃ , γ′g̃)), then there are points (x̃, ỹ) ∈ Int(f̃ , γg̃) and (x̃′, ỹ′) ∈
Int(f̃ , γ′g̃) with (pX × pY )(x̃, ỹ) = (pX × pY )(x̃′, ỹ′). That is,

f̃(x̃) = γg̃(ỹ), f̃(x̃′) = γ′g̃(ỹ′), x̃′ = α(x̃), ỹ′ = β(ỹ)

for some α ∈ D(X), β ∈ D(Y ), γ, γ′ ∈ D(Z). Then

f̃(x̃′) = γ′g̃(ỹ′), (f#α)f̃(x̃) = (γ′g#β)g̃(ỹ),

f̃α(x̃) = γ′g̃β(ỹ), (f#α)γg̃(ỹ) = γ′(g#β)g̃(ỹ),

which implies that (f#α)γ = γ′(g#β).

We therefore define Reidemeister intersection classes in D(Z) by the
equivalence relation γ ∼ γ′ if and only if there exist α ∈ D(X), β ∈ D(Y )
such that (f#α)γ = γ(g#β). The set of Reidemeister intersection classes
will be denoted by RI(f, g). Of course, if f(x) = z = g(y), then we can
also define the Reidemeister relation in terms of the fundamental group
homomorphisms

π1(X,x)
f#−→ π1(Z, z)

g#←− π1(Y, y).

Note that RI(f, g) can be viewed as a double coset:

RI(f, g) = f#(π1(X))\π1(Z)/g#(π1(Y )).

This can be approximated by abelianizing the problem (i.e. passing from
homotopy to homology). Let RI∗(f, g) = H1(Z)/〈im(f1∗), im(g1∗)〉. Clearly,
RI(f, g) maps onto RI∗(f, g), so we have

Proposition 3.3. 1. |I(f, g)| ≤ |RI(f, g)|.
2. |RI∗(f, g)| ≤ |RI(f, g)|, with equality if π1(Z) is abelian.
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The inequality |I(f, g)| ≤ |RI(f, g)| occurs because there may be Rei-
demeister classes for which the corresponding intersection class is empty. It
will also be useful in later sections to consider intersections on the algebraic
level. That is, given (x, y) ∈ Int(f, g), we define

I(f#, g#; (x, y)) = {α× β ∈ π1(X,x)× π1(Y, y) | f#(α) = g#(β)}.
It is a simple matter to check that

Proposition 3.4. For every (x, y) ∈ Int(f, g), I(f#, g#; (x, y)) is a sub-
group of π1(X,x) × π1(Y, y). If (x, y) ∼N (x′, y′), with paths α in X and β
in Y relating them, then the isomorphism

α# × β# : π1(X,x)× π1(Y, y)→ π1(X,x′)× π1(Y, y′)

maps I(f#, g#; (x, y)) to I(f#, g#; (x′, y′)).

P r o o f. It is a simple matter to check that I(f#, g#; (x, y)) is a subgroup
of π1(X,x)× π1(Y, y).

Now, given paths α from x to x′ and β from y to y′ with fα ' gβ, there
is a commutative diagram

π1(X,x) π1(Z, z) π1(Y, y)

π1(X,x′) π1(Z, z′) π1(Y, y′)

f# //

α#

²²
fα#

²²
gβ#

²²

g#oo

β#

²²f# // g#oo

with (fα)# = (gβ)#. Now, suppose ω ∈ π1(X,x), ω′ ∈ π1(Y, y) such that
f#(ω) = g#(ω′). Then

f#α#(ω) = (fα)#f#(ω) = (gβ)#g#(ω′) = g#β#(ω′),

so α# × β# maps I(f#, g#; (x, y)) into I(f#, g#; (x′, y′)). Clearly, reversing
the path gives the reverse inclusion.

We can then unambiguously define I(f#, g#; J) for an intersection class
J . This quantity will be useful in later sections, when we investigate the
functorial properties of the Nielsen numbers.

But first we must complete the definition of the Nielsen intersection
number. To do so, we first need the concept of an essential intersection
class. When an intersection index is defined, we say that an intersection
class J is algebraically essential if Ind(f, g; J) 6= 0. However, intersection
indices are not defined in general, so we need a more general notion of an
essential class. Following Brooks [1], we can define in full generality a concept
of a topologically essential interesection class, which explicitly captures the
meaning of “essential” as “unable to be removed by a homotopy”.
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To do so, we return to the fat homotopies introduced in the previous
section. There, they were used (in the setting of orientable manifolds of
the appropriate dimensions) to describe the homotopy invariance of the
intersection index. It followed then that intersection classes with nonzero
intersection index cannot be removed by a homotopy. We now use the fat
homotopy construction to describe directly an essential intersection class.
Consider homotopies F : X × [0, 1] → Z and G : Y × [0, 1] → Z. Define
F : X × [0, 1] → Z × [0, 1] and G : Y × [0, 1] → Z × [0, 1] by F(x, t) =
(F (x, t), t) and G(y, t) = (G(y, t), t). Then Int(F,G) =

⋃
t∈[0,1] Int(Ft, Gt).

Further, the partitioning of Int(F,G) into intersection classes preserves this
decomposition:

Lemma 3.5. Supppose J is an intersection class in I(F,G). Then, for
every t ∈ [0, 1], Jt = J∩(X×Y ×{t}) is an intersection class for Ft and Gt.

P r o o f. If J is an intersection class in I(F,G), then there are lifts F̃ :
X̃ × [0, 1] → Z̃ × [0, 1] and G̃ : Ỹ × [0, 1] → Z̃ × [0, 1] such that J =
(pX×id×pY ×id)(Int(F̃, G̃)). Clearly then, Jt = (pX×pY )(Int(F̃t, G̃t))×{t},
so Jt is an intersection class of (Ft, Gt).

If (x, y), (x′, y′) ∈ Jt0 , then there exists a path ω ⊂ X × [0, 1] × Y ×
[0, 1] such that ω(0) = (x, t0, y, t0), ω(1) = (x′, t0, y′, t0) and Fω ' Gω in
Z × [0, 1]× Z × [0, 1]. If ω(s) = (x(s), t1(s), y(s), t2(s)), then define Ψ(s) =
(x(s), t0, y(s), t0). Clearly, Ψ ' ω, so FΨ ' Fω ' Gω ' GΨ . Moreover,
while the homotopy from FΨ to GΨ may run through all of Z× [0, 1]×Z×
[0, 1], it clearly projects to a homotopy contained in Z × {t0} × Z × {t0}.
Dropping the “×{t0}”, we have a path ψ in X×Y from (x, y) to (x′y′) such
that Ft0ψ ' Gt0ψ.

The converse is trivial.

We say that J0 and J1 are (F,G)-related , or more informally, that J0

can be deformed to J1. This defines an equivalence relation on the union⋃
f ′∈[f ],g′∈[g] I(f ′, g′) by declaring J0 ∈ I(f ′, g′) and J1 ∈ I(f ′′, g′′) to be

related if there exist homotopies F,G such that J0 and J1 are (F,G)-related.
Now, given J ∈ I(f, g), we declare J to be inessential if it can be deformed
to the empty set. J is essential if, for every F : X × [0, 1] → Z and G :
Y × [0, 1]→ Z with F0 = f , G0 = g, the set Int(F1, G1) is nonempty.

The Nielsen intersection number NI(f, g) is the number of essential inter-
section classes in I(f, g). Clearly, from its construction, NI(f, g) ≤ |I(f, g)|.
Moreover, for every f ′ ' f , g′ ' g, NI(f, g) ≤ NI(f ′, g′). That is,

Theorem 3.6. NI(f, g) is a homotopy invariant , and NI(f, g) ≤
MI(f, g).
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Note that NI(f, g) is not a homotopy-type invariant. For example, take
X = Y = Z = S1 and f = g = id. There is only one Reidemeister class, so
there is only one intersection class. And, since any two maps f ′, g′ homotopic
to the identity must map onto Z, there is for every z ∈ Z an x ∈ X and y ∈ Y
such that f ′(x) = g′(y) = z. In particular, Int(f ′, g′) 6= ∅, so the intersection
class can never be removed by a homotopy, and so is essential. That is,
NI(id, id) = 1. But, if we replace Z by S1 × [0, 1], and define f(x) = (x, 0),
g(y) = (y, 1), then Int(f, g) = ∅, and NI(f, g) = 0.

On the other hand, NI is a topological invariant, in the sense that pre-
composition or post-composition of f and g with homeomorphisms does not
change NI(f, g). More precisely,

Proposition 3.7. If α : X ′ → X, β : Y ′ → Y and γ : Z → Z ′ are
homeomorphisms, then for any f : X → Z ← Y : g,

NI(f, g) = NI(γfα, γgβ).

Returning to the example at the end of §2, it is clear that the two in-
tersection points lie in different intersection classes. To see this, take the
representation

〈α1, β1, α2, β2 | α1β1α
−1
1 β−1

1 = α2β2α
−1
2 β−1

2 〉
of π1(S). Then π1(M) = 〈α1β1α

−1
1 β−1

1 〉 and π1(N) = 〈β1β
−1
2 〉. Thus, if we

take any choice of paths α and β in S1 between the intersection points, then

[fαgβ] = (α1β1α
−1
1 β−1)m ∗ β1(β1β

−1
2 )n

for some choice of m and n. No choice of m and n ever renders the trivial
element, so this loop is essential and the two intersection points are in dif-
ferent intersection classes. Since both classes consist of a single intersection
point with index ±1, both classes are essential, and NI(f, g) = 2. Further,
since

NI(f, g) ≤ MI(f, g) ≤ |Int(f, g)|,
it follows that MI(f, g) = 2 as well. That is, the Nielsen intersection number
correctly detects the fact that every deformation of f and g has at least two
intersection points.

4. The Wecken theorem. Having defined the Nielsen intersection
number, we are faced immediately with two natural and interrelated ques-
tions. First, note that if X, Y and Z are compact orientable manifolds
with dim(X) + dim(Y ) = dim(Z), we have two alternatives for defining an
essential intersection class, and hence for defining the Nielsen intersection
number. On the one hand, we can count algebraically essential classes (i.e.
those with nonzero index); or we can count topologically essential classes
(i.e. those which cannot be removed by a homotopy). Clearly, we would like
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to know if those two definitions coincide. Second, having established that
NI(f, g) is a lower bound for MI(f, g), we would like to know if it is a sharp
lower bound. What conditions on X,Y, Z and f, g are needed to guaran-
tee that there exist f ′ ' f and g′ ' g such that Int(f ′, g′) has cardinality
NI(f, g)? Our exploration of both of these questions closely parallels the
work in [3] and [4].

The two are actually closely related. The one setting in which we will
show NI(f, g) = MI(f, g) is that of compact orientable manifolds, and the
knowledge that algebraically essential classes coincide with topologically es-
sential classes will be an important step in that proof. We begin, then, with
the question of the relation between topologically essential and algebraically
essential classes.

Suppose X, Y and Z are compact smooth orientable manifolds with
dim(X) + dim(Y ) = dim(Z). We can assume without loss that f : X → Z
and g : Y → Z are smooth maps which intersect each other transversely.
Suppose J ∈ I(f, g) is an intersection class. We will show that J is alge-
braically inessential if and only if it is topologically inessential. One direction
is clear: if J is topologically inessential, then it can be deformed to the empty
set, and so has index 0. The other implication requires more work and some
hypotheses. The starting point is the Whitney lemma [11]:

Lemma 4.1. Consider embeddings f : Dp → M and g : Dq → M ,
where M is a compact orientable manifold of dimension p+ q and p, q > 2.
Suppose Int(f, g) consists of exactly two points (x1, y1), (x2, y2) with
Ind(f, g; (x1, y1)) = − Ind(f, g; (x2, y2)). If there are paths α from x1 to
x2 and β from y1 to y2 such that fα is smoothly homotopic to gβ, then
there exists a smooth homotopy F : Dp × [0, 1] → M such that F0 = f and
Int(F1, g) = ∅.

Using this, we can show that

Lemma 4.2. Suppose X, Y , Z are compact orientable manifolds with
dim(X) + dim(Y ) = dim(Z) and max{dim(X),dim(Y )} > 2. If J ∈ I(f, g)
has Ind(f, g; J) = 0, then there exist homotopies F : X × [0, 1] → Z and
G : Y × [0, 1]→ Z such that J is (F,G)-related to the empty set.

P r o o f. Since f and g intersect transversely, the only way J can have
index 0 is for J to consist of 2m points, half of which have index +1, the other
half having index −1. To remove J , it suffices to show that we can cancel
a pair of points (x, y), (x′, y′). If we assume without loss that dim(X) ≤
dim(Y ), we must consider separately the two cases dim(X) < dim(Y ) and
dim(X) = dim(Y ). In the former, dim(Z) > 2 dim(X), and an arbitrarily
small perturbation will make f an embedding [7, Theorem 2.2.13]. In the
latter, dim(Z) = 2 dim(X), and an arbitrarily small perturbation will make
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f an immersion with clean double points [7, Theorem 2.2.12 & Ex. 3.2.1].
That is, there is a finite set Sf ⊂ X such that

1. f is injective on X \ Sf ;
2. for each x ∈ Sf there is a neighborhood U such that f |U is injective;
3. if f(xi) = f(xj), then f(Ui) ∩ f(Uj) = f(xi), and f |Ui and f |Uj are

transverse at that point.

Since dim(Z) = 2 dim(Y ) as well, a similar deformation of g can be
made, and a similar set Sg defined.

C a s e I: dim(X) < dim(Y ). To apply the Whitney lemma, both of
the maps involved must be embeddings. Since embeddings are not dense in
C0(Y, Z), we must “manufacture” an embedding. To do so, consider f × id :
X × Y → Z × Y , and ĝ : Y → Z × Y defined by ĝ(y) = (g(y), y). These are
both embeddings of manifolds with dimension at least 3. If δ : Y → Y × Y
is the diagonal embedding, then id×δ : X ×Y → X ×Y ×Y maps Int(f, g)
homeomorphically to Int(f × id, ĝ). There are paths α × β from (x, y) to
(x′, y′) in X×Y and β from y to y′ in Y such that fα×β ' gβ×β in Z×Y .
To apply the Whitney lemma, we must verify that Ind(f × id, ĝ; (x, y, y)) =
Ind(f, g; (x, y)) and Ind(f × id, ĝ; (x′, y′, y′)) = Ind(f, g; (x′, y′)).

If {v1, . . . , vp} is a basis for TxX and {w1, . . . , wq} is a basis for TyY ,
then

• {Dfx(v1), . . . , Dfx(vp), Dgy(w1), . . . , Dgy(wq)} is a basis for Tf(x)Z;
• {v1 × 0, . . . , vp × 0, 0× w1, . . . , 0× wq} is a basis for T(x,y)(X × Y );
• {Dfx(v1)×0, . . . , Dfx(vp)×0, Dgy(w1)×0, . . . , Dgy(wq)×0, 0×w1, . . .
. . . , 0× wq} is a basis for T(f(x),y)(Z × Y ).

If we use these bases for Z, X × Y and Z × Y (which we are free to do),
then

Ind(f, g; (x, y)) = Ind(f × id, ĝ; (x, y, y)) = 1.

We now have to consider Ind(f × id, ĝ; (x′, y′, y′)) and Ind(f, g; (x′, y′)).
Since (x, y) and (x′, y′) lie in the same intersection class, there are paths

α from x to x′ and β from y to y′ such that fα ' gβ. Let {v′1, . . . , v′p}
and {w′1, . . . , w′q} denote the translates along α and β of {v1, . . . , vp} and
{w1, . . . , wq} to Tx′X and Ty′Y . For Tf(x′)Z, there are two bases to consider:

{Dfx′(v′1), . . . , Dfx′(v′p), Dgy′(w
′
1), . . . , Dgy′(w′q)}

and the basis formed by translating

{Dfx(v1), . . . , Dfx(vp), Dgy(w1), . . . , Dgy(wq)}
along fα from Tf(x)Z to Tf(x′)Z. If C is the change of basis matrix relating
these two bases, then Ind(f, g; (x′, y′)) = det(C). Similarly, we can translate
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the basis of T(x,y)(X × Y ) to the basis

{v′1 × 0, . . . , v′p × 0, 0× w′1, . . . , 0× w′q}
for T(x′,y′)(X × Y ). Then T(f(x′),y′)(Z × Y ) has the basis

{Dfx′(v′1)× 0, . . . , Dfx′(v′p)× 0,

Dgy′(w′1)× 0, . . . , Dgy′(w′q)× 0, 0× w′1, . . . , 0× w′q}
and the basis formed by translating

{Dfx(v1)× 0, . . . , Dfx(vp)× 0,

Dgy(w1)× 0, . . . , Dgy(wq)× 0, 0× w1, . . . , 0× wq}
from T(f(x),y)(Z×Y ) along gβ×β. The change of basis matrix relating these
two bases is

D =
[
C 0
0 I

]
,

so

Ind(f × id, ĝ; (x′, y′, y′)) = det(D) = det(C) = Ind(f, g; (x′, y′)).

The Whitney lemma then implies that there exists a Ĝ : Y × [0, 1] →
Z ×Y such that Ĝ0 = ĝ and im(Ĝ1)∩ (f × id) = ∅. Let G be the projection
%1 ◦ Ĝ : Y × [0, 1] → Z of Ĝ onto Z. It is a simple calculation to see that
f × id and Ĝ1 are intersection-free if and only if f and G1 are. This, then,
is the required homotopy. Moreover, since the Whitney lemma is really a
local result, Ĝ and G can be constructed so that g is deformed only in a
neighborhood of β. In particular, no new intersection points are formed.
Applying this process iteratively removes all of the intersection points in J .

C a s e II: dim(X) = dim(Y ). If dim(Z) = 2 dim(X) = 2 dim(Y ), then
arbitrarily small perturbations make f and g immersions with clean double
points and with transverse intersections. Moreover, since f and g each have
only a finite number of self-intersections, we may assume that Int(f, g) is
disjoint from X × Sg and Sf × Y ; and that if α and β are paths connecting
points in J , then the homotopy H : fα ' gβ is likewise disjoint from f(Sf )
and g(Sg). Now, take a neighborhood V of α([0, 1]) which avoids Sf , and
whose only intersections with J are x1 and x2. The Whitney lemma implies
that there is a homotopy F : X×[0, 1]→ Z such that F0 = f , Ft = f outside
of V for every t, and F1(V ) ∩ g(Y ) = ∅. Applying this process successively
to pairs of points in J eventually eliminates all intersections in J .

Thus we know that

Theorem 4.3. If X, Y and Z are compact orientable manifolds with
dim(Z) ≥ dim(X) + dim(Y ) and max{dim(X),dim(Y )} > 2, then for any
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f : X → Z and g : Y → Z, an intersection class J is topologically essential
if and only if it is algebraically essential.

Now, apart from its own intrinsic importance, this result is also a signifi-
cant step towards establishing the Wecken theorem for intersection numbers.
For fixed points, it is true for almost all spaces that, given f : X → X, there
is an f ′ ' f such that f ′ has exactly N(f) fixed points. For coincidences and
roots, the results are more restrictive, requiring that the spaces be manifolds
of sufficiently high dimension. Our results for intersection numbers parallel
these, requiring the same restrictions for the same reason—to allow use of
the Whitney lemma. It is not clear, however, that such restrictions are truly
necessary. While certainly not the last word on the subject, we do have the
following

Theorem 4.4. If X,Y and Z are compact orientable manifolds such that
dim(Z) ≥ dim(X) + dim(Y ) and max{dim(X), dim(Y )} > 2, then for every
f : X → Z and g : Y → Z, there exists f ′ ' f and g′ ' g such that f ′ and
g′ have exactly NI(f, g) points of intersection.

P r o o f. The case dim(Z) > dim(X) + dim(Y ) is trivial: in this case,
transversality allows us to perturb f and g to be intersection free. The
case we are really interested in is dim(Z) = dim(X) + dim(Y ). As with
Lemma 4.2, we assume dim(Y ) ≥ dim(X). We follow the canonical con-
struction to obtain f ′ ' f , g′ ' g such that |Int(f ′, g′)| = NI(f, g):

1. If an intersection class J has index 0, deform f and g to remove J .
2. If an intersection class has nonzero index and contains more than one

point, deform f and g to consolidate the class into a single point.

Lemma 4.2 takes care of the first step. For the second step, suppose J is
an intersection class with Ind(f, g; J) = ν 6= 0. We may apply the same pro-
cess to cancel all intersections in J with indices of opposite sign, so we may
assume that J consists of |ν| intersection points, all having the same index.
We may also assume that either f is an embedding (if dim(X) < dim(Y )) or
both f and g are immersions with clean double points (if dim(X) = dim(Y )).
Choose a point (x0, y0) ∈ J , and euclidean neighborhoods V of y0 and W of
g(y0) such that V ∩%2(Int(f, g)) = y0; V ∩Sg = ∅ and W∩(f(Sf )∪g(Sg)) = ∅
(if Sf is nonempty); and f(V ) ⊂ W . Now, f(X) ∩W is a submanifold of
W , so we are in the same setting as [4, §3.3]. The argument used there may
be employed to produce points y1, . . . , y|ν|, y ∈ V and g′ ' g such that

1. g′ = g outside of V .
2. %2(Int(f, g′)) ∩ V = {y0, y1, . . . , y|ν|, y}.
3. All intersection points in V lie in a single intersection class, which is

related to J .
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4. Ind(f, g′; (x0, y0)) = Ind(f, g; (x0, y0)), Ind(f ′, g; (x, y)) = ν and, for
i = 1, . . . , |ν|, Ind(f ′, g; (xi, yi)) = − Ind(f, g; (x0, y0)).

Thus J is deformed to an intersection class with 2|ν|+1 intersection points.
Of these, |ν| have index +1, |ν| have index −1 and one has index ν. Applying
the arguments used in Lemma 4.2 again, we can cancel the 2|ν| points with
index ±1, and deform J to the single point (x, y) with index ν.

It is worth noting in this result that, in all cases, we realized the lower
bound NI(f, g) by first deforming one map to an immersion with at most
finitely many self-intersections, then deforming the other to eliminate all
extra intersection points. We can interpret this as saying that the Nielsen
intersection number is “almost” one-sided. That is, if we allow one arbitrarily
small perturbation of one of the maps, we can eliminate all inessential classes
by then holding that map fixed, and performing all deformations on the other
map.

5. The Jiang condition. At this point, we have established some of
the properties that make Nielsen intersection numbers useful. However, we
have not established any properties that help us to actually compute them.
In the remaining sections, we turn to computational issues. In this section,
we consider the Jiang condition as an aid in directly computing NI(f, g). In
the remaining sections, we consider methods by which Nielsen intersection
numbers for one intersection problem can be related to intersection numbers
for other (presumably solved) intersection problems.

The Jiang condition is a well-known computational technique for Nielsen
fixed point numbers [8]. It has been generalized to coincidence numbers [1].
Its generalization to intersection theory is similar, and arises quite naturally
in the process of defining Nielsen intersection numbers. To determine if an
intersection class J ∈ I(f, g) is essential, all homotopies F and G based
at f and g are considered. If J cannot be deformed to the empty set, it is
essential—and so is any class that J can be deformed to. Now, among all
of the homotopies based at f , there may be cyclic homotopies: maps F :
X× [0, 1]→ Z such that F0 = F1 = f . Then J0 and J1 are both intersection
classes in I(f, g) and they are either both essential, or both inessential. This
suggests that there should be an equivalence relation on I(f, g), generated
by examining cyclic homotopies, and that given a “Jiang equivalence class”,
either all intersection classes in that Jiang class are essential, or all are
inessential. If this equivalence relation can be clearly understood, it can
greatly simplify the computation of NI(f, g).

To make this idea precise, we begin by considering the Jiang subgroup
for a single map f : X → Z. If we fix a “reference lift” f̃ : X̃ → Z̃ of f ,
then any other lift of f has the form γf̃ , γ ∈ D(Z). If we take the lift F̃ of



A Nielsen theory for intersection numbers 131

a cyclic homotopy F with F̃0 = γf̃ , then F̃1 = δf̃ for some δ ∈ D(Z). We
then declare γ and δ to be Jiang equivalent , written γ ∼J δ. This is easily
seen to be an equivalence relation. In fact, equivalence classes are actually
cosets of D(Z). To see this, define

J(f̃ ) = {γ ∈ D(Z) | ∃ a cyclic homotopy F : f ' f with lift F̃

such that F̃0 = f̃ and F̃1 = γf̃}.
Lemma 5.1. J(f̃ ) is a subgroup of D(Z). If δ ∈ D(Z), then J(δf̃ ) =

δ−1J(f̃ )δ.

P r o o f. If F : f ' f and F ′ : f ' f are cyclic homotopies that lift to
F̃ : f̃ ' γf̃ and F̃ ′ : f̃ ' δf̃ , then

F ′′(x, t) =
{
F (x, 2t), t ≤ 1/2,
F ′(x, 2t− 1) t ≥ 1/2,

is a cyclic homotopy that lifts to

F̃ ′′(x, t) =
{
F̃ (x, 2t), t ≤ 1/2,
γF̃ ′(x, 2t− 1), t ≥ 1/2.

That is, F̃ ′′ : f̃ ' γδf , so γδ ∈ J(f̃ ). Similarly, if F (x, t) = F (x, 1− t), then

F lifts to F̃ : γf̃ ' f̃ , or γ−1F̃ : f̃ ' γ−1f̃ . That is, γ−1 ∈ J(f̃ ).
If γ ∈ J(δf̃ ), then there is a cyclic homotopy F : f ' f with lift F̃ such

that F̃0 = δf̃ and F̃1 = γδf̃ . Then δ−1F̃ is a homotopy from f̃ to δ−1γδf̃ ,
so δ−1γδ ∈ J(f̃ ).

We refer to J(f̃ ) as the Jiang subgroup of f based at f̃ . Clearly, the
Jiang equivalence classes are just the cosets of D(Z)/J(f̃ ).

In its covering space formulation, the Jiang subgroup depends on the lift
f̃ chosen as the reference lift. There is a fundamental group formulation,
which replaces this dependence on the lift with a dependence on a base
point. If f(x) = z, define

J(f, x) = {[ω] ∈ π1(Z, z) | ω(t) = F (x, t) for some F : f ' f}.
It is easy to check that J(f, x) is a subgroup of π1(Z, z). To determine
the dependence on x, take x′ ∈ X, and choose a path α from x to x′.
Then F (x,−) ∗ fα is endpoint-homotopic to fα ∗ F (x′,−), with homotopy
H(s, t) = F (α(s), t), so the isomorphism (fα)# : π1(Z, z)→ π1(Z, z′) maps
J(f, x) isomorphically to J(f, x′).

Let Φf̃ : D(Z)→ π1(Z, z) denote the isomorphism that identifies γ with

the projection of a path from f̃(x̃) to γf̃(x̃). Then the two formulations of
the Jiang subgroup coincide:

Proposition 5.2. Φf̃ maps J(f̃ ) isomorphically to J(f, x).
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We will find it more convenient to work with the fundamental group
formulation, but we will move back and forth between the two whenever it
is convenient to do so.

The two most important properties of the Jiang subgroup (cf. [8, Lemmas
II.3.3, II.3.4]) are:

Proposition 5.3. Given X
f→ Y

g→ Z with f(x) = y, g(y) = z, we have

1. g#J(f, x) ⊂ J(gf, x) and J(g, y) ⊂ J(gf, x);
2. J(f, x) ⊂ Zπ1(Y,y)(f#(π1(X,x))).

P r o o f. If F : f ' f has F (x, t) = ω(t), then gF : gf ' gf has gF (x, t) =
gω(t), so g#[ω] ∈ J(gf, x). Similarly, given G : g ' g, Gf : gf ' gf has
Gf(x, t) = G(y, t), so [G(y, t)] ∈ J(gf, x).

Finally, given [α] ∈ π1(X,x) and [F (x, t)] ∈ π1(Y, y), define H : [0, 1] ×
[0, 1] → Y by H(s, t) = F (α(s), t). Then the two “edges” of the square are
fα ∗ F (x,−) and F (x,−) ∗ fα, and F (x,−) centralizes [fα].

Corollary 5.4. The isomorphism (fα)# : J(f, x) → J(f, x′) is inde-
pendent of the path α from x to x′.

In particular, if we take Y = Z and g = id then the Jiang group
J(Y ) = J(id, y) is an abelian subgroup (since J(id, y) ⊂ Z(π1(Y, y))).
Then composing idY with any f : X → Y , we see that J(Y ) ⊂ J(f, x) ⊂
Zπ1(Y,y)(f#π1(X,x)). If Y is a Jiang space (i.e. J(Y ) = π1(Y, y)), then
π1(Y, y) must be abelian, and J(f, x) = π1(Y, y) for every f .

It is also worth noting that, since J(f, x) centralizes f#(π1(X,x)), their
product

J(f, x)f#(π1(X,x)) = f#(π1(X,x))J(f, x)

is a subgroup of π1(Z, z). We will denote this subgroup by J∗(f, x). Like
J(f, x), J∗(f, x) is in some sense independent of the basepoint chosen, in
that we can canonically identify the subgroups defined at different points.

Proposition 5.5. If α is a path in X from x to x′, then (fα)# maps
J∗(f, x) isomorphically to J∗(f, x′).

To make contact with intersection theory, consider cyclic homotopies
F : X× [0, 1]→ Z and G : Y × [0, 1]→ Z. Suppose that J is an intersection
class of f = F0 and g = G0. Choose lifts f̃ and g̃ such that J has the
form (pX × pY )(Int(f̃ , g̃)), and lift F and G to F̃ and G̃ with F̃0 = f̃ and
G̃0 = g̃. Then F̃1 = γ1f̃ , G̃1 = γ2g̃ for some γ1 ∈ J(f̃ ), γ2 ∈ J(g̃), and J is
(F,G)-related to

(pX × pY )(Int(γ1f̃ , γ2g̃)) = (pX × pY )(Int(f̃ , γ−1
1 γ2g̃)),
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which we label as Jγ−1
1 γ2

. Clearly, J is essential if and only if Jγ−1
1 γ2

is; and
if an intersection index is defined, Ind(f, g; J) = Ind(f, g; Jγ−1

1 γ2
).

This motivates the definition of a Jiang equivalence relation: J ∼J J ′

if J ′ = Jγ1γ2 for some γ1 ∈ J(f̃ ), γ2 ∈ J(g̃). Similarly, we can define
an equivalence relation on the set of Reidemeister classes RI(f, g) =
f#(π1(X,x))\π1(Z, z)/g#(π1(Y, y)) by taking a further double quotient by
J(f, x) and J(Y, y). That is, γ ∼J γ

′ in π1(Z, z) if

γ′ = f#(α)γ1γγ2g#(β)

with α ∈ π1(X), β ∈ π1(Y ), γ1 ∈ J(f) and γ2 ∈ J(g). The set of equivalence
classes is the double coset J∗(f, x)\π1(Z, z)/J∗(g, y).

Proposition 5.6. If J ∼J J ′ in I(f, g), then J is essential if and
only if J ′ is. If there is an intersection index defined , then Ind(f, g;J) =
Ind(f, g;J ′).

This analysis is most valuable when all intersection classes lie in a single
Jiang class. In fixed point theory, the Jiang condition is a condition on the
fundamental group level which guarantees that there is a single Jiang classs.
The efficacy of that condition depends heavily on the ability to iterate self-
maps. Since there is no such ability in the intersection problem, the “Jiang
condition” takes a rather different form, but the significance of the condition
remains the same.

Theorem 5.7. If J is an intersection class in Int(f, g) and

J∗(f, x)J∗(g, y) = π1(Z, z)

for some (x, y) ∈ J , then every intersection class is Jiang equivalent to
J . That is, either all intersection classes are essential , or all are inessen-
tial ; and either NI(f, g) = 0 or NI(f, g) = |RI(f, g)|. If the intersection
index Ind(f, g) is defined , then all intersection classes have the same index ,
and

NI(f, g) =
{

0, LI(f, g) = 0,
|RI(f, g)|, LI(f, g) 6= 0.

Some comments on the quantity J∗(f, x)J∗(g, y) are in order. First, since
the two subgroups J∗(f, x) need not normalize each other, their product is
not a subgroup of π1(Z, z) in general. Second, while J∗(f, x)J∗(g, y) is con-
stant (or canonically isomorphic) as (x, y) varies across an intersection class,
it can vary as (x, y) moves from one intersection class to another. On the
other hand, the Jiang condition J∗(f, x)J∗(g, y) = π1(Z, z) is independent
of the intersection class (x, y) lies in. That is,
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Proposition 5.8. If J∗(f, x)J∗(g, y) = π1(Z, z) for some (x, y) ∈
Int(f, g), then

J∗(f, x′)J∗(g, y′) = π1(Z, z′)
for all (x′, y′) ∈ Int(f, g).

P r o o f. Choose paths α from x to x′ and β from y to y′. Then

J∗(f, x′)J∗(g, y′) = (fα)−1 ∗ J∗(f, x) ∗ (fα) ∗ (gβ)−1 ∗ J∗(g, y) ∗ (gβ).

Now (fα) ∗ (gβ)−1 is a loop at z, and so is an element of J∗(f, x)J∗(g, y).
That is,

J∗(f, x′)J∗(g, y′) = (fα)−1 ∗ J∗(f, x)J∗(g, y) ∗ (gβ)

= (fα)−1 ∗ π1(Z, z) ∗ (gβ) = π1(Z, z).

Thus, the Jiang condition is satisfied at every point in Int(f, g), or at
none.

Finally, if Z is a Jiang space, then J(Z) = π1(Z, z), so J(f, x) = J(f) =
π1(Z, z) for all f : X → Z, and the Jiang condition is satisfied for all
intersection problems. Of course, if Z is a Jiang space, then π1(Z, z) is
abelian, and Proposition 3.3 allows us to replace RI(f, g) with the more
computable RI∗(f, g).

Theorem 5.9. If Z is a Jiang space, then for every X and Y and every
f : X → Z and g : Y → Z, either all intersection classes in I(f, g) are
essential , or all are inessential. Thus, either NI(f, g) = 0 or NI(f, g) =
|RI∗(f, g)|. If the intersection index Ind(f, g) is defined , then all intersection
classes have the same index , and

NI(f, g) =
{

0, LI(f, g) = 0,
|RI∗(f, g)|, LI(f, g) 6= 0.

Let Z be the n-torus Tn, and letX, Y be tori of dimension p and q = n−p
respectively. Z is a Jiang space, so

NI(f, g) =
{

0, LI(f, g) = 0,
|RI∗(f, g)|, LI(f, g) 6= 0.

If LI(f, g) 6= 0, then RI∗(f, g) = H1(Tn)/〈im(f1∗), im(g1∗)〉 is just the coker-
nel of the n×n matrix A = [f1∗ g1∗] : H1(T p;Q)⊕H1(T q;Q)→ H1(Tn;Q),
so NI(f, g) = |det(A)|. In fact, by exploiting the relationship between Nielsen
intersection numbers and root numbers, we will show [10] that

NI(f, g) = |LI(f, g)| = |det[f1∗ g1∗]|
for all maps from tori to tori.

6. Functoriality. As with any topological invariant, the range of com-
putability in Nielsen theory is expanded by the ability to relate Nielsen
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numbers from one problem to those from another. In particular, computa-
tional formulas for fibrations and finite covering spaces have been extensively
developed. An important preliminary to developing these formulas for in-
tersection theory is the establishment of the basic functorial properties of
Nielsen intersection numbers. We consider then the following diagram:

X1 Z1 Y1

X2 Z2 Y2

f1 //

a

²²
c

²²
b

²²

g1oo

f2 // g2oo

That is, if we wanted to define a category of intersection problems, we could

consider X1
f1−→ Z1

g1←− Y1 and X2
f2−→ Z2

g2←− Y2 to be objects in the
category and the trio of maps (a, b, c) to be a morphism.

Some of the basic questions to be asked here are:

• Do intersection points map to intersection points, and intersection
classes to intersection classes?
• Given a class J2 ∈ I(f2, g2), how many classes in I(f1, g1) map to it?
• Do essential classes map to essential classes? Do inessential classes map

to inessential classes?

If we could answer all of these questions, we could relate NI(f1, g1) and
NI(f2, g2). Unfortunately, we will not be able to answer these questions in
general. However, we will establish some partial results, which will be useful
in the examination of finite covers and fibrations.

Proposition 6.1. The map (a×b) : X1×Y1 → X2×Y2 maps Int(f1, g1)
to Int(f2, g2). Moreover , if J1 is an intersection class in Int(f1, g1), then
(a× b)(J1) is contained in a single intersection class in Int(f2, g2).

P r o o f. It is trivial to check that a× b maps Int(f1, g1) into Int(f2, g2).
If (x, y) ∼N (x′, y′) in Int(f1, g1), with paths α in X1 and β in Y1 relating
them, then aα and bβ are paths in X2 and Y2 with aα : a(x) ' a(x′),
bβ : b(y) ' b(y′) and f2aα ' g2bβ.

There is then a well-defined map I(a × b) : I(f1, g1) → I(f2, g2). Simi-
larly, c# : π1(Z1, z1)→ π1(Z2, z2) maps Reidemeister classes to Reidemeis-
ter classes, so there is a well-defined map RI(c) : RI(f1, g1) → RI(f2, g2).
Moreover, these maps are intertwined.

Proposition 6.2. There is a commutative diagram

I(f1, g1) RI(f1, g1)

I(f2, g2) RI(f2, g2).

//

I(a×b)
²²

RI(c)
²²

//
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Now, given J, J ′ ∈ I(f1, g1), we would like to know when I(a× b)(J) =
I(a × b)(J ′). As approximation of this, we would like to be able to com-
pute the cardinality of RI(c)−1[γ2] for any [γ2] ∈ RI(f2, g2). This is slightly
less useful, because we may not know whether or not Int(f̃2, γ2g̃2) (or its
preimages) is essential, or even non-empty. That is, we do not know if we
are obtaining information about intersection classes when we get informa-
tion about Reidemeister classes. On the other hand, since RI(c) is defined
algebraically, we might expect it to be more easily understood.

Unfortunately, even calculations with RI(c) are difficult. Following [8,
Proposition III.1.15], we can determine the cardinality of RI(c)−1 in one
important case. Suppose that

im(a#) C π1(X2, x2), im(b#) C π1(Y2, y2), im(c#) C π1(Z2, z2).

There is then a commutative diagram of groups and homomorphisms

π1(X1, x1) π1(Z1, z1) π1(Y1, y1)

π1(X2, x2) π1(Z2, z2) π1(Y2, y2)

coker(a#) coker(c#) coker(b#)

f1# //

a#

²²
c#

²²

g1#oo

b#

²²f2# //

%a

²²
%c

²²

g2#oo

%b

²²
f̄ // ḡoo

Just as Int(f2#, g2#; (x2, y2)) is a subgroup of π1(X2, x2) × π1(Y2, y2),
Int(f, g) is a subgroup of coker(a#) × coker(b#). Further, (%a × %b) maps
Int(f2#, g2#; (x2, y2)) into Int(f, g). Indeed, while we will not make use of
the fact, (%a × %b)(Int(f2#, g2#; (x2, y2))) is a normal subgroup of Int(f, g).
In any event, we define

P (f, g; (x2, y2)) = |Int(f, g) : (%a × %b) Int(f2#, g2#; (x2, y2))|.
Proposition 6.3. P (f, g; (x2, y2)) depends only on the intersection class

of (x2, y2).

P r o o f. Take (x1, y1), (x′1, y
′
1) ∈ Int(f1, g1) such that (x2, y2) =

(a(x1), b(y1)) and (x′2, y
′
2) = (a(x′1), b(y′1)) are in the same intersection class

in Int(f2, g2). We must show that the diagrams

π1(X2, x2) π1(Z2, z2) π1(Y2, y2)

coker(a#) coker(c#) coker(b#)

f2# //

%a

²²
%c

²²

g2#oo

%b

²²
f̄ // ḡoo
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and

π1(X2, x
′
2) π1(Z2, z

′
2) π1(Y2, y

′
2)

coker(a′#) coker(c′#) coker(b′#)

f2# //

%′a
²²

%′c
²²

g2#oo

%′b
²²

f̄ ′ // ḡ′oo

are conjugate. Now, there are paths α from x2 to x′2 and β from y2 to y′2
such that γ = f2α ' g2β. There is then a commutative diagram

π1(X2, x2) π1(Z2, z2) π1(Y2, y2)

π1(X2, x
′
2) π1(Z2, z

′
2) π1(Y2, y

′
2)

f2# //

α#

²²
γ#

²²
β#

²²

g2#oo

f2# // g2#oo

Since im(a#) is normal in π1(X2, x2), α# maps im(a#) to im(a′#). Thus α#

defines an isomorphism α# : coker(a#) → coker(a′#). Likewise, β# and γ#

define isomorphisms β# and γ#. These isomorphisms conjugate the diagram
at (x2, y2) to the diagram at (x′2, y

′
2), and so map (%a × %b)(Int(f2#, g2#;

(x2, y2))) and Int(f, g) to (%′a× %′b)(Int(f2#, g2#; (x′2, y
′
2))) and Int(f

′
, g′).

We can then speak of P (f, g;J2) for J2 ∈ I(f2, g2). This quantity is of
interest in determining how intersection classes in Int(f1, g1) map to inter-
section classes in Int(f2, g2).

Proposition 6.4. Suppose Ji ∈ I(fi, gi) are intersection classes such
that I(a × b)(J1) = J2. Fix basepoints (x1, y1) ∈ J1 and let x2 = a(x1),
y2 = b(y1), zi = fi(xi) = gi(yi). If c# : π1(Z1, z1) → π1(Z2, z2) is injective
and

im(a#) C π1(X2, x2), im(b#) C π1(Y2, y2), im(c#) C π1(Z2, z2),

then RI(c)−1(J2) has cardinality P (f, g; J2).

P r o o f. We will work with the diagram

π1(X1, x1) π1(Z1, z1) π1(Y1, y1)

π1(X2, x2) π1(Z2, z2) π1(Y2, y2)

f1# //

a#

²²
c#

²²

g1#oo

b#

²²f2# // g2#oo

In these coordinates,

RI(c)−1(J2) = {[γ1] ∈ RI(f1, g1) | γ1 = f2#(α2)g2#(β−1
2 )

for some α2 ∈ π1(X2), β2 ∈ π1(Y2)}
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= im(f1#)\c−1
# (im(f2#) im(g2#) ∩ im(c#))/ im(g1#)

∼= im(f2#a#)\ im(f2#) im(g2#)/ im(g1#b#).

Similarly,

Int(f, g)/(%a × %b)(Int(f2#, g2#; J2))
∼= (%a × %b)−1(Int(f, g))/ Int(f2#, g2#; J2)(im(a#)× im(b#)).

Define Ψ : (%a×%b)−1(Int(f, g))→ im(f2#) im(g2#)∩im(c#) by Ψ(α2, β2) =
f2#(α2)g2#(β−1

2 ). Clearly, Ψ maps into im(f2#) im(g2#). And, if (α2, β2)
∈ (%a × %b)−1(Int(f, g)), then %cf2#(α2) = %cg2#(β2), so f2#(α2) =
c#(γ1)g2#(β2), and f2#(α2)g2#(β−1

2 ) = c#(γ1) ∈ im(c#). If (α, β) ∈
Int(f2#, g2#;J2)(im(a#)×im(b#)), then (α, β) = (α′a#(α1), β′b#(β1)) with
f2#(α′) = g2#(β′). Then Ψ(α, β) = f2#a#(α1)g2#b#(β1), so Ψ(α, β) be-
comes trivial in the double coset im(f2#a#)\(im(f2#) im(g2#) ∩ im(c#))/
im(g1#b#). There is then a well-defined function

(%a × %b)−1(Int(f, g))/ Int(f2#, g2#; J2)(im(a#)× im(b#))

im(f2#a#)\ im(f2#) im(g2#)/ im(g1#b#).

ψ

²²

We claim that ψ is a bijection. Ψ is surjective, so ψ is surjective. To see
that ψ is injective, take (α2, β2) and (α′2, β

′
2) ∈ (%a × %b)−1(Int(f, g)) such

that Ψ(α2, β2) and Ψ(α′2, β
′
2) lie in the same double coset. That is,

f2#(α′2)g2#(β′−1
2 ) = f2#a#(α1)f2#(α2)g2#(β−1

2 )g2#b#(β−1
1 )

for some α1 ∈ π1(X1), β1 ∈ π1(Y1). Then (α−1
2 a#(α−1

1 )α′2, β
−1
2 b#(β−1

1 )β′2) ∈
Int(f2#, g2#;J2). Since im(a#) C π1(X2) and im(b#) C π1(Y2), there exist
α′1 ∈ π1(X1) and β′1 ∈ π1(Y1) such that

a#(α′1) = α′2a#(α1)α′−1
2 , b#(β′1) = β′2b#(β1)β′−1

2 .

Then

(α′2, β
′
2) = (α2, β2)(α−1

2 a#(α−1
1 )α′2, β

−1
2 b#(β−1

1 )β′2)(a#(α′1), b#(β′1))

and [α′2, β
′
2] = [α2, β2] in

(%a × %b)−1(Int(f, g))/ Int(f2#, g2#;J2)(im(a#)× im(b#)).

In the settings we will be concerned with in the remaining sections, this
will give us sufficient information about the behavior of I(a× b) and RI(c).
However, this provides no information about the relation between essential
and inessential classes in I(f1, g1) and I(f2, g2). Here too, there do not
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appear to be any strong general results, but there are some partial results
that will be of use.

Proposition 6.5. Suppose that c : Z1 → Z2 has the homotopy lifting
property. If J1 is an essential intersection class in I(f1, g1), then J2 =
I(a× b)(J1) is an essential intersection class in I(f2, g2).

P r o o f. Suppose J2 is inessential. Then there exist homotopies F2 and
G2 such that J2 is (F2, G2)-related to the empty set. Lift F2a and G2b to
homotopies F1 : X1 × [0, 1] → Z1 (based at f1) and G1 : Y1 × [0, 1] → Z1

(based at g1). Then J1 is (F1, G1)-related to an intersection class which
maps into the empty set. That is, J1 is (F1, G1)-related to the empty set,
and so is inessential.

7. Finite covers. As our first application of these functoriality results,
we consider how the computation of Nielsen intersection numbers can be
facilitated by lifting the problem to a finite cover. This analysis will follow
that of [9, §5]. Its results will be of particular interest in two settings. First,
when Z has finite fundamental group, we can lift the problem to a compact
simply connected space, in which there is only one intersection class. Second,
when X, Y and Z are manifolds, but not all are orientable, we can lift the
problem to orientable manifolds, where we can employ the intersection index.
In general, consider the following diagram:

X Z Y

X Z Y

f̄ //

pX

²²
pZ

²²
pY

²²

ḡoo

f // goo

where all of the vertical maps are finite regular covers. Denote the covering
groups by D(pX), etc., and the induced maps from D(pX) and D(pY ) to
D(pZ) by fp# and gp#. We want to consider NI(f, g) as the quantity we are
trying to compute, and NI(f̃ , g̃) as a quantity that we know how to compute.
The problem is to relate the two.

In this setting, the hypotheses of Propositions 6.4 and 6.5 are satisfied,
so we know that

• If J ∈ I(f, g), then RI(c)−1(J) is either empty, or has cardinality
P (f, g; J).
• If J is inessential, then every J ∈ I(a× b)−1(J) is inessential.

The additional structure supplied by the covering maps allows us to
refine these results considerably. If X̃, Ỹ and Z̃ are the universal covers of
X, Y and Z respectively, then they are also the universal covers of X, Y
and Z. There are lifts f̃ and g̃ of f and g forming a commutative diagram
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X̃ Z̃ Ỹ

X Z Y

X Z Y

f̃ //

pX̄

²²
pZ̄

²²

g̃oo

pȲ

²²

pX

²²

f̄ //

pZ

²²

ḡoo

pY

²²f // goo

The compositions p̃X = pXpX̄ , p̃Y = pY pȲ , p̃Z = pZpZ̄ are of course the
universal covering maps of X, Y and Z. Moreover, for any γ ∈ D(Z), there
is a γ ∈ D(pZ) such that γpZ̄ = pZ̄γ.

Thus, if J = (p̃X× p̃Y )(Int(f̃ , γg̃)) is an intersection class in I(f, g), then

J = (pX × pY )(pX̄ × pȲ )(Int(f̃ , γg̃))

with J = (pX̄ × pȲ )(Int(f̃ , γg̃)) an intersection class in I(f, γg).

Proposition 7.1. For every J ∈ I(f, g), there is a unique γ ∈ D(pZ)
such that J is in the image of I(f, γg) under I(pX × pY ).

Thus, as we range over D(pZ), we range (without repetition) over
I(f, g). We can then concentrate on a single choice of lifts f and g, and
determine the relationship between I(f, g) and its image in I(f, g) under
I(pX × pY ).

Proposition 7.2. If J ∈ I(f, g) is in the image of I(f, g), then there
are P (f, g; J) intersection classes J in I(f, g) such that I(pX × pY )(J) =
J . Each of these sets J is a covering space over J , with covering group
(%X × %Y )(Int(f#, g#; J)) ∼= Int(f#, g#; J)/(pX# × pY#) Int(f#, g#; J).

P r o o f. We know that there are P (f, g; J) Reidemeister classes covering
J , and that at least one of them is non-empty. We must show that in fact
all of them are non-empty. Consider J = (pX̃ × pỸ )(Int(f̃ , g̃)) and J ′ =
(pX̃ ×pỸ )(Int(f̃ , γg̃)) for some γ ∈ D(Z). Suppose that J is non-empty, and
that both J and J ′ map into J .

Now γ can also be viewed as an element of D(Z), and

(pX × pY )(J ′) = (pX × pY )(pX̃ × pỸ )(Int(f̃ , γg̃))

= (p̃X × p̃Y )(Int(f̃ , γg̃)) = J.

That is, J ′ maps onto J , and so must be non-empty.
We now want to show that every J that maps onto J is in fact a covering

space, with covering group Int(f#, g#; J)/(pX#× pY#) Int(f#, g#; J). Sup-
pose (x, y) ∈ J , and (α(x), β(y)) ∈ J for some α ∈ D(pX), β ∈ D(pY ).
Then there are paths ω1 from x to α(x) and ω2 from y to β(y) such
that f(ω1) ' g(ω2) in Z. Thus [fpXω1] = [gpY ω2] in π1(Z). That is,
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([pXω1], [pY ω2]) ∈ Int(f#, g#;J). On the other hand, suppose ([ω1], [ω2]) ∈
Int(f#, g#;J). Lift ω1 to a path ω1 based at x, and ω2 to a path ω2 based
at y. Then fω1(0) and gω2(0) coincide, and their projections are endpoint-
homotopic. Thus fω1 and gω2 are endpoint-homotopic, and in particular,
fω1(1) = gω2(1). Thus there is an element of J corresponding to every
([ω1], [ω2]) ∈ Int(f#, g#; J). It is easy to check that the kernel of this repre-
sentation is (pX# × pY#) Int(f#, g#; J).

It remains to determine the relation between essential classes in I(f, g)
and essential classes in I(f, g). We already know from Proposition 6.5 that
inessential classes in I(f, g) are covered by inessential classes. Unfortunately,
the converse is false: we will see below (Example 7.7) that it is possible for an
essential class in I(f, g) to be covered by an inessential class in I(f, g). On
the other hand, while it is possible that an essential class could be covered
by inessential classes, it cannot occur that some of the P (f, g;J) intersection
classes are inessential and some are essential.

Proposition 7.3. If J, J ′ are intersection classes in I(f, g) such that
(pX × pY )(J) = (pX × pY )(J ′), then J is essential if and only if J ′ is.

P r o o f. Write J as (pX̄ × pȲ )(Int(f̃ , g̃)) and J ′ as (pX̄ × pȲ )(Int(f̃ , γg̃))
for some γ ∈ D(Z). Now, since (pX̄ ×pȲ )(Int(f̃ , g̃)) = (pX ×pY )(Int(f̃ , γg̃))
in X × Y , Proposition 6.4 implies that, when γ is viewed as an element
of D(Z), γ = f#(α−1)g#(β) for some α ∈ D(X), β ∈ D(Y ). Then J ′ =
(pX̄ × pȲ )(Int(f̃α, g̃β)). Let α ∈ D(pX) and β ∈ D(pY ) be the covering
transformations generated by α and β. Then, if J can be deformed to the
empty set by homotopies F and G, J can be deformed to the empty set by
Fα and Gβ.

We are now in a position to compare NI(f, g) with the intersection
numbers NI(f, γg), with γ ranging over D(pZ). Every essential class in
I(f, g) is covered by either P (f, g;J) essential classes, or by none. Further,
|P (f, g;J)| ≤ dXdY , where dX = |D(pX)| and dY = |D(pY )| are the orders
of the covering spaces. That is, each essential intersection class in I(f, g)
is covered by at most dXdY essential intersection classes in the covering
spaces. In summary, we have

Theorem 7.4. Given a diagram

X Z Y

X Z Y

f̄ //

pX

²²
pZ

²²

ḡoo

pY

²²f // goo
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in which all of the vertical maps are finite regular covers, we have

NI(f, g) ≥ 1
dXdY

∑

γ̄∈D(pZ)

NI(f, γg).

If this is viewed as a way of estimating NI(f, g), we can ask how differ-
ent choices of covering spaces will effect the estimate. That is, what is the
dependence of the quantity

1
dXdY

∑

γ̄∈D(pZ)

NI(f, γg)

on the covering spaces X, Y and Z chosen? In fact, it is independent of the
choice of Z, in the following sense.

Proposition 7.5. Given f : X → Z and g : Y → Z, suppose p : Z → Z
is a finite regular cover such that f and g lift to f : X → Z and g : Y → Z.
Then NI(f, g) =

∑
γ̄∈D(p) NI(f, γg).

P r o o f. We can apply the analysis leading up to Theorem 7.4, with
X = X and Y = Y . Then D(pX) and D(pY ) are trivial, so P (f, g; J) = 1
for every intersection class J . Thus every intersection class in I(f, g) is also
an intersection class in I(f, γg) for some (unique) covering transformation γ.

We already know from Proposition 6.5 that if J is essential as an in-
tersection class in I(f, γg), then it is essential as an intersection class in
I(f, g). Conversely, suppose that J is inessential in I(f, γg). Then there
are homotopies F : X × [0, 1] → Z and G : Y × [0, 1] → Z such that J is
(F ,G)-related to the empty set. If we compose F and G with p, then J is
(pF , pG)-related to the empty set, so J is inessential as in intersection class
in I(f, g).

Corollary 7.6. Consider the diagram

Z1

X Z2 Y

X Z Y,

p̄

²²

f̄1

�����??

f̄2 //

pX

²²
p2Z

²²

ḡ2oo

pY

²²

ḡ1

__??????

f // goo

with all of the vertical arrows finite regular covers. If p1Z = p2Zp, then
1

dXdY

∑

γ̄1∈D(p1Z)

NI(f1, γ1g) =
1

dXdY

∑

γ̄2∈D(p2Z)

NI(f2, γ2g2).

Having established that the sum is independent of Z, it is now clear that
it cannot be independent of X and Y in general. For, if it were, then the
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sum would be independent of all of the lifts involved, and in particular, the
inequality in Theorem 7.4 would be an equality for all lifting diagrams. This
in turn would imply that essential classes are always covered by essential
classes. Again, Example 7.7 will show that this is not true in general.

At the beginning of the section, we indicated two natural applications
of these results: first, if Z has finite fundamental group; second, if X, Y
and Z are compact manifolds, but not all are orientable. In the first case,
we can take Z to be the universal cover of Z, and X and Y to be the
covering spaces with im(pX#) = ker(f#) and im(pY#) = ker(g#). It is
then a simple calculation to see that Int(f, g) = (%X ×%Y ) Int(f#, g#; J), so
|P (f, g;J)| = 1 for every J . That is, we have recovered the construction that
defines NI(f, g): every intersection class J ∈ I(f, g) is covered by a single
intersection class J ∈ I(f, γg) for a single γ ∈ D(Z), and J is essential if
and only if J is. This gives us the (hardly surprising) formula

NI(f, g) =
∑

γ∈D(Z)

NI(f, γg).

A more interesting application arises when all of the spaces X, Y and
Z are compact manifolds, but not all are orientable. There are a variety of
cases to consider (e.g. Z non-orientable, both X and Y non-orientable; Z
non-orientable and one of X, Y orientable; etc.). For the sake of definiteness,
we will consider a single case: suppose Z is non-orientable, and X and Y
are orientable. In this case, Z has an orientable double cover Z, so we have
the beginning of a lifting diagram:

Z

X Z Y

pZ

²²f // goo

Since im(pZ#) is a normal subgroup of index 2 in π1(Z), f−1
# (im(pZ#))

is a normal subgroup of index at most 2 in π1(X), and likewise for
g−1

# (im(pZ#)) in π1(Y ). There are finite regular covers X and Y such that
im(pX#) = f−1

# (im(pZ#)) and im(pY#) = g−1
# (im(pZ#)). Thus the lifting

condition is satisfied, and fpX and gpY lift to f : X → Z and g : Y → Z.
We then have a lifting diagram

X Z Y

X Z Y

f̄ //

pX

²²
pZ

²²

ḡoo

pY

²²f // goo
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in which all of the covering spaces are orientable manifolds; pZ is a dou-
ble cover; and pX and pY are regular covering spaces of order 1 or 2. If
dim(X), dim(Y ) ≥ 3, then the intersection index can be used to compute
Nielsen intersection numbers in Z, and so provide a lower bound for Nielsen
intersection numbers in Z.

Example 7.7. Consider the map α : S1 → RP 2 that generates π1(RP 2).
If we represent RP 2 as a quotient space of the 2-disk D2, with the antipodal
identification on the boundary, then α can be represented by the intersection
with D2 of any line through the origin. Any two distinct lines α1, α2 intersect
transversally at the origin, and at no other points. Thus Int(α1, α2) consists
of a single point, and I(α, α) consists of a single intersection class. We
claim that this class is essential. If α′i is homotopic to αi, then α′i is an
essential loop in RP 2. It can be represented by a path βi in D2 which
intersects the boundary circle in at least one pair of antipodal points. Thus
β1 must separateD2, and in particular, must separate every pair of antipodal
boundary points. In particular, it either separates or coincides with the pair
of antipodal boundary points of β2. In either case, β1 and β2 must intersect,
so α′1 and α′2 must intersect. That is, we cannot remove the intersection of
α1 and α2 by a homotopy, so NI(α, α) = NI(α1, α2) = 1.

Now, if we take the double covering p : S1 → S1 and the covering
q : S2 → RP 2, then αi lifts to α̃i : S1 → S2, and there is a commutative
diagram

S1 S2 S1

S1 RP 2 S1

α̃1 //

p

²²
g

²²

α̃2oo

p

²²α1 // α2oo

Since α1 and α2 are two distinct lines through the origin in RP 2, their
lifts α̃1 and α̃2 are two distinct great circles in S2. As such, they intersect
twice, with opposite orientation. Since S2 is simply connected, these two
intersection points must lie in the same intersection class. That class must
then be algebraically inessential. Moreover, it is topologically inessential: any
two images of S1 in S2 can be deformed to be disjoint. Thus NI(α̃1, α̃2) = 0,
and the same is true if we compose α̃2 with the covering transformation
γ(x) = −x: NI(α̃1,−α̃2) = 0.

The formula in Theorem 7.4 in this case yields the result

1 = NI(α, α) ≥
∑

γ∈D(Z)

NI(α, γα) = 0.

That is, the formula does not always produce equality. And, in this example,
the failure of equality to obtain can be traced back to the failure of essential
classes to lift to essential classes: the single transverse intersection of α1 and
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α2 in RP 2 is lifted to two transverse intersections in S2. These lay in the
same intersection class, but had opposite orientation, so the essential class
in RP 2 was covered by an inessential class in S2.

8. Fibrations. Finally, we want to consider intersection numbers for
fibrations. Suppose we have the following diagram:

D F E

X Z Y

A C B

f //

²² ²²

goo

²²f //

p

²²
r

²²

goo

q

²²f̄ // ḡoo

The columns are fibrations, and the maps f and g are fiber-preserving. The
natural questions are:

• For (a, b) ∈ Int(f, g), let fa : Da → Fc and gb : Eb → Fc denote
the corresponding fiber maps. Under what conditions is NI(fa, gb) constant
across Int(f, g)?
• If NI(fa, gb) is constant across Int(f, g), when does the equality NI(f, g)

= NI(f, g) NI(fa, gb) hold?
• If this naive product formula does not hold, do modifications analogous

to those of [12] hold?

We do not by any means attempt here an exhaustive investigation of
these questions. Instead, we will content ourselves with some partial results
on the first two points. For this first investigation, we will assume that all
of the fibrations are locally trivial fiber bundles, and the spaces involved
are compact orientable manifolds, with dim(A) + dim(B) = dim(C) and
dim(D) + dim(E) = dim(F ).

Proposition 8.1. If (a, b) and (a′, b′) are in the same intersection class
in I(f, g), then NI(fa, gb) = NI(fa′ , gb′). If Z r→ C is an orientable fibration,
then NI(fa, gb) = NI(fa′ , gb′) for all (a, b) and (a′, b′) in Int(f, g).

P r o o f. For any two (a, b), (a′, b′) ∈ Int(f, g), choose paths α from a to
a′ and β from b to b′. There is then a homotopy-commutative diagram

Da Fc Eb

Da′ Fc′ Eb′

fa //

τα

²²
τḡβ

²²

gboo

τβ

²²
fa′

// gb′oo
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with the fiber translation maps τ all homeomorphisms. Now, under either
hypothesis, τf̄α ' τḡβ , so

NI(fa′ , gb′) = NI(τf̄αfaτα−1 , τḡβgbτβ−1) = NI(τf̄αfaτα−1 , τf̄αgbτβ−1).

But pre- and post-composition by homeomorphisms does not change the
Nielsen number (see Proposition 3.7), so

NI(τf̄αfaτα−1 , τf̄αgb′τβ−1) = NI(fa, gb).

Corollary 8.2. If NI(f, g) = 1, or if r : Z → C is orientable, then
RI(fa, gb) and NI(fa, gb) are constant across (a, b) ∈ Int(f, g).

We turn now to the “naive product formula”

NI(f, g) = NI(f, g) NI(fa, gb).

Certainly, experience with the product formula for Nielsen fixed point num-
bers suggests that this product formula will not hold in general. We limit
ourselves here to some simple sufficient conditions for the naive product
formula.

Actually, we will start with the “naive addition formula”, analogous to
the formula in [6] for fixed points. For this, we do not require NI(fa, gb) to
be independent of the intersection class in I(f, g). Instead, if J1, . . . , JN are
the essential intersection classes of Int(f, g), choose representatives (ai, bi) ∈
J i. The naive addition formula is satisfied if NI(f, g) =

∑
i NI(fai , gbi). Of

course, the naive product formula follows if NI(fa, gb) is independent of i.
To obtain conditions that imply the naive addition formula, we need the
following to be true:

1. Every intersection class in Int(f, g) projects to a single intersection
class in Int(f, g), and intersects each fiber in a single intersection class.

2. An intersection class in Int(f, g) is essential if and only if its projec-
tion is essential in Int(f, g), and its intersection with a fiber is essential in
Int(fa, gb).

Of course, if the map π1(F )→ π1(Z) is injective, Proposition 6.4 shows
that the first condition is satisfied if

Int(f#, g#; (p× q)(J)) = (p# × q#)(Int(f#, g#; J)).

For the second, we know from Proposition 6.5 that if J is an essential class
in I(f, g), then its projection is an essential class in I(f, g). However, to say
more, we need the additional structure of the intersection index.

Proposition 8.3. Suppose the bases A, B, C and the fibers D, E, F
are all compact orientable manifolds, with dim(A) + dim(B) = dim(C) and
dim(D) + dim(E) = dim(F ). Let J be an intersection class in I(f, g) such
that , for every (a, b) ∈ (p×q)(J), J ∩(Da×Eb) is a single intersection class
in I(fa, gb). Then J is an algebraically essential intersection class if and
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only if (p× q)(J) and J ∩ (Da ×Eb) are algebraically essential intersection
classes.

P r o o f. We may assume without loss that f and g intersect transversely,
and that fa and gb intersect transversely. Then (p × q)(J) = {(a1, b1), . . .
. . . , (an, bn)}, and Ji = J ∩ (Dai × Ebi) = {(di1, ei1), . . . , (dim, eim)}. In a
neighborhood of (dij , eij), f and g can be identified with f × fi and g × gi,
so

Ind(f, g; (dij , eij)) = Ind(f, g; (ai, bi)) Ind(fi, gi; (dij , eij)).

Thus

Ind(f, g; Ji) = Ind(f, g; (ai, bi)) Ind(fi, gi;Ji)

and

Ind(f, g; J) =
n∑

i=1

Ind(f, g; (ai, bi)) Ind(fi, gi; Ji).

Now Ind(fi, gi;Ji) is constant over (p × q)(J) (since all of the maps fi are
homotopic, as are all of the maps gi, and the classes Ji are (F,G)-related),
so

Ind(f, g;J) =
n∑

i=1

Ind(f, g; (ai, bi)) Ind(fi, gi;Ji)

= Ind(fi, gi;Ji)
n∑

i=1

Ind(f, g; (ai, bi))

= Ind(fi, gi;Ji) Ind(f, g; (p× q)(J)).

Clearly, then, J is algebraically essential in X×Y if and only if (p×q)(J)
is algebraically essential in A×B and Ji is algebraically essential in D×E.

Theorem 8.4. Consider the diagram

D F E

X Z Y

A C B

f //

²² ²² ²²

goo

f //

p

²²
r

²²

goo

q

²²f̄ // ḡoo

Suppose that the columns are fibrations, the maps f and g are fiber-pre-
serving , and the bases A, B, C and the fibers D, E, F are all compact ori-
entable manifolds, with dim(A)+dim(B) = dim(C) and dim(D)+dim(E) =
dim(F ). Let {(ai, bi)} be a set of representatives of the essential intersection
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classes of Int(f, g). Then

NI(f, g) =
∑

i

NI(fai , gbi)

provided

1. π1(F )→ π1(Z) is injective;
2. Int(f#, g#; (p × q)(J)) = (p# × q#)(Int(f#, g#;J)) for every J ∈

I(f, g);
3. max{dim(A), dim(B)},max{dim(D), dim(E)} ≥ 3.

P r o o f. The first two conditions give the product formula on Reidemeis-
ter classes, leaving only the need to show that essential classes in X × Y
correspond to essential classes in A×B and D×E. The restrictions on the
dimensions are of course required to guarantee that topologically essential
classes correspond to algebraically essential classes. With that, the previous
proposition completes the proof.

Corollary 8.5. If , in addition to the hypotheses of Theorem 8.4, the
fibration F → Z → C is orientable, then

NI(f, g) = NI(f, g) NI(fa, gb).

9. Concluding remarks. These results show that the ideas of Nielsen
theory can be applied in a natural way to the study of intersections. However,
they by no means establish the entire Nielsen canon in the intersection
number setting. A number of further developments and applications suggest
themselves at this point.

First, there are several noticeable gaps in the theory presented here. Most
obviously, the naive product formula presented can certainly be refined, à
la You [12], to a more general product formula. Since this will presumably
involve mod K intersection classes, the theory of mod K classes, and more
generally, the full functoriality of the Nielsen intersection numbers, needs to
be established. And finally, as the last hypothesis in Theorem 8.4 reflects,
there is an awkward gap in the theory for low-dimensional manifolds. If
X, Y and Z are compact orientable manifolds, then we have defined what
it means for an intersection class to be algebraically essential, and to be
topologically essential. But if 1 ≤ dim(X),dim(Y ) ≤ 2, we do not know
if those two concepts agree. Of course, if a class is algebraically essential,
then it must be topologically essential. But is the converse true? Similarly,
is the Wecken theorem true for intersections on low-dimensional manifolds?
Since low-dimensional manifolds are likely to be of particular interest in
applications, these are questions that are well worth resolving. At the same
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time, the well-known difficulties for Nielsen fixed point theory on surfaces
suggest that these questions are also likely to prove difficult.

In this paper, an attempt was made to suggest the analogues in the inter-
section problem for many of the basic results in Nielsen fixed point theory.
However, there are some topics in Nielsen fixed point theory that have not
been considered here at all: relative Nielsen numbers; equivariant Nielsen
numbers; Nielsen numbers for compact maps on non-compact domains; . . .
All of these are reasonable directions for further work.

Clearly, the Nielsen theory for intersections owes much to the already
established theories for coincidences and roots. The definitions, the results
presented, and the future directions suggested are all based on analogies
with the other domains of Nielsen theory. However, the connection between
Nielsen intersection theory and the other subjects is more than just reason-
ing by analogy. It is possible, in a very explicit way, to transform a problem
from any one of these three subjects into a problem in one of the other
subjects. That is, given any intersection problem, there is a natural trans-
formation into a coincidence problem so that the intersection set of one
corresponds to the coincidence set of the other. How do the Nielsen num-
bers behave under these transformations? Are Nielsen coincidence numbers,
intersection numbers and root numbers all, in some sense, “the same thing”?
This will be explored in [10].

To be of real use, Nielsen theory must be able to reach beyond itself, and
make contact with other problems. One direction for Nielsen intersection
theory is the study of embeddings. Given f : X → Z, when can f be
deformed to an embedding? As an indication that Nielsen theory may be
able to make a contribution to this problem, we present the following results,
which give necessary conditions, in terms of Nielsen intersection numbers,
for a map to be deformable to an embedding.

Theorem 9.1. If f : X → Z has NI(f, f) ≥ 2, then f is not homotopic
to an embedding.

P r o o f. If f is an embedding, then Int(f, f) is the diagonal in X × X.
Since Int(f, f) is thus path-connected, there is only one intersection class,
and hence at most one essential class.

Theorem 9.2. If X and Z are compact orientable manifolds such that
2 dim(X) = dim(Z) ≥ 6, and f : X → Z has NI(f, f) 6= 0, LI(f, f) = 0,
then f is not homotopic to an embedding.

P r o o f. As in the previous argument, if f is an embedding, then Int(f, f)
is the diagonal in X ×X. There is then a single intersection class, and that
intersection class has intersection index LI(f, f). If LI(f, f) = 0, then I(f, f)
has no essential intersection classes, and NI(f, f) = 0.
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