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Given a LCA group G and a closed subgroup N of its Bohr compactifi-
cation bG, let 7 : G - G C bG be the identity function (so Gt denotes
G with the topology inherited from bG), and with 7 : bG — bG/N let
¢ = mor. The principal positive contribution of our paper [1] is Theorem
2.10, which asserts that every LCA group G strongly respects compactness
in the sense that for every subset A of G and for every closed metrizable
subgroup N of bG, the set ¢[A] is compact (in bG) if and only if A-(NNG) is
compact (in G). [This result generalizes a celebrated theorem of Glicksberg
[3], which is in fact the case N = {15}.]

Crucial to our proof of Theorem 2.10 is Lemma 2.9, which is this special
case: (G is discrete.

We are indebted to Jorge Galindo and Salvador Hernandez of Universitat
Jaume I (Castell6n, Spain) for informing us that the proof given in [1] of
Lemma 2.9 is misleading and perhaps incorrect. Accordingly, we herewith
propose the following modification of the proof of that Lemma.

Let A C G with ¢[A] compact. Since GN N is compact (cf. [1](2.5)) it is
enough to show that A itself is compact, i.e., is finite. Suppose instead that
|A| > w, let G’ be the subgroup of G generated by some countably infinite
subset A’ of A, and define Gy = G N (bG" - N) and Ay = AN Gy; evidently

from Ay D A’ we have |Ao| > w. From bGy = Gy C bG’ - N and
b(Go/G’) = bGy/bG’ C (bG' - N)/bG’' = N/(N NbG") (cf. [4](5.33))
it follows that b(Go/G’) is metrizable, so that Go/G’ is finite; hence Gy is
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countably infinite. Now let Ny = N N bGy and define rg : Gg — G(J{ -
bGy, Ty : bGy — bGy/Ny, and ¢y = mp o 1y as usual. We claim that the
homomorphism f : bGo/Ny — 7w[bGy] given by f(gNg) = gN, which (by
[4](5.31 & 5.33)) is an isomorphism and a homeomorphism, carries ¢o[Ao]
onto ¢[A] N w[bGy]. Indeed, given a € A and g € bGy such that ¢(a) =
aN = gN = 7(g), choose n € N so that a = gn and then choose ¢’ € bG’
and n’ € N so that g € bGy C bG’ - N satisfies g = ¢'n’; then a = gn =
g'n'n € bG' - N and hence

a€ AN(bG'-N) = (ANG)N(bG'-N) = AN(GN(bG'-N)) = ANGy = Ay,

as claimed. The proof then concludes as in [1]: ¢g[Ap] is compact in bGy /Ny,
and since G strongly respects compactness ([1](2.6)) the set Ag - (No N Gp)
is compact in G (hence finite) and we have the contradiction w < |Ag| <
|40 - (No N Go)| < w.

Remark. Substantially generalizing our result [1](2.10), the authors of
[2] have shown that many other maximally almost periodic (not necessarily
locally compact) Abelian groups also strongly respect compactness.
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