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Abstract. Let E be a Banach space with a separable dual. Zippin’s theorem asserts
that E embeds in a Banach space E1 with a shrinking basis, and W. J. Davis, T. Figiel,
W. B. Johnson and A. Pełczyński have shown that E is a quotient of a Banach space
E2 with a shrinking basis. These two results use the interpolation theorem established by
W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński. Here, we prove that the Szlenk
indices of E1 and E2 can be controlled by the Szlenk index of E, where the Szlenk index
is an ordinal index associated with a separable Banach space which provides a transfinite
measure of the separability of the dual space.

Introduction. Let E be a Banach space with a separable dual. Zippin’s
theorem ([Z]) shows that E embeds in a Banach space E1 with a shrinking
basis, and in [D-F-J-P] it is shown that E is a quotient of a Banach space
E2 with a shrinking basis. These two results use the interpolation scheme
of [D-F-J-P]. Close to the index introduced by W. Szlenk in [S], the Szlenk
index of E, denoted by Sz(E), is defined by slicing the dual unit ball of E
with w∗-open sets. Here, we show that we can control the Szlenk indices of E1

and E2 by the Szlenk index of E. More precisely, there exist universal maps
ϕ1 : ω1 → ω1 and ϕ2 : ω1 → ω1 such that if Sz(E) ≤ α < ω1 then we can
choose E1 and E2 with Sz(E1) ≤ ϕ1(α) and Sz(E2) ≤ ϕ2(α) (Theorems 3.1
and 4.2). We do not know ϕ1 and ϕ2 more precisely, in particular we do not
know if ϕ1 or ϕ2 can be the identity map.

We use tools from descriptive set theory (see [K-L]) and some results from
[B1] (see also [B2]). This study is closely related to the Borel regularity of
the interpolation scheme of [D-F-J-P].

The first section is devoted to notations and recalls, and the second
one to preliminary lemmas. In the third section, we prove that ϕ1 exists,
following [G-M-S] in the proof of Zippin’s theorem. As a corollary, we obtain
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the control of Sz when embedding a reflexive separable space in a reflexive
space with a basis.

In the fourth section, we prove the existence of ϕ2.

This work answers some questions that were formulated by G. Godefroy,
and the author would like to thank him for his invaluable suggestions and
encouragement.

I. Notations and preliminaires. We will denote by ω = {0, 1, 2, . . .}
the first infinite ordinal, by ω∗ the set ω \ {0}, by ω1 the first uncountable
ordinal. Let A be a set. We will denote by Aω (resp. A<ω) the set of all
infinite (resp. finite) sequences in A, and by Pf(A) the set of all finite subsets
of A. If a is an element of Aω or A<ω, we will write a = (ai)i, and when A
is a topological space, a = {ai : i}. Concatenation is denoted by _.

Let C(I) be the Banach space of all continuous functions on the Cantor
set I = {0, 1}ω. It is classical that every separable Banach space is isometric
to a subspace of C(I). Let X be a Banach space. Then BX is its closed unit
ball. If A ⊆ X, then conv(A) denotes its convex hull, sp(A) (resp. spQ(A))
the vector (resp. Q-vector) space spanned by A, conv(A) and sp(A) their
closures, A⊥ the orthogonal of A and diam(A) = sup{‖x − y‖ : x ∈ A,

y ∈ A}. If A ⊆ X∗, then A
∗

denotes its w∗-closure.
If λ and x are finite or infinite sequences respectively in R and X, we

will write λx =
∑
i λixi. If x ∈ Xω and y ∈ Y ω where Y is a Banach space,

and k ∈ [1,∞), then x k∼ y will mean

∀λ ∈ R<ω, 1
k
‖λx‖ ≤ ‖λy‖ ≤ k‖λx‖

and we will write x ∼ y if there exists some k ∈ [1,∞) such that x k∼ y.
If X and Y are isomorphic (resp. isometric), we will write X ' Y (resp.
X ≡ Y ).

We recall the definition of the Szlenk index Sz(X) when X is a separable
Banach space. Let F be a w∗-closed subset of BX∗ . For ε > 0, we set

F ′ε = {x∗ ∈ F : for any w∗-neighborhood V of x∗, diam(V ∩ F ) > ε},
F (0)
ε = F,

and we define by transfinite induction

F (α+1)
ε = (F (α)

ε )′ε if α is a countable ordinal,

F (α)
ε =

⋂

β<α

F (β)
ε if α is a limit countable ordinal.
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Then we set

ζε(F ) =
{

inf{α : F (α)
ε = ∅} if it exists,

ω1 if not,
ζ(F ) = sup

ε>0
ζε(F ), Sz(X) = ζ(BX∗).

IfX ' Y , we have Sz(X) = Sz(Y ). It is classical (see [D-G-Z], Theorem I-5-2,
for instance) that X is a Banach space with a separable dual iff Sz(X) < ω1.
It is not difficult to see that if Y is a Banach subspace of X with a finite
codimension, then Sz(Y ) = Sz(X).

Let P be a Polish space, and O a basis of open subsets of P . We denote
by F(P ) the set of all closed subsets of P equipped with the Effros–Borel
structure (i.e. the canonical Borel structure generated by the family {{F ∈
F(P ) : F ∩ O 6= ∅} : O ∈ O} (see [C]). We have the following easy result
(see [B-1], Lemma 2.6, for instance) where SE ⊆ F(C(I)) is the subset
consisting of the Banach subspaces.

Fact 1.1. The following subsets are Borel sets:

(i) {(F,G) ∈ F(P )2 : F ⊆ G},
(ii) {(x, F ) ∈ P ×F(P ) : x ∈ F},

(iii) {(x, F ) ∈ Pω ×F(P ) : x = F},
(iv) {(x, X) ∈ C(I)ω × SE : sp(x) = X}.
If in addition P is compact, the Effros–Borel structure of F(P ) is gen-

erated by the Hausdorff topology, thus by the family

{{F ∈ F(P ) : F ⊆ O} : O ∈ O}.
We use the notation Σ1

1 (resp. Π1
1 ) for analytic (resp. coanalytic) subsets

and we refer to [K-L] for definitions and results in descriptive set theory.
Let SE (resp. SE(`1)) be the set of all closed vector subspaces of C(I)

(resp. `1). We will denote by e = (ei)i∈ω the canonical basis of `1. If H ∈
SE(`1) and e ∈ `1, then

•
eH will be the class of e in `1/H, and

•
eH = (

•
eHi )i∈ω.

It is a classical result that the spaces (`1/H)∗ and H⊥ are isometric and
w∗-isomorphic via the map IsH defined by IsH (y∗)(e) = y∗(

•
eH) for y∗ ∈

(`1/H)∗ and e ∈ `1.
We recall some results without proof (see [B1] or [B2]). The subset SE

(resp. SE(`1)) is a Borel subset of F(C(I)) (resp. F(`1)), thus a standard
Borel space (i.e. its Borel structure is generated by a Polish topology).

We write B∞ = (B`∞ , w
∗) and we fix a countable basis O∞ = (On)n∈ω

of open subsets of B∞. We equip the set K = F(B∞) with the Hausdorff
topology and if α is a countable ordinal, we define

Kα = {K ∈ K : ζ(K) ≤ α}, Hα = {H ∈ SE(`1) : Sz(`1/H) ≤ α}.
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If H ∈ SE(`1), we define K(H) = BH⊥ , and we have ζ(K(H)) = Sz(`1/H),
thus H ∈ Hα implies K(H) ∈ Kα. The index ζ is a Π1

1 -rank on
{K ∈ K : ζ(K) < ω1} ∈ Π1

1 , the index Sz is a Π1
1 -rank on {X ∈ SE :

Sz(X) < ω1} ∈Π1
1 and the index defined by H 7→ Sz(`1/H) is aΠ1

1 -rank on
{H ∈ SE(`1) : Sz(`1/H) < ω1} ∈ Π1

1 (see [B1], Ch. 4, or [B2]). Here, we
will use the following direct consequences.

Proposition 1.2. Let α be a countable ordinal.

(i) The sets Kα and Hα are Borel sets, thus standard Borel spaces.
(ii) If A ⊆ {X ∈ SE : Sz(X) < ω1} is Σ1

1 , then there exists a countable
ordinal β such that Sz(X) ≤ β for any X ∈ A.

We recall the interpolation scheme of Davis–Figiel–Johnson–Pełczyński
(see [D-F-J-P]). Let Y be a Banach space, and W a closed convex symmetric
and bounded subset of Y . For every n ∈ ω, Un(W ) is 2nW + 2−nBY , and
jn is the gauge of Un(W ). We denote by Z(W ) the vector subspace of Y
consisting of those y’s for which ‖y‖2Z(W ) =

∑
n∈ω j

2
n(y) is finite. Then Z(W )

equipped with the norm ‖ · ‖Z(W ) is a Banach space containing W , and its
unit ball is

C(W ) = {y ∈ Y : ‖y‖Z(W ) ≤ 1}.
Fact 1.3. (i) If Y is a subspace of a Banach space X, then the results

of the interpolation scheme in Y and in X starting from W is the same.
(ii) If k ∈ [1,∞), then the identity is an isomorphism between Z(W )

and Z(kW ).

P r o o f. (i) For any n ∈ ω, let `n be the gauge of 2nW + 2−nBX and
C ′ = {y ∈ X :

∑
n∈ω `

2
n(y) ≤ 1}. We have

C ′ ⊆
⋂
n∈ω

2nW + 2−nBX ⊆
⋂
n∈ω

sp(W ) + 2−nBX ⊆ sp(W ) ⊆ Y.

Consequently, C ′ = C(W ), and (i) follows.
(ii) We have

2nW + 2−nBY ⊆ 2nkW + 2−nBY ⊆ k[2nW + 2−nBY ].

Thus C(W ) ⊆ C(kW ) ⊆ kC(W ) and (ii) follows.

Finally, let x be a basic sequence in a Banach space X. Then x is shrink-
ing if (sp(x))∗ = sp(x∗), where x∗ is the sequence of biorthogonal functionals
of x. And x is boundedly complete if (sp(x∗))∗ = sp(x).

II. Some preliminary lemmas. We state some definitions and lemmas
which will be useful in the following sections.

Lemma 2.1. The map H 7→ K(H) = BH⊥ from SE(`1) into K is Borel.
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P r o o f. First we have

Claim. The map k : `ω1 → K defined by k(w) = Bw⊥ is Borel.

Indeed, let O ∈ O∞ and A(O) = {w : k(w) ⊆ O}. We have

A(O) = {w : ∀y 6∈ O, ∃n ∈ ω, ∃ε ∈ Q∗+, |y(wn)| ≥ 2ε}
= {w : ∀y 6∈ O, ∃m ∈ ω, y ∈ Om,

∃ε ∈ Q∗+, ∃n ∈ ω, ∀y′ ∈ Om, |y′(wn)| ≥ ε}.
As cO is compact, we see that w ∈ A(O) iff there exists I ∈ Pf(ω) such that

(i) ∀m ∈ I, ∃ε ∈ Q∗+, ∃n ∈ ω, ∀y ∈ Om, |y(wn)| ≥ ε,
(ii) cO ⊆ ⋃m∈I Om.

If m, ε and n are fixed, the set
⋂
y∈Om{w : |y(wn)| ≥ ε} is closed, thus

A(O) is Borel, and the claim follows.

With this claim and Fact 1.1(iii), the subset {(H,w,K) : w = H,
k(w) = K}) of SE(`1)× `ω1 ×K is Borel, therefore its projection {(H,K) ∈
SE(`1)×K : K = K(H)} is Σ1

1 , and thus Borel by the separation theorem.
Lemma 2.1 follows.

For every K ∈ K we define by transfinite induction {Kβ,n
m : m,n ∈ ω,

β countable ordinal} as follows: for every m,n ∈ ω, K0,0
m = K, for β < ω1

and n ∈ ω,

Kβ,n+1
m =

{
Kβ,n
m if diam(On ∩Kβ,n

m ) > 2−m,
Kβ,n
m \On if not,

Kβ+1,0
m =

⋂
n∈ω

Kβ,n
m ,

and if β is a limit ordinal, Kβ,0
m =

⋂
γ<βK

γ,0
m .

Let α be a countable ordinal. If K ∈ Kα, then ζ(K) ≤ α, and clearly for
every m ∈ ω there exist β < α and n ∈ ω such that Kβ,n

m = ∅. We have

Lemma 2.2. Let m,n ∈ ω, and β < α fixed. The map K 7→ Kβ,n
m from

Kα into Kα is Borel.

First we will use two lemmas.

Lemma 2.3. Let m ∈ ω and O ∈ O∞. The map from K into K defined
by

K 7→ K ′ =
{
K if diam(K ∩O) > 2−m,
K \O if not ,

is Borel.

Lemma 2.4. Let β < ω1. The map from Kβ into K defined by (Kγ)γ<β 7→⋂
γ<βKγ is Borel. In particular , the map K2 → K defined by (F,G) 7→ F∩G

is Borel.
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P r o o f o f L e m m a 2.2. It follows from Lemmas 2.3 and 2.4 by trans-
finite induction.

P r o o f o f L e m m a 2.3. Let Ω ∈ O∞. We have

{K : K ′ ⊆ Ω} = {K : K ⊆ Ω}
∪ [{K : K \O ⊆ Ω} ∩ {K : diam(K ∩O) ⊆ 2−m}].

Clearly, {K : K ⊆ Ω} is Borel, and so is {K : K \ O ⊆ Ω} = {K : K ⊆
O ∪Ω}.

Let

V = {(V1, V2) ∈ O2
∞ : ∀(x∗1, x∗2) ∈ V1 × V2, ‖x∗1 − x∗2‖ > 2−m}.

Claim. We have

{K : diam(K∩O) > 2−m} =
⋃

(V1,V2)∈V
{K : K∩V1∩O 6= ∅, K∩V2∩O 6= ∅}.

By this claim, {K : diam(K ∩ O) ≤ 2−m} is a Borel set, thus so is
{K : K ′ ⊆ Ω}, and the lemma follows.

We prove the claim. Suppose diam(K ∩O) > 2−m. There exist x∗, y∗ ∈
K ∩O and x ∈ B`1 such that (x∗− y∗)(x) > 2−m. Let λ = x∗(x), µ = y∗(x)
and ε1 > 0 be such that λ− µ > ε+ ε1. Then the two subsets of B`∞ ,

L1 = {z∗ : z∗(x) > λ− ε1/2}, L2 = {z∗ : z∗(x) < µ+ ε1/2},
are w∗-open, and x∗ ∈ L1, y∗ ∈ L2, thus K∩L1∩O 6= ∅ and K∩L2∩O 6= ∅.
If x∗1 ∈ L1 and x∗2 ∈ L2, we have

x∗1(x)− x∗2(x) > λ− ε1/2− µ− ε1/2 > ε+ ε1 − ε1 = ε,

thus ‖x∗1 − x∗2‖ > ε and there exists (V1, V2) ∈ V such that V1 ⊆ L1 and
V2 ⊆ L2. Consequently,

{K : diam(K ∩O) > 2−m} ⊆
⋃

(V1,V2)∈V
{K : K ∩ Vi ∩O 6= ∅, i ∈ {1, 2}}.

The other inclusion is clear and the claim is proved.

P r o o f o f L e m m a 2.4. Let Ω ∈ O∞ and

h(Ω) =
{

(Kγ)γ<β :
⋂

γ<β

Kγ ⊆ Ω
}
.

We have
h(Ω) = {(Kγ)γ<β : ∀δ < β, ∀x ∈ Kδ, x ∈ Ω, or ∃γ′ < β, x 6∈ Kγ′}

=
⋂

δ<β

{(Kγ)γ<β : ∀x ∈ Kδ, ∃n ∈ ω, x ∈ On and

(On ⊆ Ω or ∃γ′ < β, On ∩Kγ′ = ∅)}.
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As Kδ is compact, we obtain (Kγ)γ<β ∈ h(Ω) if and only if for any δ < β,
there exists J ∈ Pf(ω) such that

(i) Kδ ⊆
⋃
n∈J On,

(ii) ∀n ∈ J such that On 6⊆ O, ∃γ′ < β, On ∩Kγ′ = ∅.
It follows easily that h(Ω) is Borel and that proves the lemma.

Let α < ω1. The set

Lα = {(K,F ) ∈ K2 : ζ(K) ≤ α, F ⊆ K, F 6= ∅}
is Borel (use Fact 1.1 and Proposition 1.2).

We now use the so-called “dessert selection” ([G-M-S]). With (K,F ) ∈
Lα we associate sK(F ) ∈ F in the following way. For any m ∈ ω, there exist
β < α and n ∈ ω such that Kβ,n

m = ∅, thus there exist α0 < α and n0 ∈ ω
such that F ∩ Kα0,n0

m 6= ∅ and F ∩ Kα0,n0+1
m = ∅. We write Λm(K,F ) =

F ∩Kα0,n0
m . Then we have diam(Λm(K,F )) ≤ 2−m. By induction, we define

(Σm(K,F ))m∈ω by

Σ0(K,F ) = F, Σm+1(K,F ) = Λm+1(K,Σm(K,F )).

For any m ∈ ω, Σm(K,F ) 6= ∅ and diam(Σm(K,F )) ≤ 2−m, thus⋂
m∈ω

∑
m(K,F ) has a single element that we denote by sK(F ). We have

Lemma 2.5. The map from Lα into B∞ defined by (K,F ) 7→ sK(F ) is
Borel.

P r o o f.

Claim. Let m ∈ ω. The map Λm : Lα → K defined by (K,F ) 7→
Λm(K,F ) is Borel.

Indeed, let Ω ∈ O∞. We have

{(K,F ) : Λm(K,F ) ⊆ Ω}
= {(K,F ) : ∃β < α, ∃n ∈ ω, F ∩Kβ,n

m 6= ∅ and F ∩Kβ,n
m ⊆ Ω}

and this last subset is Borel by Lemmas 2.2 and 2.4. The claim follows.
Then an induction proves that the map Lα 3 (K,F ) 7→ Σm(K,F )

is Borel, and by Lemma 2.4, so is the map defined by Lα 3 (K,F ) 7→⋂
m∈ω Σm(K,F ).

Consequently, if O ∈ O∞, we have

{(K,F ) : sK(F ) ∈ O} =
{

(K,F ) :
⋂
m∈ω

Σm(K,F ) ⊆ O
}

and this last subset is Borel. The lemma follows.

If x is a basic sequence in a Banach space X, we denote by x∗ = (x∗i )i∈ω
the sequence of its biorthogonal functionals.
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Lemma 2.6. Let X be a separable Banach space, S(X) the subset of
Xω consisting of basic sequences, and B(X) the subset of normalized bases,
when X has a basis.

(i) The set A(X) = {(x, y) ∈ S(X) × X : y ∈ sp(x)} is Borel , and
the map from this set into X, with m ∈ ω fixed , defined by (x, y) 7→∑
i≤m x

∗
i (y)xi is Borel.

(ii) The set B(X) is Borel , thus a standard Borel space, and the map
from B(X) into (BX∗ , w∗)ω defined by x 7→ x∗ is Borel.

P r o o f. (i) First, S(X) is Borel because

x ∈ S(X)⇔ ∃M ∈ ω, ∀n, p ∈ ω, ∀λ ∈ Q<ω,
∥∥∥

n∑

i=0

λixi

∥∥∥ ≤M
∥∥∥
n+p∑

i=0

λixi

∥∥∥.

Thus, by Fact 1.1, A(X) is Borel. In A(X)×X ×Rω, the subset {((x, y), z,
(y(i))i∈ω) : z =

∑
i≤my(i)xi, and ∀ε ∈ Q∗+, ∃N ∈ ω, ∀n≥N, ‖∑i≤n y(i)xi

− y‖ ≤ ε} is clearly Borel. Consequently, its projection
{

((x, y), z) : z =
∑

i≤m
x∗i (y)xi

}

is Σ1
1 , thus Borel by the separation theorem, and (i) is proved.

(ii) Let ξ be a dense sequence in X. Then x ∈ B(X) iff x ∈ S(X),
‖xi‖ = 1 for all i ∈ ω and

∀ε ∈ Q∗+, ∀i ∈ ω, ∃λ ∈ Q<ω, ‖λx− yi‖ ≤ ε.
It follows that B(X) is Borel.

Now, let (xl)l∈ω be a sequence of elements of B(X), and x ∈ B(X) such
that xl → x in Xω. We are going to show that w∗-liml x

l∗
i = x∗i for every

i ∈ ω. As x is a basis, it is enough to show that

lim
l
|xl∗i (λx)− x∗i (λx)| = 0

for any λ ∈ Q<ω. We have

|xl∗i (λx)− x∗i (λx)| ≤ |xl∗i (λx)− xl∗i (λxl)|+ |xl∗i (λxl)− x∗i (λx)|
≤ ‖λx− λxl‖+ |λi − λi|.

As λ is a finite sequence, liml ‖λx−λxl‖ = 0, thus liml |xl∗i (λx)−x∗i (λx)| = 0
and w∗-liml x

l∗
i = x∗i . The lemma follows.

III. On Zippin’s theorem. In [Z], M. Zippin shows the following the-
orem:

Theorem. Every Banach space with a separable dual embeds in a Banach
space with a shrinking basis.
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The aim of this section is to give a “quantitative” refinement of this
theorem.

Theorem 3.1. There exists a universal map ϕ1 : ω1 → ω1 such that for
every Banach space E with a separable dual and every countable ordinal α,
if Sz(E) ≤ α, then E embeds in a Banach space Z with a shrinking basis
which satisfies Sz(Z) ≤ ϕ1(α).

We will follow the proof of Zippin’s theorem given in [G-M-S] to which
we refer for some results.

Let f0 ∈ C(I) be a fixed function that separates points in I, and 1 be the
constant function which is equal to 1 everywhere. First we define a standard
Borel space.

Lemma 3.2. Let α be a countable ordinal. In SE(`1)× `ω1 ×C(I)ω ×SE
the subset

Sα = {(H,h,x, X) : Sz(X) ≤ α, sp(x) = X,

sp(h) = H, x 1∼ •eH , 1 ∈ X, f0 ∈ X}
is Borel , thus a standard Borel space.

P r o o f. This is clearly a consequence of Fact 1.1, Proposition 1.2 and
the following.

Claim. In C(I)ω × `ω1 , the subset A1 = {(x,h) : x 1∼ •
eH with H =

sp(h)} is Borel.

Indeed, for (x,h) ∈ C(I)ω × `ω1 , we have the equivalence: (x,h) ∈ A1 if
and only if for any λ ∈ Q<ω, ‖λx‖ = ‖λ •eH‖. Thus (x,h) ∈ A1 if and only if
for any λ ∈ Q<ω,

(i) ∀µ ∈ Q<ω, ‖λx‖ ≤ ‖λe + µh‖,
(ii) ∀ε ∈ Q∗+, ∃ν ∈ Q<ω, ‖λe + νh‖ ≤ ‖λx‖+ ε.

Then it is not difficult to prove the claim, and the lemma follows.

For a ∈ Sα, we write a = (H(a),h(a),x(a), X(a)) with h(a) = (hi(a))i∈ω
and x(a) = (xi(a))i∈ω. The proof of Theorem 3.1 is a straightforward con-
sequence of the following central lemma which will be proved afterwards.

Lemma 3.3. Let α < ω1. In the set {Y ∈ SE : Y has a shrinking basis},
there exists a Σ1

1 subset Tα such that for any a ∈ Sα, there is some V ∈ Tα
in which X(a) embeds.

P r o o f o f T h e o r e m 3.1. For any α < ω1, as Tα ⊆ {X ∈ SE :
Sz(X) < ω1}, by Proposition 1.2 we can choose β < ω1 such that for any
V ∈ Tα we have Sz(V ) ≤ β and we define ϕ1 by ϕ1(α) = β. It remains to
check that ϕ1 satisfies the required conditions.



64 B. Bossard

Let E be a separable Banach space such that Sz(E) ≤ α. We may suppose
that E ∈ SE , and we define X(E) ∈ SE by

X(E) = {x+ λf0 + µ1 : x ∈ E, (λ, µ) ∈ R2}.
As in X(E), codim(E) ≤ 2, we have Sz(X(E)) = Sz(E) ≤ α. There exists
H ∈ SE(`1) such that X(E) is isometric to `1/H, thus there exists a ∈ Sα
such that X(a) = X(E). Then by Lemma 3.3 there exists a Banach space
V ∈ Tα with a shrinking basis such that Sz(V ) ≤ ϕ1(α), and in which X(E)
embeds, thus E too, and Theorem 3.1 is proved.

The proof of Lemma 3.3 follows the proof of Zippin’s theorem in [G-M-S].
Let α be a fixed countable ordinal, and a = (H,h,x, X) ∈ Sα. We denote

by Ta, or T , the map from `1/H into C(I) defined by T (
•
eHi ) = xi. Without

proof we will use some results of the proof of Zippin’s theorem given in
[G-M-S] to obtain a Banach space Z(a) with a shrinking basis in which X
embeds isomorphically.

The set of Radon measures on I is denoted by M(I). As Sz(`1/H) =
Sz(X) ≤ α and T ∗(M(I)) ⊆ (`1/H)∗, T ∗(M(I)) is separable. Since f0 ∈ X
separates points in I, T ∗ is one-to-one on the set {δt : t ∈ I} of Dirac
measures. Moreover, f0 and 1 belong to T (`1/H) = X. We consider on I
the following metric:

∆(s, t) = sup{|ϕ(s)− ϕ(t)| : ϕ ∈ T (B`1/H) = BX} = ‖T ∗(δs)− T ∗(δt)‖.
The w∗-topology of (`1/H)∗ induces the usual topology of I via the map
I 3 t 7→ T ∗(δt). Thus I is separable for the metric ∆, and for any ε > 0
every closed subset of I contains a non-empty relatively open subset with
∆-diameter less than ε (see [G-M-S]).

We denote by ψa or ψ the map from I into the unit ball of (`1/H)∗

defined by ψ(t) = T ∗(δt), and ψ̃a = ψ̃ = IsH ◦ ψ. Then we have

ψ̃−1(K(H)) = ψ̃−1(BH⊥) = I.

Claim. For any m,n ∈ ω and β < ω1, the subset

Dβ,n
m = ψ̃−1[(K(H))β,nm ] \ ψ̃−1[(K(H))β,n+1

m ]

of I has a ∆-diameter less than 2−m.

Indeed, let s, t ∈ Dβ,n
m . Then

∆(s, t) = ‖ψ(s)− ψ(t)‖ = ‖ψ̃(s)− ψ̃(t)‖.
As ψ̃(s) and ψ̃(t) belong to (K(H))β,nm \ (K(H))β,n+1

m , we have ∆(s, t)
≤ 2−m.

With the definitions used in [G-M-S], it is easy to build a “∆-fragmenta-
tion” (fm)m∈ω, of I where, for any m ∈ ω, fm is a “well ordered slic-
ing” defined from the set of difference sets {Dβ,n

m : (β, n) ∈ Am} with
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Am = {(β, n) : Dβ,n
m 6= ∅} equipped with the lexicographical order. Then

we consider the “dessert selection” ([G-M-S]) which associates with a closed
subset A ⊆ I an element sa(A) = s(A) ∈ A in the following way. For any
m ∈ ω, there exist β < α and n ∈ ω such that A∩ ψ̃−1[(K(H))β,nm ] 6= ∅ and
A ∩ ψ̃−1[(K(H))β,n+1

m ] = ∅. We set Lm(A) = A ∩ ψ̃−1[(K(H))β,nm ]. We de-
fine S0(A) = A and by induction for any m ∈ ω, Sm+1(A) = Lm+1(Sm(A)).
Then s(A) is the single element of

⋂
m∈ω Sm(A). We will prove the next

lemma later.

Lemma 3.4. Let A be a closed subset of I. The map from Sα into I
defined by a 7→ sa(A) is Borel.

For every σ ∈ 2<ω, we set Aσ = {t ∈ I : σ ≺ t}. By a property of the
“dessert selection” ([G-M-S], Theorem (A)), for i ∈ {0, 1}, if s(Aσ) ∈ Aσ_(i),
then s(Aσ_(i)) = s(Aσ). We define

σ+ =
{
σ+
a = σ_(1) if s(Aσ_(0)) = s(Aσ),
σ_(0) if not.

Let (Bn(a))n∈ω be the sequence of elements of {A∅} ∪ {Aσ+ : σ ∈ 2<ω}
equipped with the following order: for any σ, τ ∈ 2<ω, Aσ is before Aτ if the
length of σ is less than the length of τ , or if they have the same length and
σ is before τ in the lexicographical order. In [G-M-S] it is shown that the
sequence b(a) = (bn(a))n∈ω = (1Bn(a))n∈ω is a monotone basis for C(I).

Lemma 3.5. The map from Sα into C(I)ω defined by a 7→ b(a) is Borel.

P r o o f. First by Lemma 3.4 the map from Sα into the product space∏
(Aσ : σ ∈ 2<ω) defined by a 7→ (sa(Aσ))σ∈2<ω is Borel.

Claim. The map ξ from
∏

(Aσ : σ ∈ 2<ω) into (2<ω)2<ω defined by
(sσ)σ∈2<ω 7→ (s′σ)σ∈2<ω with

s′σ =
{
σ_(1) if sσ_(0) = sσ,
σ_(0) if not ,

is Borel.

Indeed, fix τ, τ ′ ∈ 2<ω and let M = {(sσ)σ∈2<w : s′τ = τ ′}. Then M is
Borel because

• if τ ′ = τ_(0), then M = {(sσ)σ : sτ_(0) 6= sτ},
• if τ ′ = τ_(1), then M = {(sσ)σ : sτ_(0) = sτ},

and M = ∅ in the other situations. The claim follows.
The image of (sa(Aσ))σ∈2<ω by the map ξ is (σ+

a )σ∈2<ω . The map 2<ω 3
σ 7→ 1Aσ is clearly Borel, thus so is the map Sα 3 a 7→ (bn(a))n∈ω.

Let a = (H,h,x, X) ∈ Sα. For any i ∈ ω, we denote by Pi = Pi(a) the
projection from C(I) onto sp({bn(a) : n ≤ i}) corresponding to the basis
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b(a) of C(I), and we set

W (a) =
⋃

i∈ω
PiT (B`1/H) =

⋃

i∈ω
Pi(BX).

Lemma 3.6. The map from Sα into F(C(I)) defined by a 7→ W (a) is
Borel.

P r o o f. It is enough to show that the set w(F ) = {a ∈ Sα : W (a) ⊆ F}
is a Borel subset when F is a closed subset of C(I). We write (bn)n∈ω =
(bn(a))n∈ω and (b∗n)n∈ω is the sequence of the biorthogonal functionals. We
have a ∈ w(F ) iff

∀i ∈ ω, Pi(BX) ⊆ F,
iff

∀i ∈ ω, ∀λ ∈ Q<ω, Pi(λx) ∈ F or ‖λx‖ > 1,

that is to say, iff

∀i ∈ ω, ∀λ ∈ Q<ω,
i∑

n=0

b∗n(λx)bn ∈ F or ‖λx‖ > 1.

By Lemmas 3.5 and 2.6, w(F ) is Borel, and Lemma 3.6 follows.

Now, we apply the interpolation scheme to W (a). In [G-M-S], it is shown
that b(a) defines a shrinking basis of the Banach space Z(W (a)) = Z(a),
and `1/H embeds in Z(a), thus so does X. We denote by (b̃n(a))n∈ω = b̃(a)
the sequence b(a) regarded as a basis of Z(a). We define

Tα = {V ∈ SE : ∃a ∈ Sα, V ≡ Z(a)}.

Lemma 3.7. In SE , Ta is Σ1
1 .

E n d o f p r o o f o f L e m m a 3.3. For any a ∈ Sα, there exists V ∈ SE
such that V ≡ Z(a), thus V ∈ Tα and X(a) embeds in V . By Lemma 3.7,
Lemma 3.3 is proved.

P r o o f o f L e m m a 3.7. The set Tα is a projection of the following
subset of Sα × C(I)ω × SE :

R = {(a,v, V ) : sp(v) = V, v 1∼ b̃(a)}.
The following assertions (i), (ii) and (iii) are equivalent, where jn(a) is the
gauge of Un(W (a)) = 2nW (a) + 2−nBC(I) :

(i) v 1∼ b̃(a),
(ii) ∀λ ∈ Q<ω, ‖λv‖ = ‖λb̃(a)‖,

(iii) ∀λ ∈ Q<ω,
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∀N ∈ ω,
∑

n≤N
j2
n(a)(λb(a)) ≤ ‖λv‖,

∀ε ∈ Q∗+, ∃M ∈ ω,
∑

n≤M
j2
n(a)(λb(a)) ≤ ‖λv‖ − ε.

Claim. Let N ∈ ω. The map (a, y) 7→ ∑
n≤N j

2
n(a)(y) from Sα × C(I)

into R is Borel.

By this claim, Lemma 3.5 and Fact 1.1, R is clearly Borel, thus Tα is
Σ1

1 . We prove the claim. Let r ∈ R. We have

A(r) =
{

(a, y) :
∑

n≤N
j2
n(a)(y) < r

}

=
{
a ∈ Sα : ∃µ ∈ Q<ω,

∑
n

µ2
n < r and ∀n ≤ N, y ∈ µnUn(W (a))

}
.

The map from Sα into F(C(I)) defined by a 7→ Un(W (a)) is Borel.
Indeed, let O be an open subset of C(I). We have

{a : Un(W (a)) ∩O = ∅} = {a : (2nW (a) + 2−nBC(I)) ∩O = ∅}
= {a : W (a) ∩ 2−n(O + 2−nBC(I)) = ∅}.

Since a 7→ W (a) is Borel (Lemma 3.6), this last set is Borel, and
a 7→ Un(W (a)) is Borel.

Consequently, by Fact 1.1, A(r) is Borel and the claim follows.

P r o o f o f L e m m a 3.4. We fix a closed subset A of I, and let a =
(H,h,x, X) ∈ Sα. For any m ∈ ω, we have easily

Lm(A) = ψ̃−1(Λm(ψ̃(A))), Sm(A) = ψ̃−1(Σm(ψ̃(A))).

Thus we obtain

s(A) = ψ̃−1[sK(H)(ψ̃(A)))].

Claim. The map from Sα into K defined by a 7→ ψ̃a(A) is Borel.

Indeed, let (ti)i∈ω be a dense sequence in A, and F be a w∗-closed subset
of B∞. Then

{a : ψ̃a(A) ⊆ F} =
⋂

i∈ω
{a : ψ̃α(ti) ∈ F}.

The claim will be shown if we prove that for any t ∈ I the map a 7→ ψ̃a(t)
is Borel. Let t ∈ I. The Borel structure of B∞ is generated by the subsets
{f : f(ej) ≤ µ} where µ ∈ R and ej is a vector of the canonical basis
of `1. Then it suffices to show, for µ ∈ R and ej fixed, that the subset
{a : ψ̃a(t)(ej) ≤ µ} is Borel. For a = (H,h,x, X), we have

ψ̃(t)(ej) = ψ(t)(
•
eHj ) = T ∗(δt(

•
eHj )) = δt(T (

•
eHj )) = δt(xj) = xj(t).
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Thus

{a : ψ̃a(t)(ej) ≤ µ} = {a : xj(t) ≤ µ}
and this last set is clearly a Borel set. The claim is proved.

Now, let F be a w∗-closed subset of B∞ and `(F ) = {a ∈ Sa : sa(A)
6∈ F}. Then

`(F ) = {a ∈ Sα : sK(H)(ψ̃a(A)) 6∈ ψ̃a(F )}.
Using the claim, Lemma 2.1, Lemma 2.5 and Fact 1.1, it is not difficult to
see that `(F ) is a Borel set, and the lemma follows.

Using [D-F-J-P], Corollary 6, M. Zippin proves, as a corollary of his
theorem, that a separable reflexive space embeds in a reflexive space with a
basis ([Z]). Here we have

Corollary 3.8. Let α be a countable ordinal. For every separable re-
flexive space E such that Sz(E) ≤ α, there exists a reflexive space Z with a
basis such that Sz(Z) ≤ ϕ1(α) and E embeds in Z.

R e m a r k. With the notations of this corollary, Sz(Z) is controlled by
Sz(E), whereas Sz is not a Π1

1 -rank on the subset of reflexive separable
subspaces of C(I) with a basis. A Π1

1 -rank on this set is sup(Sz(Z),Sz(Z∗))
([B1]), whereas the set of separable reflexive Banach subspaces of C(I) with
Szlenk index less than ω is not Σ1

1 (this follows from [L1], Proposition 4.3).

P r o o f o f C o r o l l a r y 3.8. Let Y be a separable reflexive Banach
space such that Sz(Y ) ≤ α < ω1. There exists a = (H,h,x, X) ∈ Sα such
that X(E) ' `1/H, with the notation of the proof of Theorem 3.1. Clearly
X(E) is reflexive. As b̃(a) is a shrinking basis of Z(a),W (a) is σ(Z(a),
Z(a)∗)-compact, thus σ(C(I), C(I)∗)-compact, and consequently Z(a) is re-
flexive (use [D-F-J-P], Lemma 2 and Lemma 1(iv), (vii)). The corollary
follows from Theorem 3.1.

As mentioned in the introduction, we do not know if ϕ1 can be the
identity map. It is shown in [L1], Proposition 3.1, (or see [L2]) that a Banach
space is superreflexive iff its dentability index (an ordinal index close to the
Szlenk index) is less than ω. We do not know if a separable superreflexive
space embeds in a superreflexive space with a basis.

Some slight modifications of the proof of Theorem 3.1 allow one to show
the following refinement of Theorem III.1 of [G-M-S].

Theorem 3.9. There exists a universal map ϕ′1 : ω1 → ω1 which satisfies
the following. If a bounded linear operator T from a separable Banach space
X into C(I) has an adjoint such that ζ(T ∗(BX∗)) ≤ α < ω1, then T factors
through a Banach space Z with a shrinking basis such that Sz(Z) ≤ ϕ′1(α).
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IV. On a result of W. J. Davis, T. Figiel, W. B. Johnson and
A. Pełczyński. In [D-F-J-P] (Corollary 8), the following result is shown:

Theorem 4.1. If E is a Banach space with a separable dual , then E is
a quotient of a Banach space with a shrinking basis.

Following a similar approach as in the third section we will give a “quan-
titative” refinement of this theorem.

Theorem 4.2. There exists a universal map ϕ2 : ω1 → ω1 such that for
any Banach space E with a separable dual and for any countable ordinal α,
if Sz(E) ≤ α, then E is a quotient of a Banach space X with a shrinking
basis which satisfies Sz(X) ≤ ϕ2(α).

Let H ∈ SE(`1) and E = `1/H such that E∗ is separable. Without
proof, we give the scheme used in [D-F-J-P] to build a space X with a
shrinking basis with E a quotient of X. We denote by QH the quotient map
`1 → E. By Remark 4.10 of [J-R] there exists an element x of the set B(`1)
of normalized bases of `1 such that

Q∗H(E) = H⊥ ⊆ L = sp‖·‖(x∗).

Using the notations of Lemmas 2, 3, 1 of [D-F-J-P], we set V = BH⊥
and VS = V ∪ (

⋃
m∈ω π

∗
m(x)(V )) where πm(x) is the natural projection

from `1 onto the space sp{xi : i ≤ m} and π∗m(x) is its dual. Then W is
convσ(L,`1)(VS) and C = C(W ). The subsets V , VS , W and C of `∞ are
w∗-compact. The subsequence x′ of x∗ formed by the elements of x∗ which
are in Z(W ) is a boundedly complete basis of Z(W ), and the sequence of
the biorthogonal functionals of x′ is a shrinking basis of a space X with E
a quotient of X.

Let x ∈ B(`1). We denote by cx the best basis constant of x and set

K(H) = BH⊥ ,

KS(H,x) =
1
cx

[
K(H) ∪

( ⋃
m∈ω

π∗m(x)K(H)
)]
,

W (K,x) = conv∗(KS(H,x)).

The constants used ensure that these three sets are subsets of B∞, thus
elements of K. By Fact 1.3(ii), C(W (H,x)) is the unit ball of a Banach
space we denote by Y (H,x), and this space is isomorphic to Z(W ). We
denote by ξ(H,x) = (ξi(H,x))i the subsequence consisting of the elements
of x∗ which are in Y (H,x).

As above, if x is such that H⊥ ⊆ sp‖·‖(x∗), then ξ(H,x) is a boundedly
complete basis of Y (H,x) and the sequence ξ∗(H,x) = (ξ∗i (H,x))i of its
biorthogonal functionals is a shrinking basis of a space X(H,x) with E as a
quotient. Connected with this construction, we give three lemmas that will
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be proved later. Let α be a fixed countable ordinal. Here y is an element of
Bω×α×ω∞ , and we write

y = {y(n, β,m) : m,n ∈ ω, β < α}.
We use some notations of the second section. In Kα×Bω×α×ω∞ , Dα is the sub-
set consisting of the elements (K,y) such that for any m,n ∈ ω and β < α,

if Kβ,n
m 6= Kβ,n+1

m , then y(n, β,m) ∈ Kβ,n
m \Kβ,n+1

m ,

otherwise, y(n, β,m) = 0.

Lemma 4.3. The set Dα is Borel.

We set Dα(K) = {y : K(y) ∈ Dα}.
R e m a r k 1. For any K ∈ Kα, Dα(K) 6= ∅.
R e m a r k 2. As ζ(K) ≤ α, we easily show that if y ∈ Dα(K), then

K = y‖·‖ = {y(n, β,m) : n,m ∈ ω, β < α}‖·‖.
We define in Hα × B(`1),

Bα = {(H,x) : ∃y ∈ Dα(K(H)), y‖·‖ ⊆ sp‖·‖(x∗)}.
Lemma 4.4. The set Bα is a Σ1

1 subset.

R e m a r k 3. For any H ∈ Hα, the subset {x ∈ B(`1) : (H,x) ∈ Bα}
is non-empty. This is clear by Remark 4.10 of [J-R] and Remarks 1 and 2
above.

Lemma 4.5. The following subset of SE is Σ1
1 :

Qα = {G : ∃(H,x) ∈ Bα, G ≡ Z(H,x)}.
P r o o f o f T h e o r e m 4.2. For any α < ω1, we have Qα ⊆ {G ∈ SE :

G∗ separable}, and Qα is Σ1
1 . By Proposition 1.2, we can choose β < ω1

such that for any G ∈ Qα we have Sz(G) ≤ β. We define ϕ2 by ϕ2(α) = β.
It remains to check that ϕ2 satisfies the required conditions. Let E be a
separable Banach space such that Sz(E) ≤ α. For some H ∈ Hα, we have
E ' `1/H. By Remark 3 there exists x ∈ B(`1) such that (H,x) ∈ Bα, and
there exists G ∈ SE such that G ≡ Z(H,x). Thus G ∈ Qα, Sz(G) ≤ ϕ2(α)
and G is a Banach space with a shrinking basis with E a quotient of X.

P r o o f o f L e m m a 4.3. We fix n,m ∈ ω and β < α. We define the
subset Dα(n, β,m) of Kα ×Bω×α×ω∞ by: (K,y) ∈ Dα(n, β,m) iff

Kβ,n
m = Kβ,n+1

m and y(n, β,m) = 0, or

Kβ,n
m 6= Kβ,n+1

m and y(n, β,m) ∈ Kβ,n
m \Kβ,n+1

m .

Using Lemma 2.2 and Fact 1.1, it is not difficult to see that Dα(n, β,m) is
Borel, thus so is Dα.
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P r o o f o f L e m m a 4.4. The set Bα is a projection of the following
subset of Hα × B(`1)×Bω×α×ω∞ ×Kα:

Jα = {(H,x,y,K) : K = K(H), (K,y) ∈ Dα, y‖·‖ ⊆ sp‖·‖(x∗)}.
Claim. The subset {(x∗,y) : y‖·‖ ⊆ sp‖·‖(x∗)} of Bω∞ × Bω×α×ω∞ is

Borel.

Indeed, this subset is equal to

{(x∗,y) : ∀(n, β,m) ∈ ω × α× ω, ∀ε ∈ Q∗+, ∃λ ∈ Q<ω,
‖λx∗ − y(n, β,m)‖∞ ≤ ε}.

As ‖ · ‖∞ is w∗-lower semicontinuous, the claim follows.
Now, using Lemmas 2.1, 2.6, 4.3 and this claim, we conclude that Jα is

Borel, thus Bα is Σ1
1 .

Before proving Lemma 4.5, we study the Borel regularity of some maps.

Lemma 4.6. The map K 7→ conv∗(K) from K into K is Borel.

P r o o f. We define

Λ =
{
λ ∈ Q<ω :

∑

i

λi = 1, λi ≥ 0 for any i ∈ ω
}
.

We have

{(K,k, F ) ∈ K ×Bω∞ ×K : k
∗

= K, conv∗(k) = F}
= {(K,k, F ) : k

∗
= K, ∀λ ∈ Λ, λk ∈ F,

and ∀O ∈ O∞, O ∩ F = ∅ or ∃λ ∈ Λ, λk ∈ O}.
This set is Borel by Fact 1.1, and its projection {(K,F ) : conv∗(K) = F}

is Σ1
1 , thus Borel by the separation theorem. Lemma 4.6 follows.

Lemma 4.7. The map (H,x) 7→ KS(H,x) from SE(`1)×B(`1) into K is
Borel , and so is the map (H,x) 7→W (H,x) from SE(`1)× B(`1) into K.

P r o o f. First we prove that the map from Bω∞×B(`1) into K defined by

(k,x) 7→ L(k,x) =
1
cx

[
k
∗ ∪

⋃
m∈ω

π∗m(x)(k
∗
)
]

is Borel. Let F be a w∗-closed subset of B∞. We have

{(k,x) : L(k,x) ⊆ F}
=
{

(k,x) : ∀j ∈ ω, ∀m ∈ ω, 1
cx

∑

i≤m
kj(xi)x∗i ∈ F

}
.

Claim. Let n ∈ ω. The map from B∞ × B(`1) into B∞ defined by

(k,x) 7→ 1
cx

∑

i≤m
k(xi)x∗i

is Borel.
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Indeed, the map (k,x) 7→ ∑
i≤m k(xi)x∗i from (`∞, w∗) × B(`1) into

(`∞, w∗) is Borel by Lemma 2.6(ii). For any b ∈ R, we have

{x : cx ≤ b} =
{

x : ∀n, p ∈ ω, ∀µ ∈ Q<ω,
∥∥∥
∑

i≤n
µixi

∥∥∥ ≤ b
∥∥∥
∑

i≤n+p

µixi

∥∥∥
}

and this last subset is closed. Thus the map B(`1) 3 x 7→ cx is Borel. The
claim follows.

Now {(k,x) : L(k,x) ⊆ F} is clearly Borel, and the map (k,x) 7→
L(k,x) is Borel. Consequently, by Lemma 2.1 and Fact 1.1, the subset

{(H,x,K,k, L) : L = L(k,x), k
∗

= K = K(H))}
of SE(`1) × B(`1) × K × Bω∞ × K is Borel, its projection {(H,x,K) : K =
KS(H,x)} is Σ1

1 , thus Borel by the separation theorem. Therefore the map
(H,x) 7→ KS(H,x) is Borel.

The last assertion of Lemma 4.7 follows from Lemma 4.6.

We denote by Kc the subset of K consisting of w∗-closed symmetric
convex subsets of B∞, and for all n ∈ ω we set

U ′n(W ) =
1

2n+1Un(W ) =
1
2

(W + 2−2nB∞).

Lemma 4.8. The map from Kc into Kωc defined by W 7→ (U ′n(W ))n∈ω is
Borel.

P r o o f. Let F be a w∗-closed subset of B∞ and n ∈ ω. We have

{W : U ′n(W ) ∩ F = ∅} = {W : W ∩ (2F + 2−2nB∞) = ∅}
= {W : W ∩ [(2F + 2−2nB∞) ∩B∞] = ∅}

and this last subset is clearly Borel. The lemma follows.

Lemma 4.9. Let m ∈ ω. The map f from SE(`1)×B(`1) into B∞ defined
by f(H,x) = ξm(H,x) if it exists, and 0 if not , is Borel.

P r o o f. Let O ∈ O∞. Then (H,x) ∈ f−1(O) iff (i) or (ii), where

(i) ∃l0 < l1 < . . . < lm−1 < lm, x∗lm ∈ O,
∑
n∈ω j

2
n(x∗li) < ∞ if 0 ≤ i

≤ m,
∑
n∈ω j

2
n(x∗q) =∞ if q < lm and q 6∈ {li : 0 ≤ i ≤ m− 1}.

(ii) 0 ∈ O and ∀l0 < l1 < . . . < lm−1 < lm, ∃i, 0 ≤ i ≤ m,
∑
n∈ω j

2
n(x∗li)

=∞, where jn is the gauge of Un(W (H,x)).

Claim 4.10. We fix M ∈ R, N ∈ ω. The following subset is Borel :{
(H,x, y) ∈ SE(`1)× B(`1)×B∞ :

∑

n≤N
j2
n(y) < M

}
.

Indeed,
∑
n≤N j

2
n(y) < M iff ∃γ ∈ Q<ω,

∑
n≤N γ

2
n < M and y ∈

γnUn(H,x) for all n ≤ N . As Un(H,x) = 2n+1U ′n(W (H,x)), by Lemma 4.7,
Lemma 4.8 and Fact 1.1 the claim follows.
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Now with Lemma 2.6 it is not difficult to see that f−1(O) is Borel, and
Lemma 4.9 follows.

P r o o f o f L e m m a 4.5. The subset Qα is a projection of the subset

Rα = {(G,g,H,x) : sp(g) = G, (H,x) ∈ Bα, g 1∼ ξ∗(H,x)}
of SE × C(I)ω ×Hα × B(`1). The following assertions (i), (ii) and (iii) are
equivalent:

(i) g 1∼ ξ∗(H,x).
(ii) ∀λ ∈ Q<ω, ‖λg‖ = ‖λξ∗(H,x)‖ = sup{∑i λiµi : µ ∈ Q<ω,∑

n∈ω j
2
n(µξ(H,x)) ≤ 1} where jn is the gauge of Un(W (H,x)).

(iii) ∀λ ∈ Q<ω,

∀µ ∈ Q<ω,
∑
n∈ω

j2
n(µξ(H,x)) ≤ 1⇒

∑

i

λiµi ≤ ‖λg‖,

∀ε ∈ Q∗+, ∃ν ∈ Q<ω,
∑
n∈ω

j2
n(νξ(H,x)) ≤ 1 and ‖λg‖ − ε ≤

∑
λiµi.

By Lemma 4.8, Lemma 4.9 and Claim 4.10, (i) defines a Borel relation, and
by Lemma 4.4 and Fact 1.1, Rα is Σ1

1 , and thus so is Qα.

Remark on the Borel regularity of the interpolation scheme. Let X be
a separable Banach space, and Fc(X) the subset of F(X) consisting of
the bounded convex symmetric subsets, equipped with the Borel structure
inherited from the Effros Borel structure. It is not clear whether the map
Fc(X) 3 W 7→ C(W ) ∈ Fc(X) is Borel, but we can prove that the map
Fc(X) 3 W 7→ C ′(W ) = sp(W ) ∩ C(W ) is Borel. The unit ball of the
Banach subspace Z ′(W ) of Z(W ) spanned by W is C ′(W ), and Z(W ) has
the same properties as Z(W ). Then we can prove that, if A ⊆ Fc(X) is Σ1

1 ,
then so is the subset {Z : ∃W ∈ A, Z ' Z ′(W )} of SE .

Now let K(X) be the set of w∗-closed subsets of BX∗ equipped with
the Hausdorff topology and Kc(X) ⊆ K(X) be the subset of w∗-closed con-
vex symmetric subsets. Then we can prove that the map Kc(X) 3 W 7→
1
2C(W ) ∈ Kc(X) is Borel.
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Université Paris VI
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