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Abstract. Let A be an ordinal number. It is shown that normality, collectionwise
normality and shrinking are equivalent for all subspaces of (A + 1)2.

1. Introduction. It is well known that any ordinal with the order topol-
ogy is shrinking and collectionwise normal hereditarily. But, in general, prod-
ucts of two ordinals are not. In fact, (w; +1) X wy is not normal. In [KOT], it
was proved that the normality, collectionwise normality and shrinking prop-
erty of A x B, where A and B are subspaces of ordinals, are equivalent. It
was asked whether these properties are also equivalent for all subspaces of
products of two ordinals [KOT, Problem (i)]. The aim of this paper is to
give an affirmative answer.

We recall some basic definitions and introduce some specific notation.

In our discussion, we always assume X C (A+1)? for some suitably large
ordinal A\. Moreover, in general, the letters ;1 and v stand for limit ordinals
with y < XA and v < \. Foreach AC A+ 1and BC A+ 1 put

Xa=Ax(A+1)NX, XB=(0O\+1)xBnX,
and
XP=X,nXx?

For each o« < A and 8 < A, put
Va(X)={8<A:(a,B8) € X}, Hp(X)={a<A:(a,p)c X}
cf p denotes the cofinality of the ordinal . When wy < cf u, a subset S of

w called stationary in p if it intersects all cub (closed and unbounded) sets
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in . For each g < A and v < X\ with w; < cf p and wy < cf v, put
A} = {a < p: Vo (X)Nv is stationary in v},
By ={B <v:Hg(X)Npis stationary in pu}.

Moreover, for each A C p, Lim,(A) is the set {a < p: a = sup(ANa)},
in other words, the set of all cluster points of A in p. Therefore Lim, (A) is
cub in p whenever A is unbounded in p. We will simply denote Lim,, (A) by
Lim(A) if the situation is clear in its context.

A strictly increasing function M : cfu — p is said to be normal if
M(vy) = sup{M(y') : v/ < ~} for each limit ordinal v < cf yu, and p =
sup{M (7) : v < cf u}. Note that a normal function on cf p always exists if
cf p > w. So we always fix a normal function M : cf y — p for each ordinal
w with cf g > w.

For convenience, we define M (—1) = —1. Then M carries cf ;1 homeo-
morphically to the range ran M of M and ran M is closed in u. Note that
for all S C p with wy < cf pu, S is stationary in p if and only if M~1(S) is
stationary in cf pu.

Let p and v be two limit ordinals with © < A and v < \; moreover, let
M :cfpy — pand N : cfv — v be the fixed normal functions on cf  and
cf v respectively. For each a € p and § € v, define

m(a) = min{y < cfp:a < M(y)},

n(B) = min{é < cfv: 5 < N(J)},
where min A denotes the minimal ordinal number in A. Note that, if a €
ran M, then m(a) = M~ (a).

Furthermore, assume (u,v) ¢ X and wy < cf p = cf v = k. We will use
the following notation:

X(L,M,N) ={{e, ) € X N x v :m(a) <n(B)}U XM,

X(R,M,N) ={(a,8) € X Nppx v:m(a) >n(B)} UX],,

X(A7M7N) = {<M(7)’N(’7)> €eX:y< H}a

Aun(X) ={y <r:(M(7),N(y)) € X}.

Intuitively, X (L, M, N) is considered as the upper-left half of X Zﬂ,
X (R, M, N) as the lower-right half of XZI% and X (A, M, N) as the diagonal
part of X/’jﬂ Since M and N are homeomorphic closed embeddings, observe
that X (A, M,N) and Apn(X) are homeomorphic and that X (L, M, N),
X(R,M,N) and X (A, M, N) are closed in X.

Let Y be a topological space. Subsets ' and G of Y are said to be
separated if there are disjoint open sets U and V' containing F' and G re-
spectively; of course, separated sets are disjoint, and () and G are separated
for each G C Y. More generally, a collection H of subsets of Y is said to

)
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be separated if there is a pairwise disjoint collection Y = {U(H) : H € H}
of open sets in Y such that each U(H) contains H. A space Y is said to
be CWN (CollectionWise Normal) if any discrete collection of closed sets is
separated. Let U be an open cover of Y. A collection F = {F(U) : U € U} of
subsets of Y indexed by U is a shrinking of U if F(U) C U for each U € U.
A closed shrinking is a shrinking by closed sets. Throughout the paper, for
convenience, we do not require F to cover Y. We call a space Y shrinking
if each open cover of Y has a closed shrinking which covers Y.

2. Theorem and lemmas. Using the notation described in Section 1,
we shall show:

THEOREM. Assume X C (A+1)2. The following (1)—(4) are equivalent:

(1) X is shrinking.
(2) X is CWN.
(3) X is normal.
(4) For every (u,v) € (A +1)2\ X with w < cfp and w < cfv, the
following (4-1)—(4-5) hold:
(4-1) Xy, and X1} are separated.
(4-2) If wy < cfv and V,(X)Nv is not stationary in v, then there is a
cub set D in cfv such that Xy, and XNDWY gre separated.
(4-3) If wr < cfp and H,(X) N p is not stationary in p, then there is a
cub set C in cf p such that X} and Xnm(cyufuy are separated.
(4-4) If (w1 < cfp < cfv, V,(X) Nv is not stationary in v, and both
H,(X) N p and A}, are non-stationary in p) or (wi < cfv <cfp,
H,(X) N p is not stationary in p, and both V,,(X)Nv and By, are
non-stationary in v), then there are cub sets C in cf u and D in
cfv such that Xprcyuquy and XNDWY gre separated.
(4-5) If wi < cfp=cfv =k, then (4-5-a) and (4-5-b) hold.
(4-5-a) X(A,M,N) and X,y U X} are separated.
(4-5-b) If Apn(X) is not stationary in k, then (b1)—(b4) hold:
(b1) If V(X) Nv is stationary in v, then Xy, and any closed
set disjoint from Xy, are separated.
(b2) If V,(X) Nv is not stationary in v, then there is a cub
set D in k such that the sets X (R, M, N)y(pyu{uy and
X (R, M, N)NPIWAY are separated.
(b3) If H,(X) N p is stationary in p, then X} and any closed
set disjoint from X} are separated.
(b4) If H,(X) N p is not stationary in p, then there is a cub
set Cin k such that the sets X(L, M, N)N©OUt gngd
X(L, M, N)nrcyu{uy are separated.
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To prove the theorem, we need several lemmas. First it is straightforward
to show:

LEMMA 1. Let X be the finite union of closed subspaces X; (i € n).

(1) Let U be an open cover of X. If U|X; = {UNX; : U € U} has a
closed shrinking covering X; for each i € n, then U has a closed shrinking
which covers X.

(2) Let H be a discrete collection of closed sets in X. If H|X; is separated
in X; for each i € n, then H is separated in X.

This lemma implies:

LEMMA 2. If X is the union of two normal (shrinking, CWN) open
subspaces Y and Z such that X \'Y and X \ Z are separated, then X is
normal (shrinking, CWN).

LEMMA 3. Assume wy < cfp <cfvand X C (u+1)x (v+1)\ {{n,v)}.
If A}, is not stationary in p, then there are cub sets C in cf p and D in cfv
such that

XNM(C)x N(D)=0.

Proof. Assume A is not stationary in u. Take a cub set C' in cf u
such that M(C) N A}, = ). For each v € C, by the non-stationarity of
V) (X) N, fix a cub set D, in cf p such that Vi) (X) N N(D,) = 0.
Put D =, cc D Since [C] < cf p < cfv, D is cub in cf v. Then these cub
sets C' and D work. m

In an analogous way, we can show:

LEMMA 3. Assume wy; < cfv <cfpand X C (u+1)x (v+1)\ {{g,v)}.
If By, is not stationary in v, then there are cub sets C in cf p and D in cfv
such that

XNM(C)x N(D)=0.
Hereafter, we will not write down such analogous lemmas, but refer to

them as “the analogues” of Lemmas 5-9.

LEMMA 4. Assume wy < cfv =cfp=rand X C (p+1) x (r+1)\
{{pu,v)}. If X is normal and Npyn(X) is not stationary in k, then there is
a cub set C' in k such that

XNM(C)x N(C)=10.
Proof. First we show A} is not stationary in y1. Assume, on the contrary,

that AY is stationary in y. Then A = M~'(A%) N Lim(k) is stationary in x.
For each v € A, pick

h(v) € N7 (Vary(X) N () Lim(N ™' (Vag(y) (X)) N Lim(x)
v ANy
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with v < h(y) < k. This can be done, because N~ (V) (X)) is stationary
in &, Lim(N 1 (Va4 (X))) is cub in & for each 7' € AN+, [ANy| < k and
Lim(k) = Lim, (k) is cub in &, so the intersection is stationary in . For
each v € K\ A4, put h(y) = 0. Take a cub set C’ in & disjoint from A psn(X),

and put

C={yv<r:Vy <~v(hK)<y)}nC.
Since C'is cub in k and A is stationary in k, A’ = AN C is stationary in .
For each v € A’, put x = (M (7), N(h(v))). Since, by the definition of h(y),
N(h(7)) € Var(y)(X), we have 2, € X for each v € A"

Cram 1. F ={x, : v € A’} is closed discrete in X.

Proof. Note that FF € M(C) x ran N. Let (o, ) € X. We will find an
open neighborhood U of {(a, 3) which intersects F' in at most one point.

Case 1. a € p\M(C) or p e v\ranN. If « € p\ M(C), then, by
the closedness of M(C) in p, there is o’ < a such that (o/,a] N M(C) = 0.
Then U = (¢/,a] x (v +1) N X is a neighborhood of («, 3) missing F.

If 3 € v\ran N, then there is 3 < (3 such that (', 5] Nran N = (). Then
U= (u+1)x (4,8 NX is as desired.

Case 2. Otherwise, i.e., « € M(C)U{u} and B € ran N U {v}. There
are two subcases.

(2-1): « € M(C)U {pu} and § € ranN. If a« > M(n(3)), then put
U= (M(n(B)),a]x0,5NX. Assume U > (M (), N(h(v))) for some vy € A’.
Then we have n(3) < v and N(h(y)) < g (thus h(y) < n(3)). Therefore
h(y) < ~. But this contradicts the definition of h(y). So U N F = ().

If @ < M(n(f)), then, since M(n(8)) < u, we have o € M(C) in this
case. Therefore, as a = M (m(a)) < M(n(f3)), we have m(a) < n(f). As-
sume m(a) = n(B). Since (M(m(a)), N(n(3))) = (o, ) € X, it follows
that m(a) = n(f) € Apn(X). On the other hand, since m(a) € C C
C' C k\ Aun(X), we get a contradiction. Hence we have m(a) < n(f).
Put U =[0,a] x (N(m(«)), Bl N X. Assume U > x, = (M(v), N(h(y))) for
some v € A" with m(a) # 7. As M(v) < a = M(m(«)) and m(a) # 7,
we have v < m(a). Since v < m(a) € C, we get h(y) < m(a). On the
other hand, from N(m(a)) < N(h(7)) it follows that m(a) < h(y). This is
a contradiction. This argument implies U N F C {Zy(a) }-

(2-2): « € M(C)U{u} and B = v. Since (o, B) € X but (u,v) € X, we
have o € M(C). Put U = [0,a] x (N(m(«)),8]NX. Then [UNF| <1 as
above.

This completes the proof of Claim 1.

Decompose A’ into disjoint stationary sets Ty and 73 in s, and put
F, ={x, :v€T;} for i € 2= {0,1}. Let U; be an open set containing F;
for each i € 2.
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Cram 2. ClUy N ClU; # 0.

Proof. For each v € T; with i € 2, since z, = (M(y),N(h(v))) € U;
and v and h(y) are in Lim(k), there are f(y) < v and g(vy) < h(v) such that
v <g(y) and

(M(f(7)), M(7)] x (N(g(7)), N(h(v))| N X C U;.

By the PDL, for each i € 2, there are (; < x and a stationary set T/ C T;
such that f(vy) = ¢; for each v € T/. Put vy = max{{o, (1 }. Then

(M(70), M()] x (N(g(7)), N(h(7))] N X C U

for each i € 2 and v € T7.

Take v and 2 such that 79 < 71 € A and 71 < 72 € [);¢o Lim(77).
We shall show (M(y1), N(y2)) € ClUy N ClU;. To see this, let V' be a
neighborhood of (M (1), N(72)). As v2 € Lim(k), there is v3 < 2 with 73 <
3 such that {M(y1)} x (N(73), N(y2)]NX C V. Then, since 7, € Lim(T}),
there are 4 and 75 in T} with 3 < y4 < 75 < 72. Since v5 € T C A’ C C,
the definition of C yields 4 < h(74) < 75. As 1 € ANy, the definition of
h(74) shows that h(y) € Lim(N =1 (Vas(4,)(X))). Then, since v4 < g(ya) <
h(7s), there is 76 € N1 (Vas(4,) (X)) such that g(7a) < v6 < h(vs). Finally,

(M(71),N(7)) € {M(n)}
X (N (73), N(v2)] N (M (70), M (74)] x (N(g(74)), N(h(72))] N X C V N .

This means (M (y1), N(y2)) € ClUy. Similarly we have (M(v1), N(y2)) €
ClU;. This completes the proof of Claim 2.

Claim 2 contradicts the normality of X. Therefore A} is not stationary
in p. By a similar argument, B/ is not stationary in v.

Finally, since Apn(X) is not stationary in k, take a cub set D in &
such that D N [M~1(AY) U N~Y(By) U Ayn(X)] = 0. For each v € D,
since Vir(y)(X) Nv is not stationary in v and Hy(4)(X) N is not station-
ary in p, we can take a cub set C, in & disjoint from N~ (Vi) (X)) U
M~ (Hy()(X)). Then by an argument similar to [Ku, II, Lemma 6.14],
the diagonal intersection

E={€D:YyeDnNs(eC,)}

is cub in k. Assume (M(v),N(d)) € X for some v and ¢ in E. Since D
is disjoint from Apn(X) and E C D, we have v # §. So we may assume
7 < 6. Then since v € D N ¢ and § € E, we have § € C,, and thus
N(90) & Var(y)(X). This contradicts (M (), N(§)) € X. This means X N
M(E) x N(E) = (). This completes the proof of Lemma 4. m

LEMMA 5. Assume wy < cfv#cfpand X C (p+1) xv. If V,(X)Nv
1s stationary in v, then the following hold:
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(1) For each open cover U of X, there are ' < p, v/ < v and a shrinking
F of U by clopen sets in X such that \JF = (¢, p] x (v, v)NX.

(2) For each discrete collection H of closed sets in X, there are (i < p
and V' < v such that (1, pu] x (V',v) N X meets at most one member of H.

Proof. (1) For each § € N~}(V,(X)) N Lim(cfv), fix f(6) < cfp,
g(0) < 6 and U(d) € U such that (M(f(0)),u] x (N(g(d)),N(§)]NnX C
U(9). Applying the PDL, we can find d9 < cfv and a stationary set S’ C
N=1(V,(X)) N Lim(cfv) such that g(§) = & for each § € S". If cf u > cf v,
then put v = sup{f(0) : 6 € S’} and S = S’. If cf u < cfv, then, again
applying the PDL, we find a stationary set S C S’ and 79 < cf u such
that f(0) = o for each 6 € S. In either case, putting u/' = M(vy) and
v = N(by), we have found a stationary set S C N~1(V, (X)) N Lim(cf v)
such that (p/, u] x (V/,N()]NX C U() for each § € S.

For each § and ¢’ in S, define 6 ~ &' by U(0) = U(¢'). Then ~ is
an equivalence relation on S, so let S/~ be its quotient space. For each
E € S/~, put Ug = U(9) for some (any) § € E. Note that members of
{Ug : E € S/~} are all distinct. There are two cases to consider.

First assume that there is E € S/~ such that E is unbounded in cf v.
In this case, since (¢, u] x (v, N(0)]N X C U(d) = Ug for each § € E, we
have (¢/, p] x (v',v) N X C Ug. For each U € U, put

FU) = {(u’,u] x (V,v)NX ifU:UE,
0 otherwise.
Then F = {F(U) : U € U} is the desired shrinking of U.

Next assume all E’s, E € S/~ are bounded in cf v. By induction, define

é(n) € E(n) € S/~ for each n € cfv so that n + sup(U,, E(¢)) < d(n).

Clearly E(n)’s are all distinct and {d(n) : n < cf v} is strictly increasing and
unbounded in cf v. For each U € U, put

FU) = { (W pu] x (V' ,NOMm)NnX ifU= .UE(") for some n < cfv,
0 otherwise.
Then F = {F(U) : U € U} is the desired shrinking of U.
(2) For each 6 € N~1(V,(X)) N Lim(cfv), fix f(§) < cfp and g(d) < &
such that (M (f(9)), u] x (N(g(d)), N(0)] N X meets at most one member of
H. Then as in (1), we can find desired v’ < v and g/ < . »

LEMMA 6. Assume wy < cfv#cfpu, X C (p+1)x (v+1)\{{n,v)} and
Vu(X) Ny is stationary in v. If X,y and XY are separated, then there
are p/ < p and v' < v such that (¢, p] x (V',v) N X is closed (and trivially
open) in X.

Proof. Since Xy, and X1} are separated, take an open set V such that
Xy CV C OV C X\ X% For each § € N~H(V,,(X)) N Lim(cfv), fix
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f(9) < cf pand g(d) < 0 such that (M(f(9)), ] x (N(g(0)),N(O)]NnX C V.
Then as in Lemma 5, we can find ¢/ < p and v/ < v such that (u/, ] x
(v, v)NX C V. Since CLV N X} =, we conclude that (u', ] x (v',v)N X
is closed in X. m

LEMMA 7. Let P be a topological property which is closed under taking
closed subspaces and free unions. Assume X C (u+1) x (v+1) and X141
has the property P for each p' < p.

(1) If cf p = w, then X,, has the property P.
(2) If cfpp > wy and C is a cub set in cfp and V' is an open set in X
containing Xpr(cyu{uy, then X \ V' has the property P.

Proof. (1) Since XH = ®n€w X(M(n—l),M(n)} and X(M(n—l),M(n)} is a
closed subspace of Xjyr(,)41, X, has the property P.

(2) For each v € C, put h(y) = sup(C N~). Note that h(y) < ~ if
v € C\ Lim(C). For each v € C'\ Lim(C), put Y (vy) = X(M(h(W)%M(’Y)] \ V.
Since Y () is a closed subspace of X 7()41, it has the property P. Therefore
X\V =@, co\rimc) Y (7) has the property P. m

LEMMA 8. Assume wy < cfp < cfv, X C (p+1) x (v+ 1)\ {{(n,v)}
and AJ, is stationary in p. If there are cub sets C in cfp and D in cfv

such that Xy cyuquy and X} are separated, and X NPt gnd Xy are
separated, then there are ' < p and v’ < v such that (1, p) x (V',v)NX is
closed (and trivially open) in X.

Proof. Take open sets V and W in X such that
Xueyguy CV C OV C X\ X1
XN W c CIW € X\ Xy,
First fix y € CN M~ (A) NLim(cf ). For each § € DN~ (Vi) (X)) N
Lim(cf v), since (M (), N(5)) € VNW, fix f(v,0) <~ and g(v,9) < é such
that
(M(f(v,6)), M(v)] x (N(g(7,9)), N(@O)]n X CV nW.

Since f(v,6) < v and g(v,6) < & for each 6 € D N N1V (X)) N
Lim(cf v), noting that cf p < cf v and applying the PDL, we have f(v) < 7,
g(7) < cfv and a stationary set S, C DN N~ (V4 (X)) NLim(cf v) such
that f(v,d) = f(v) and g(v,0) = g() for each 6 € S,,. Put §y = sup{g(v) :
ye CnM-Y(AY) NLim(cf p)}.

Next, since f(y) < v for each v € C'N M~ (AY) N Lim(cf 1), again ap-
plying the PDL, we have v < cf p1 and a stationary set T C CNM~'(AY)N
Lim(cf ) such that f(vy) =~y for each v € T. Then we have

(M(70), 1) % (N(80),¥) N X C V AW,
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Put p' = M(vo) and v' = N(do). Since C1V N CIW is disjoint from X3 U
X1} we conclude that (i, 1) x (v/,v) N X is closed in X. m

LEMMA 9. Assume wy < cfp < cfv, X C pxv and A} is stationary
m .

(1) If U is an open cover of X, then there are p' < p, V' < v and a
shrinking F of U by clopen sets in X such that |JF = (', ) x (v, v) N X.

(2) If H is a discrete collection of closed sets in X, there are p' < u and
V' < v such that (i, 1) x (V',v) N X meets at most one member of H.

Proof. (1) First fix v € M~'(A%) N Lim(cfp). For each 6 €
N~ (Var(y) (X)) N Lim(cfv), using (M(y),N(9)) € X, fix f(7,0) < 7,
9(7,0) < ¢ and U(~,d) € U such that

(M(f(7,0)), M(7)] x (N(g(7,0)), N(6)]| N X C U(v,9).

As in the proof of Lemma 8, applying the PDL twice, we find a stationary set
T C M~'(A%)NLim(cf 1), a stationary set Sy, C N~ (Va4 (X))NLim(cf v)
foreach vy € T, i/ < p and v/ < v such that (¢/, M(v)] x (V/,N()|Nn X C
U(7,6) for each § € S, with y € T

Put H =J, {7} x S,. For each (y,0) and (7', 0") in H, define (v, ) ~
(+',0") by U(y,0) = U(v,d"). For each E € H/~, define Ug = U(~,0d) for
some (any) (7v,d0) € E. Then note that
0 U M) x (¢ N@) N X C U,

(v,0)EE
For each vy € T and E € H/~, put
J(E,y) =sup{d € S, : (v,0) € E}.

Then put T(E) ={y €T :j(E,v) =cfv} and k(E) = supT(E).

Cram 1. (¢/, M(7)] x (V',v)N X C Ug for each v € T(E).

Proof. Assume (o, 3) € (¢/, M ()] x (v/,v) N X with v € T(FE). Since
B <vandyeT(FE), thereis a 6 € Sy with (v,0) € E such that 8 < N(6).
Then, by (i), («, §) € Ug. This completes the proof of Claim 1.

There are some cases to consider.

Case 1: There is an E € H/~ such that k(E) = cf u. In this case, by
Claim 1, (¢/, u) x (v',v) N X C Ug. So for each U € U, put
0 otherwise.
Then F = {F(U) : U € U} is the desired shrinking of U.

Case 2: k(E) <cfp for each E € H/~. There are two subcases.
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(2-1): sup{k(E) : E € H/~} = cfpu. By induction, define two se-
quences {E(¢) : ¢ < cfu} in H/~ and {y({) : ¢ < cfpu} in T so that
¢+ sup, . k(E(n) < ~v(¢) € T(E(C)). Observe that E(()’s are all dis-
tinct and {v(¢) : ¢ < cf u} is strictly increasing and unbounded in cf u. By
Claim 1, Z(¢) = (¢/, M(v(¢))] x (',v) N X C Ug(y(c))- So for each U € U,

put
FU) = Z(¢) if U= Ug() for some ¢ < cf p,
0 otherwise.

Then F = {F(U) : U € U} is the desired shrinking of U.

(2-2): y0 = sup{k(FE) : E € H/~} < cfpu. Put T =T\ [0,7], H =
U, er {7} x Sy and j(E) = sup{j(E,v) : v € T"} for each E € H/~. Then,
since j(E,~) < cfv for each v € T" and |T’| < cf p < cf v, we have

(i) J(E) < cf.

Let < be the co-lexicographic order on cf p x cf v, that is, (', ) < ((,n) is
defined by 7’ < nor (' =n and ¢’ < ). Since cf pu < cf v, the <-order type
of cf ux cfvis cf v. By <-induction, we shall define two sequences { E((,n) :
(¢,m) € cfpxctvyin H/~ and {(v(¢,n),0(¢,n)) : (¢,n) € cfp x cfr}in
H' with (v(¢,n),6(¢,n)) € E((,n) as follows.

Assume E(C,1), 2(Cn) and 8(C', ) are defined with (y(C',),
5(¢’,n")) € E(¢',n') for all ((',n) < (¢,n). By (ii), take ¢ < cf v with n +
sup{j(E(¢",n')) : (¢",n') < (¢;m)} <. When ¢ =0, take (y(¢,n),d(¢,n)) €
H' with 6 < 0(¢,n), and let E((,n) be the equivalence class with
(v(¢,m),0(¢,m)) € E(¢,n). When ¢ > 0, noting that v(¢’, n) has been defined
for all ¢’ < ¢, take v < cf p such that (+sup{y(¢’,n) : ¢’ <} <, and take
(v(¢,;n),6(¢,m)) € H' with 6 < 6(¢,n) and v < y(¢,n). Finally, let E(¢,n)
be the equivalence class with (v(¢,n),d(¢,n)) € E((,n). This completes the
construction.

By the construction, E((,n)’s are all distinct,

(iii)  {0(¢,m) : (¢, m) € cf pu x cf v} is strictly increasing and unbounded in
cf v,
and

(iv)  {~(¢,n) : ¢ € cf p} is also strictly increasing and unbounded in cf p
for each n < cfv.

As (v(¢,n),6(C,m)) € E(C,n), by (i) we have Z(¢,n) = (', M(y(¢, n))] %
(v, N((¢,m)] C Ug(cy- Moreover, by (iii) and (iv), {Z(¢,n) : (¢,;n) €
cf p x cfv} covers (p/, 1) x (v, v) N X.

For each U € U, put

F(U) = Z(¢,m) it U= Ug,y) for some ((,n) € cf uxcfv,
0 otherwise.
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Then F = {F(U) : U € U} is the desired shrinking of U.
The proof of (2) is easier, so we leave it to the reader. m

LEMMA 10. Assume wy < cfpu =cfv =k, X C (p+1) x (v +1)\
{{,v)} and Ay (X) is stationary in k. If X(A, M, N) and X,y U Xt}
are separated, then there are p’ < p and v/ < v such that (i, p) x (v, v)NX
is closed (and trivially open) in X.

Proof. Take an open set V in X such that X(A,M,N) CV Cc C1V C
X\ (X uX ). For each v € Ay (X)NLim(k), take f(7) < 7 such that
(M(f(7), M ()] x (N(f(7)), N(v)]N X C V. By the PDL, we find p' < p
and v/ < v such that (u/,pu) x (v/,v) N X C V. Since C1V is disjoint from
Xy UXT, we conclude that (u/, 1) x (V/,v) N X is closed in X. m

LEMMA 11. Assume wy < cfpu=cfv =k, X C uxv and Ayn(X) is
stationary in K.

(1) If U is an open cover of X, then there are p/ < p, v/ < v and a
shrinking F of U by clopen sets in X such that JF = (p',p) x (V,v)NX.

(2) If H is a discrete collection of closed sets in X, there are ' < p and
V' < v such that (i, 1) x (V',v) N X meets at most one member of H.

Proof. (1) For each 6 € Apn(X) N Lim(k), fix g(0) < d and U(5) e U
such that (M (g(d)), M ()] x (N(g(5)), N(6)]NnX C U(J). By the PDL, we
find ¢/ < p, v < v and a stationary set S C Ay n(X) N Lim(k) such that
(W, M) x (v,N(6)]NnX C U(d) for each § € S. Then by an argument
similar to the proof of Lemma 5, making use of the equivalence relation, we
can find the desired shrinking of U.

(2) is easy. m

LEMMA 12. Let P be a topological property which is closed under taking
closed subspaces and free unions. Assume wy < cfu = cfv = k, X C
(p+1) x (v + 1)\ {{p, )}, Vu(X) is stationary in k, but Ayn(X) is
not stationary in k; moreover, X, 41 and XY+ have the property P for
each p' < p and v' < v. If Vis an open set in X containing Xy,y, then
X(R,M,N)\'V has the property P.

Proof. Take a cub set D in Lim(k) disjoint from Ap;n(X). For each
§ € N~V (X)) ND, fix f(§) < r and g(d) < & such that

(M(f(5)), 1] x (N(g(0)), N(@)]n X C V.

(v
For each § € k\ [N~!(V,(X))N D], put f(5) = 0. By the PDL, take &y < &
and a statlonary set S C N 1(V,(X)) N D such that g(§) = &y for each
jye S Put v = ((50) "={0 <Kk VY <Oo(f(0) <)} and W =
Uées( (f(0)),u] x (v',N(6)] N X. Then D’ is cub in k and W C V. Since
XY +1\V (and therefore X (R, M, N)*"+1\ V) has the property P, it suffices

pu
(X)
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to represent Y = X (R, M, N )(”/”’] \ W as the free union of subspaces having
the property P. Here note that Y is closed in X and disjoint from Xy, U
X1} To show this, put C = Lim(S) N D’. Then C is cub and C € DN
D’. For each 6 € C, put h(d) = sup(C N d). Then by the closedness of
C, h(d) € C and h(d) < 0. For each 6 € C \ Lim(C) (in other words,
h(6) < 9), put Y(0) = Y(ar(n(s)),m(s)]- Then each Y () is clopen in Y, and
therefore closed in X. Moreover, as Y () C Xps(5)41, Y (9) has the property
P. Since Y (d)’s, § € C'\ Lim(C'), are pairwise disjoint, it suffices to show
Y = Usec\Lim(cy Y (). To show this, let (a, 3) € Y. Note e < 1, v/ < f <v
and m(«) > n(f). Let § be the minimal ordinal number with m(a) < 4§ € C.
Note that n(3) < 4.

First assume n(8) = 4. Since 6 = n(8) < m(a) < 0§, we have § €
Apn(X) N C. This contradicts C C D. Therefore n(3) < 4.

Next assume § € Lim(C'). Then by the minimality of ¢, we have m(«) =
d. Using n(B) < § and § € C' C Lim(S)ND’, pick §' € S with n(8) < ¢’ < 4.
Since § € D', we have f(¢') < 06 = m(«), and therefore M(f(d')) < a.
Moreover, as n(3) < ¢’, we have

(o, 8) € (M(f(5')), 1] x (v, N(&)] N X C W.

This contradicts Y N W = ). Therefore § € C'\ Lim(C). By the minimality
of 9, this shows that h(d) < m(«) < §. This means a € (M(h(9)), M ()],
hence

(a, B) € Yar(nesy),m(s) = Y (9).
This completes the proof. m

3. Proof of the Theorem. The implications (1)—(3) and (2)—(3) are
evident.

(3)—(4). Let X be normal and (u,v) € (A+1)?\ X with w < cf p and
w < cfv. Since (u,v) € X, Xy, and X1} are disjoint closed sets in the
normal space X. Thus (4-1) holds.

To show (4-2), assume wy < cfv and V,(X) Nv is not stationary in v.
Then there is a cub set D in cf v such that V,,(X) N N(D) = 0. Since Xy,
and XNV} are disjoint closed sets, (4-2) holds.

(4-3) is similar.

To show (4-4), since the remaining case is similar, we may assume w; <
cf p < cfv, V,(X)Nv is not stationary in v, and both H, (X)Np and A}, are
non-stationary in p. By the non-stationarity of A; and Lemma 3, there are
cub sets C’ in cf g and D’ in cf v such that X N M (C’) x N(D') = (). Since
V. (X)Nv and H,(X) N p are non-stationary in cf v and cf p respectively,
take cub sets C C €’ and D C D’ such that M(C) N H,(X) = () and
N(D)NV,(X) = 0. Then X N(M(C)U{p}) x (N(D)U{r}) = 0. Therefore
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Xnr(cyu{uy and XN} gre disjoint closed sets in the normal space X.
This shows (4-4).

To show (4-5), assume wy < cfp =cfv = k. By (u,v) ¢ X, X(A,M,N)
and Xy, UX {*} are disjoint closed sets in the normal space X. This shows
(4-5-a).

To show (4-5-b), assume Ay (X) is not stationary in x. Since X is
normal, (bl) and (b3) are evident. Assume V(X ) N v is not stationary in
v. By Lemma 4 and the non-stationarity of V,,(X) N v, there is a cub set
D C & such that X N M (D) x N(D) = 0 and N(D) N V,(X) = 0. Then
XN (M(D)U{u}) x N(D) = . Since X (R, M, N) is disjoint from X{"} we
have X (R, M,N)N (M (D) U {u}) x (N(D)U{r}) = 0. Since X (R, M, N)
is closed in X, X (R, M, N)n(pyuiuy and X(R, M, N)NPWLY are disjoint
closed sets in the normal space X. This shows (b2).

Similarly we can show (b4).

(4)—(1). Assume (4) holds but X is not shrinking. Put

p= min{¢ < X: X¢41 is not shrinking},

v=min{n < \: XZI} is not shrinking}.
Note that XZI% is not shrinking, but XZ,J;ll and XZ;:rll are shrinking for
er'% is a clopen subspace of X, we may

assume X = X Zill Then again note that X is not shrinking, but X,/ and

each p/ < p and v/ < v. Since X

XY+ are shrinking for each p/ < p and v/ < v. So there is an open cover
U of X which does not have a closed shrinking which covers X.

CrAamm 1. (pu,v) ¢ X.

Proof. Assume (u,v) € X. Then there are p/ < p, v/ < vand U €
U such that Z = (p/,pu] x (v,v] N X C U. Since Z is clopen in X and
X,y UXYT'UZ = X, and X, y; and X”'+1 are shrinking, by Lemma 1,
U has a closed shrinking which covers X, a contradiction. This completes
the proof of Claim 1.

CLAaM 2. w < cfp and w < cfv.

Proof. Assume p = p' 4 1. Since X is the free union X, @® Xy,; of
shrinking subspaces, U can be shrunk, a contradiction. Therefore w < cf u.
Similarly w < cf v.

First we consider the following case.

Case 1: cfpu # cfv. We may assume cf p < cfv. We consider two
subcases:

(1-1): V,(X) Nv is stationary in v. Applying Lemma 5 (1) to U| X", we
find 1/ < p, v < v and a shrinking F of U|X" by closed sets in X” such
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that |JF = (¢, u] x (', v)NX. Since X{,,; and X"} are separated by (4-1),
applying Lemma 6, we get p” < p and v < v with ¢/ < p” and v/ < V"
such that Z = (p’, u] x (v/,v) N X is closed in X. Then F|Z is a shrinking
of U by closed sets in X which covers Z. Since X, 11, XV'*1 and X1}
are shrinking closed subspaces and X = X, ; U X'y xtvy Z, by
Lemma 1, U has a closed shrinking which covers X. A contradiction.

(1-2): V,,(X) Nv is not stationary in v. In this case, by (4-2), there is a
cub set D in cf v such that Xy, and X N(D)U{r} are separated. Take disjoint
open sets V and W containing Xy} and X NP} respectively. Assume
cf p = w. Then by Lemma 7 (1), X, is shrinking, thus X \ V is shrinking.
Moreover, by (2) of the analogue of Lemma 7, X \ W is also shrinking.
Therefore by Lemma 1, X is shrinking, a contradiction. Therefore we have
wy < cf p.

Then by an argument similar to (1-1), assuming H, (X) N u is station-
ary in p, we get a contradiction (of course we would use the “analogous”
lemmas). So H,(X) N u is not stationary in .

Now we are in the situation where w; < cf u < cfv, and H,(X) N p and
V,.(X)Nv are not stationary in p and v respectively. By (4-3), we also have
a cub set C in cf p such that X1} and Xn(oyuguy are separated. Again, we
consider two subcases:

(1-2-1): A}is stationary in p. In this case by Lemmas 8 and 9 (1), we
find i/ < p, v/ < v and a shrinking F of U by closed sets in X such that
Z=,p) x (v, v)N X is clopen in X and |JF = Z. Since X,/ 41, XV
X{uy and X{¥} are shrinking closed subspaces and X = X1 U XV +ly
Xy U X{"} U Z, by Lemma 1, U has a closed shrinking which covers X. A
contradiction.

(1-2-2) : A}, is not stationary in p. In this case by (4-4), there are cub sets
Cin cf p and D in cf v such that Xy cyug,y and X NPV} are separated.

Take disjoint open sets V' and W containing Xy, and XN@D)U{v}
respectively. Then by Lemma 7 (2), X \ V and X \ W are shrinking closed
subspaces. Therefore by Lemma 1, X is shrinking, a contradiction.

Next we consider the remaining case.

Case 2: cfp = cfv = k. Assume k = w. Then by Lemma 7(1), X,
and X" are shrinking. By (4-1), X{,; and X{"} are separated. Then by
Lemma 2, X = X, U X" is shrinking, a contradiction. Therefore w; < &.
Two subcases are now considered:

(2-1): Apn(X) is stationary in k. In this case by Lemmas 10 and 11,
we have a contradiction as previously.
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(2-2): Ay (X) is not stationary in k. Since X is the union of the closed
subspaces X (R, M,N) and X(L,M,N), we may assume that & does not
have a closed shrinking which covers X (R, M, N'). Two cases are to consider:

(2-2-1): V(X)) Nv is stationary in v. As in the proof of Lemma 5 (1),
for each § € N7}V, (X)) N Lim(k), fix f(§) < &, g(§) < § and U(5) € U
such that (M (f(0)),u] x (N(g(9)),N(0)]NX C U(d). Applying the PDL,
we can find dp < k and a stationary set S C N~1(V,(X)) N Lim(x) such
that g(0) = &g for each § € S. Put v/ = N(dp).

CLAIM 3. There is a closed shrinking F of U such that {u}x (V',v)NX C
Int(|JF) and \JF is closed in X.

Proof. As previously, for each § and ¢’ in S, define § ~ ¢’ by U(d) =
U(d'), and let S/~ be its quotient. For each E € S/~, put Ug = U(J) for
some (any) 6 € E. Observe that (M(f(9)), ] x (v/,N(6)]nX C Ug for each
e k.

First, assume there is F € S/~ such that E is unbounded in . Put
W = Uscp(M(f(0)),n] x (v, N(d)] N X. Note that W C Ug. Since by the
condition (bl), Xy,; and X \ (W U X' *1) are separated, we can find an
open set V in X such that {u} x (¢/,v)NX Cc V C C1V C W. For each
Uel, put

ClV ifU = Ug,
FU) = {@ otherwise.
Then F = {F(U) : U € U} is the desired shrinking of U.

Next assume all E’s, E € S/~ are bounded in k. As in Lemma 5, define
d(n) € E(n) € S/~ for each 1 € & so that n +sup(U, ., E(¢)) < d(n). For
each U € U, put

(M(f(3(n))), ] x (v, N(6(n)] N X
W({U) = { if U = Ugy,) for some 1 < &,
() otherwise.
Then W = {W(U) : U € U} is a shrinking of U by clopen sets in X with
{p} x (v',v)N X C (UW. By the condition (bl), take an open set V in X
such that {u} x (V,v)NX CcV CcClV Cc UW.
For each U € U, put

F(U)=W(U)NClV.

Then F = {F(U) : U € U} is the desired shrinking of /. This completes the
proof of the claim.

Take the shrinking F of ¢/ in Claim 3. By Lemma 12,
Z = X(R, N, M)™ "I\ Int (U;f)
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is a shrinking closed subspace. Since X (R, M,N) C X+l yzu UF, by
Lemma 1, U has a closed shrinking which covers X (R, M, N). A contradic-
tion.

(2-2-2): V,,(X) Nv is not stationary in v. Using the clause (b2), take a
cub set D in « such that X (R, M, N)ar(pyuguy and X (R, M, N)NV are
separated. Take disjoint open sets V' and W containing X (R, M, N)ar(pyuiu}
and X (R, M, N)NP)H{} respectively. Then applying Lemma 7(2) to
X(R,M,N), we see that X (R, M, N)\V and X (R, M, N)\W are shrinking.
Therefore by Lemma 1, X (R, M, N) is shrinking, a contradiction.

Thus in all cases, we get contradictions. This completes the proof of
(4)—(1).

(4)—(2). This proof is almost similar to the one of (4) — (1) except for
the case (2-2-1). So we only give a proof of case (2-2-1) for the CWN case.

(2-2-1): wy < cfp=cfv =k, Ayn(X) is not stationary in k, V,(X)Nv
is stationary in v and H is a discrete collection of closed sets in X which
cannot be separated. In this case, for each 6 € N~!(V,(X)) N Lim(x), fix
g(0) < d such that {u} x (N(g(d)), N(0)] N X meets at most one element of
H. By the PDL, we can take v/ < v such that {u} x (¢/,v) N X meets at
most one element of H.

CrAM 3'. There is an open set V' such that {u} x (v, v)NX CV and
ClV meets at most one element of H.

Proof Pt H' ={H e H: HNn({u} x (V,v)NX) =0}, and W =
X \UH' Since {u} x (v,v) N X C W, take an open set V such that
{p} x (W, v)NX Cc V C ClV C W using the clause (bl). Then this V'

works.

As X (R, M, N) is covered by closed sets XVl gz = X(R,M, N)(”'*”] \V
and C1V, we get a contradiction as in case (2-2-1) in the proof of (4)—(1).
This completes the proof. m

4. Non-normal examples and related questions. In [KOT], it is
proved that, for subspaces A and B of w;, A X B is normal (countably
paracompact) if and only if A is not stationary in wq, B is not stationary in
wy or AN B is stationary.

According to this result, if A is a countable subspace of wy, then, since
A is non-stationary, A x B is normal for each B C wj. In particular, as is
well known, (w + 1) X w; is normal. But as is shown in the next example,
there is a non-normal subspace of (w + 1) X wy.

EXAMPLE 1. Put X = wxw;U{w} X (w; \Lim(wy)). Put F = wxLim(w;)
and H = {w} X (w1 \ Lim(w)). Then F and H are disjoint closed sets in X.
Let U be an open set containing H. For each a € wy \ Lim(wy ), pick n(«o) € w
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such that [n(a),w] x {a} C U. Since w; \ Lim(w;) is uncountable, there is
an uncountable subset C' C w; \ Lim(w;) and n € w such that n(a) = n for
each a € C. Observe that [n,w] x C C U. Pick a € Lim(C). Noting that
Lim(C') C Lim(w;), we have (n,a) € [n,w] x Lim(C) N F C Cl1U N F. This
argument shows X is not normal.

Next we give a corollary of the Theorem for subspaces of w?. For sim-
plicity, we use the following notation: Let X C w?, o < wy and 8 < w.
Put Vo (X) = {f <w : (,B) € X}, Hp(X) = {a < w1 : (a,0) € X}
and A(X) = {a < w; : (o,a) € X}. For subsets C' and D of wy, put
Xe=XNCxw, XP=XnNw xDanng:XﬂC'xD.

Consider M and N as the identity map on wy if 4 = v = w; in the
Theorem. Then, by checking all clauses in (4) of the Theorem, we can see:

COROLLARY. Let X C w?. Then the following are equivalent.

(1) X is normal.

(2) (2-1-a) If a is a limit ordinal in wy and V,(X) is not stationary in
w1, then there is a cub set D C wy such that X,y and XxP
are separated.

(2-1-b) If B is a limit ordinal in wy and Hg(X) is not stationary in
w1, then there is a cub set C C wy such that X1 and X
are separated.

(2-2) If A(X) is not stationary in wy, then there is a cub set
C C wy such that X¢ and X are separated.

Intuitively, we may consider (2-1-a) to be a condition which guarantees
the normality of X, for each a < w;, and (2-1-b) the normality of XA+!
for each § < wy. If we know that X,41 and X B+1 are normal for each
a, f < wi, then (2-2) is a condition which guarantees the normality of X.

Consider X = w?. Since V,,(X) and Hg(X) are the stationary set w; for
each «, f < wy and A(X) is also the stationary set wy, the clause (2) of the
Corollary is satisfied. So X is normal.

ExaMpPLE 2. Let A and B be disjoint stationary sets in w; and put

X = A x B. Let a be a limit ordinal in w;. Then we have
B ifacA,
Va(X) = {(Z) otherwise.

Therefore, if V,,(X) is not stationary, then necessarily o ¢ A and V,,(X) = 0,
s0 X(a} = 0. Therefore X(,; and X! are separated. This argument proves
(2-1-a). Similarly we have (2-1-b). Therefore X, 1 and X”*! are normal for
each o, 8 < w.

Note that A(X) = (). Let C be a cub set in w;. Then X NC? = (AN
C) x (BN C) # 0, equivalently X¢ N XY # (). Thus X¢ and X cannot
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be separated. Therefore X is not normal, because the clause (2-2) is not
satisfied.

EXAMPLE 3. Let X = {{a,3) €w?:a <3}, Y = {{a,3) € w}: a < G}
Checking (2-1-a) and (2-1-b), we can show that X1, X%t Y,.; and
YA+l are normal for each a, f < w;.

Since A(X) = wy is stationary, (2-2) for X is satisfied. Thus X is normal
(but this is obvious, because X is a closed subspace of w?). On the other
hand, note that A(Y) = 0. For each cub set C' in wy, pick a and 8 in C
with a < 3. Then (o, 3) € Y N C?. Therefore (2-2) for Y is not satisfied.
Thus Y is not normal.

Let X = wy X (w1 +1). Observe that X Nw} = w? is normal, and X1
and X+ are normal for each a, f < wy. Since {{a,a) : o € w1} and X {«1}
cannot be separated, X is not normal. Note that both A(X) and H,, (X)
are the stationary set wy. Next we give a similar example X C wy X (w1 +1),
but with A(X) and H,, (X) not stationary.

EXAMPLE 4. Let
X = [wy \ Lim(w1)] X [(w1 + 1) \ Lim(wy )] U {{a, @ + 1) : o € Lim(w1)}.

Observe that X Nw? is normal, X, 1 and X?*! are normal for each a, 3 <
wy and both A(X) and H,, (X) are the non-stationary set w; \ Lim(w).
By an argument similar to that for Claim 1 of Lemma 4, we can see that
F = {{a,a+1): « € Lim(wy)} is closed (discrete). We shall show F' and
X 1“1} cannot be separated. To see this, let U be an open set containing F.
For each o € Lim(wy), since (o, v + 1) € F C U, take f(a) < a such that
(f(a),a] x{a+1}NX C U. By the PDL, there are ap < w; and a stationary
set S C Lim(w) such that f(a) = g for each a € S. Take 5 € wq \ Lim(wy)
with oy < (. Noting that (3,a + 1) € X for each a € S with a > 3, we
have

(Bywr) € C{(B,a+1):ae b, a>pnXxtet cunxiot,
Thus F and X{“1} cannot be separated.

In this connection, we have the next question which relates to the clause
(4-4) of the Theorem.

QUESTION 1. Does there exist a non-normal subspace X of w; X wy such
that X1 and XP*! are normal for each a < w; and 8 < wy?

In this connection, we show:

PROPOSITION. If X = A X B is a subspace of w1 X wo such that X1
and XP*Y are normal for each o < wy and B < wa, then X is normal.

Proof. If A is not stationary in w;, then take a cub set C in w;
disjoint from A. Put h(a) = sup(C N «) for each a € C. Observe that
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X = @aeC\Lim(C) X(h(a),a]- Since X(p(a),q) is a closed subspace of X441,
by the inductive assumption, X is normal. Similarly X is normal if B is
not stationary in wo. So we may assume A and B are stationary in respec-
tively wy and wy. Let U = {U; : i € 2} be an open cover of X. Fix o € A.
For each # € B, fix f(a,f) < «, g(o,8) < § and i(a, 3) € 2 such that
(f(a, B),a] x (g(e, 3), 8] N X C Uja,p)- Applying the PDL to B, we find
fla) < a, g(a) < ws, i(a) € 2 and a stationary set B(a) C B in wy such
that f(a, §) = f(a), g(a, B) = g(a) and i(a, B) = i(a) for each § € B(a).
Then, applying the PDL to A, we find ay < w1, ig € 2 and a stationary
set A’ C A in w; such that f(a) = ap and i(«a) = i for each o € A’. Put
Bo = sup{g(a) : @ € A’}. Then we have Z = (o, w1) X (Bo,w2) N X C Uy,
Since X is the union of closed subspaces, X, +1, XPotl and Z, U has a
closed shrinking which covers X. Therefore X = A x B is normal. m

By the result in [KOT], normality and countable paracompactness of
A x B C w? are equivalent. In this connection, it is natural to ask:

QUESTION 2. For any X C w?, are normality and countable paracom-
pactness of X equivalent?

Note that, by [KS], normality implies countable paracompactness in the
realm of subspaces of product spaces of two ordinals.
Finally, we restate a question from [KOT]:

QUESTION 3. For any subspace X of the product space of two ordinals,
are countable paracompactness, expandability, strong D-property and weak
D(w)-property of X equivalent?
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