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Abstract. Let λ be an ordinal number. It is shown that normality, collectionwise
normality and shrinking are equivalent for all subspaces of (λ+ 1)2.

1. Introduction. It is well known that any ordinal with the order topol-
ogy is shrinking and collectionwise normal hereditarily. But, in general, prod-
ucts of two ordinals are not. In fact, (ω1 +1)×ω1 is not normal. In [KOT], it
was proved that the normality, collectionwise normality and shrinking prop-
erty of A × B, where A and B are subspaces of ordinals, are equivalent. It
was asked whether these properties are also equivalent for all subspaces of
products of two ordinals [KOT, Problem (i)]. The aim of this paper is to
give an affirmative answer.

We recall some basic definitions and introduce some specific notation.
In our discussion, we always assume X ⊂ (λ+1)2 for some suitably large

ordinal λ. Moreover, in general, the letters µ and ν stand for limit ordinals
with µ ≤ λ and ν ≤ λ. For each A ⊂ λ+ 1 and B ⊂ λ+ 1 put

XA = A× (λ+ 1) ∩X, XB = (λ+ 1)×B ∩X,
and

XB
A = XA ∩XB .

For each α ≤ λ and β ≤ λ, put

Vα(X) = {β ≤ λ : 〈α, β〉 ∈ X}, Hβ(X) = {α ≤ λ : 〈α, β〉 ∈ X}.
cf µ denotes the cofinality of the ordinal µ. When ω1 ≤ cf µ, a subset S of
µ called stationary in µ if it intersects all cub (closed and unbounded) sets
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in µ. For each µ ≤ λ and ν ≤ λ with ω1 ≤ cf µ and ω1 ≤ cf ν, put

Aνµ = {α < µ : Vα(X) ∩ ν is stationary in ν},
Bνµ = {β < ν : Hβ(X) ∩ µ is stationary in µ}.

Moreover, for each A ⊂ µ, Limµ(A) is the set {α < µ : α = sup(A ∩ α)},
in other words, the set of all cluster points of A in µ. Therefore Limµ(A) is
cub in µ whenever A is unbounded in µ. We will simply denote Limµ(A) by
Lim(A) if the situation is clear in its context.

A strictly increasing function M : cf µ → µ is said to be normal if
M(γ) = sup{M(γ′) : γ′ < γ} for each limit ordinal γ < cf µ, and µ =
sup{M(γ) : γ < cf µ}. Note that a normal function on cf µ always exists if
cf µ ≥ ω. So we always fix a normal function M : cf µ→ µ for each ordinal
µ with cf µ ≥ ω.

For convenience, we define M(−1) = −1. Then M carries cf µ homeo-
morphically to the range ranM of M and ranM is closed in µ. Note that
for all S ⊂ µ with ω1 ≤ cf µ, S is stationary in µ if and only if M−1(S) is
stationary in cf µ.

Let µ and ν be two limit ordinals with µ ≤ λ and ν ≤ λ; moreover, let
M : cf µ → µ and N : cf ν → ν be the fixed normal functions on cf µ and
cf ν respectively. For each α ∈ µ and β ∈ ν, define

m(α) = min{γ < cf µ : α ≤M(γ)},
n(β) = min{δ < cf ν : β ≤ N(δ)},

where minA denotes the minimal ordinal number in A. Note that, if α ∈
ranM , then m(α) = M−1(α).

Furthermore, assume 〈µ, ν〉 6∈ X and ω1 ≤ cf µ = cf ν = κ. We will use
the following notation:

X(L,M,N) = {〈α, β〉 ∈ X ∩ µ× ν : m(α) ≤ n(β)} ∪X{ν}µ ,

X(R,M,N) = {〈α, β〉 ∈ X ∩ µ× ν : m(α) ≥ n(β)} ∪Xν
{µ},

X(4,M,N) = {〈M(γ), N(γ)〉 ∈ X : γ < κ},
4MN (X) = {γ < κ : 〈M(γ), N(γ)〉 ∈ X}.

Intuitively, X(L,M,N) is considered as the upper-left half of Xν+1
µ+1 ,

X(R,M,N) as the lower-right half of Xν+1
µ+1 and X(4,M,N) as the diagonal

part of Xν+1
µ+1 . Since M and N are homeomorphic closed embeddings, observe

that X(4,M,N) and 4MN (X) are homeomorphic and that X(L,M,N),
X(R,M,N) and X(4,M,N) are closed in X.

Let Y be a topological space. Subsets F and G of Y are said to be
separated if there are disjoint open sets U and V containing F and G re-
spectively; of course, separated sets are disjoint, and ∅ and G are separated
for each G ⊂ Y . More generally, a collection H of subsets of Y is said to
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be separated if there is a pairwise disjoint collection U = {U(H) : H ∈ H}
of open sets in Y such that each U(H) contains H. A space Y is said to
be CWN (CollectionWise Normal) if any discrete collection of closed sets is
separated. Let U be an open cover of Y . A collection F = {F (U) : U ∈ U} of
subsets of Y indexed by U is a shrinking of U if F (U) ⊂ U for each U ∈ U .
A closed shrinking is a shrinking by closed sets. Throughout the paper, for
convenience, we do not require F to cover Y . We call a space Y shrinking
if each open cover of Y has a closed shrinking which covers Y .

2. Theorem and lemmas. Using the notation described in Section 1,
we shall show:

Theorem. Assume X ⊂ (λ+ 1)2. The following (1)–(4) are equivalent :

(1) X is shrinking.
(2) X is CWN.
(3) X is normal.
(4) For every 〈µ, ν〉 ∈ (λ + 1)2 \ X with ω ≤ cf µ and ω ≤ cf ν, the

following (4-1)–(4-5) hold :
(4-1) X{µ} and X{ν} are separated.
(4-2) If ω1 ≤ cf ν and Vµ(X) ∩ ν is not stationary in ν, then there is a

cub set D in cf ν such that X{µ} and XN(D)∪{ν} are separated.
(4-3) If ω1 ≤ cf µ and Hν(X) ∩ µ is not stationary in µ, then there is a

cub set C in cf µ such that X{ν} and XM(C)∪{µ} are separated.
(4-4) If (ω1 ≤ cf µ < cf ν, Vµ(X) ∩ ν is not stationary in ν, and both

Hν(X) ∩ µ and Aνµ are non-stationary in µ) or (ω1 ≤ cf ν < cf µ,
Hν(X)∩ µ is not stationary in µ, and both Vµ(X)∩ ν and Bνµ are
non-stationary in ν), then there are cub sets C in cf µ and D in
cf ν such that XM(C)∪{µ} and XN(D)∪{ν} are separated.

(4-5) If ω1 ≤ cf µ = cf ν = κ, then (4-5-a) and (4-5-b) hold.
(4-5-a) X(4,M,N) and X{µ} ∪X{ν} are separated.
(4-5-b) If 4MN (X) is not stationary in κ, then (b1)–(b4) hold :

(b1) If Vµ(X) ∩ ν is stationary in ν, then X{µ} and any closed
set disjoint from X{µ} are separated.

(b2) If Vµ(X) ∩ ν is not stationary in ν, then there is a cub
set D in κ such that the sets X(R,M,N)M(D)∪{µ} and
X(R,M,N)N(D)∪{ν} are separated.

(b3) If Hν(X)∩ µ is stationary in µ, then X{ν} and any closed
set disjoint from X{ν} are separated.

(b4) If Hν(X) ∩ µ is not stationary in µ, then there is a cub
set C in κ such that the sets X(L,M,N)N(C)∪{ν} and
X(L,M,N)M(C)∪{µ} are separated.
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To prove the theorem, we need several lemmas. First it is straightforward
to show:

Lemma 1. Let X be the finite union of closed subspaces Xi (i ∈ n).

(1) Let U be an open cover of X. If U|Xi = {U ∩ Xi : U ∈ U} has a
closed shrinking covering Xi for each i ∈ n, then U has a closed shrinking
which covers X.

(2) Let H be a discrete collection of closed sets in X. If H|Xi is separated
in Xi for each i ∈ n, then H is separated in X.

This lemma implies:

Lemma 2. If X is the union of two normal (shrinking , CWN ) open
subspaces Y and Z such that X \ Y and X \ Z are separated , then X is
normal (shrinking , CWN ).

Lemma 3. Assume ω1 ≤ cf µ < cf ν and X ⊂ (µ+ 1)× (ν+ 1) \ {〈µ, ν〉}.
If Aνµ is not stationary in µ, then there are cub sets C in cf µ and D in cf ν
such that

X ∩M(C)×N(D) = ∅.
P r o o f. Assume Aνµ is not stationary in µ. Take a cub set C in cf µ

such that M(C) ∩ Aνµ = ∅. For each γ ∈ C, by the non-stationarity of
VM(γ)(X) ∩ ν, fix a cub set Dγ in cf µ such that VM(γ)(X) ∩ N(Dγ) = ∅.
Put D =

⋂
γ∈C Dγ . Since |C| ≤ cf µ < cf ν, D is cub in cf ν. Then these cub

sets C and D work.

In an analogous way, we can show:

Lemma 3′. Assume ω1 ≤ cf ν < cf µ and X ⊂ (µ+1)× (ν+1)\{〈µ, ν〉}.
If Bνµ is not stationary in ν, then there are cub sets C in cf µ and D in cf ν
such that

X ∩M(C)×N(D) = ∅.
Hereafter, we will not write down such analogous lemmas, but refer to

them as “the analogues” of Lemmas 5–9.

Lemma 4. Assume ω1 ≤ cf ν = cf µ = κ and X ⊂ (µ + 1) × (ν + 1) \
{〈µ, ν〉}. If X is normal and 4MN (X) is not stationary in κ, then there is
a cub set C in κ such that

X ∩M(C)×N(C) = ∅.
P r o o f. First we show Aνµ is not stationary in µ. Assume, on the contrary,

that Aνµ is stationary in µ. Then A = M−1(Aνµ)∩Lim(κ) is stationary in κ.
For each γ ∈ A, pick

h(γ) ∈ N−1(VM(γ)(X)) ∩
⋂

γ′∈A∩γ
Lim(N−1(VM(γ′)(X))) ∩ Lim(κ)
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with γ < h(γ) < κ. This can be done, because N−1(VM(γ)(X)) is stationary
in κ, Lim(N−1(VM(γ′)(X))) is cub in κ for each γ′ ∈ A∩ γ, |A∩ γ| < κ and
Lim(κ) = Limκ(κ) is cub in κ, so the intersection is stationary in κ. For
each γ ∈ κ\A, put h(γ) = 0. Take a cub set C ′ in κ disjoint from 4MN (X),
and put

C = {γ < κ : ∀γ′ < γ (h(γ′) < γ)} ∩ C ′.
Since C is cub in κ and A is stationary in κ, A′ = A ∩C is stationary in κ.
For each γ ∈ A′, put xγ = 〈M(γ), N(h(γ))〉. Since, by the definition of h(γ),
N(h(γ)) ∈ VM(γ)(X), we have xγ ∈ X for each γ ∈ A′.

Claim 1. F = {xγ : γ ∈ A′} is closed discrete in X .

P r o o f. Note that F ⊂ M(C) × ranN . Let 〈α, β〉 ∈ X. We will find an
open neighborhood U of 〈α, β〉 which intersects F in at most one point.

C a s e 1. α ∈ µ \M(C) or β ∈ ν \ ranN . If α ∈ µ \M(C), then, by
the closedness of M(C) in µ, there is α′ < α such that (α′, α] ∩M(C) = ∅.
Then U = (α′, α]× (ν + 1) ∩X is a neighborhood of 〈α, β〉 missing F .

If β ∈ ν \ ranN , then there is β′ < β such that (β′, β]∩ ranN = ∅. Then
U = (µ+ 1)× (β′, β] ∩X is as desired.

C a s e 2. Otherwise, i.e., α ∈M(C) ∪ {µ} and β ∈ ranN ∪ {ν}. There
are two subcases.

(2-1): α ∈ M(C) ∪ {µ} and β ∈ ranN . If α > M(n(β)), then put
U = (M(n(β)), α]×[0, β]∩X. Assume U 3 〈M(γ), N(h(γ))〉 for some γ ∈ A′.
Then we have n(β) < γ and N(h(γ)) ≤ β (thus h(γ) ≤ n(β)). Therefore
h(γ) < γ. But this contradicts the definition of h(γ). So U ∩ F = ∅.

If α ≤ M(n(β)), then, since M(n(β)) < µ, we have α ∈ M(C) in this
case. Therefore, as α = M(m(α)) ≤ M(n(β)), we have m(α) ≤ n(β). As-
sume m(α) = n(β). Since 〈M(m(α)), N(n(β))〉 = 〈α, β〉 ∈ X, it follows
that m(α) = n(β) ∈ 4MN (X). On the other hand, since m(α) ∈ C ⊂
C ′ ⊂ κ \ 4MN (X), we get a contradiction. Hence we have m(α) < n(β).
Put U = [0, α]× (N(m(α)), β] ∩X. Assume U 3 xγ = 〈M(γ), N(h(γ))〉 for
some γ ∈ A′ with m(α) 6= γ. As M(γ) ≤ α = M(m(α)) and m(α) 6= γ,
we have γ < m(α). Since γ < m(α) ∈ C, we get h(γ) < m(α). On the
other hand, from N(m(α)) < N(h(γ)) it follows that m(α) < h(γ). This is
a contradiction. This argument implies U ∩ F ⊂ {xm(α)}.

(2-2): α ∈ M(C) ∪ {µ} and β = ν. Since 〈α, β〉 ∈ X but 〈µ, ν〉 6∈ X, we
have α ∈ M(C). Put U = [0, α] × (N(m(α)), β] ∩X. Then |U ∩ F | ≤ 1 as
above.

This completes the proof of Claim 1.

Decompose A′ into disjoint stationary sets T0 and T1 in κ, and put
Fi = {xγ : γ ∈ Ti} for i ∈ 2 = {0, 1}. Let Ui be an open set containing Fi
for each i ∈ 2.



284 N. Kemoto et al.

Claim 2. ClU0 ∩ ClU1 6= ∅.
P r o o f. For each γ ∈ Ti with i ∈ 2, since xγ = 〈M(γ), N(h(γ))〉 ∈ Ui

and γ and h(γ) are in Lim(κ), there are f(γ) < γ and g(γ) < h(γ) such that
γ ≤ g(γ) and

(M(f(γ)),M(γ)]× (N(g(γ)), N(h(γ))] ∩X ⊂ Ui.
By the PDL, for each i ∈ 2, there are ζi < κ and a stationary set T ′i ⊂ Ti
such that f(γ) = ζi for each γ ∈ T ′i . Put γ0 = max{ζ0, ζ1}. Then

(M(γ0),M(γ)]× (N(g(γ)), N(h(γ))] ∩X ⊂ Ui
for each i ∈ 2 and γ ∈ T ′i .

Take γ1 and γ2 such that γ0 < γ1 ∈ A and γ1 < γ2 ∈
⋂
i∈2 Lim(T ′i ).

We shall show 〈M(γ1), N(γ2)〉 ∈ ClU0 ∩ ClU1. To see this, let V be a
neighborhood of 〈M(γ1), N(γ2)〉. As γ2 ∈ Lim(κ), there is γ3 < γ2 with γ1 ≤
γ3 such that {M(γ1)}× (N(γ3), N(γ2)]∩X ⊂ V . Then, since γ2 ∈ Lim(T ′0),
there are γ4 and γ5 in T ′0 with γ3 < γ4 < γ5 < γ2. Since γ5 ∈ T ′0 ⊂ A′ ⊂ C,
the definition of C yields γ4 < h(γ4) < γ5. As γ1 ∈ A ∩ γ4, the definition of
h(γ4) shows that h(γ4) ∈ Lim(N−1(VM(γ1)(X))). Then, since γ4 ≤ g(γ4) <
h(γ4), there is γ6 ∈ N−1(VM(γ1)(X)) such that g(γ4) < γ6 < h(γ4). Finally,

〈M(γ1), N(γ6)〉 ∈ {M(γ1)}
×(N(γ3), N(γ2)] ∩ (M(γ0),M(γ4)]× (N(g(γ4)), N(h(γ4))] ∩X ⊂ V ∩ U0.

This means 〈M(γ1), N(γ2)〉 ∈ ClU0. Similarly we have 〈M(γ1), N(γ2)〉 ∈
ClU1. This completes the proof of Claim 2.

Claim 2 contradicts the normality of X. Therefore Aνµ is not stationary
in µ. By a similar argument, Bνµ is not stationary in ν.

Finally, since 4MN (X) is not stationary in κ, take a cub set D in κ
such that D ∩ [M−1(Aνµ) ∪ N−1(Bνµ) ∪ 4MN (X)] = ∅. For each γ ∈ D,
since VM(γ)(X) ∩ ν is not stationary in ν and HN(γ)(X) ∩ µ is not station-
ary in µ, we can take a cub set Cγ in κ disjoint from N−1(VM(γ)(X)) ∪
M−1(HN(γ)(X)). Then by an argument similar to [Ku, II, Lemma 6.14],
the diagonal intersection

E = {δ ∈ D : ∀γ ∈ D ∩ δ (δ ∈ Cγ)}
is cub in κ. Assume 〈M(γ), N(δ)〉 ∈ X for some γ and δ in E. Since D
is disjoint from 4MN (X) and E ⊂ D, we have γ 6= δ. So we may assume
γ < δ. Then since γ ∈ D ∩ δ and δ ∈ E, we have δ ∈ Cγ , and thus
N(δ) 6∈ VM(γ)(X). This contradicts 〈M(γ), N(δ)〉 ∈ X. This means X ∩
M(E)×N(E) = ∅. This completes the proof of Lemma 4.

Lemma 5. Assume ω1 ≤ cf ν 6= cf µ and X ⊂ (µ+ 1)× ν. If Vµ(X) ∩ ν
is stationary in ν, then the following hold :
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(1) For each open cover U of X, there are µ′ < µ, ν′ < ν and a shrinking
F of U by clopen sets in X such that

⋃F = (µ′, µ]× (ν′, ν) ∩X.
(2) For each discrete collection H of closed sets in X , there are µ′ < µ

and ν′ < ν such that (µ′, µ]× (ν′, ν) ∩X meets at most one member of H.

P r o o f. (1) For each δ ∈ N−1(Vµ(X)) ∩ Lim(cf ν), fix f(δ) < cf µ,
g(δ) < δ and U(δ) ∈ U such that (M(f(δ)), µ] × (N(g(δ)), N(δ)] ∩ X ⊂
U(δ). Applying the PDL, we can find δ0 < cf ν and a stationary set S′ ⊂
N−1(Vµ(X)) ∩ Lim(cf ν) such that g(δ) = δ0 for each δ ∈ S′. If cf µ > cf ν,
then put γ0 = sup{f(δ) : δ ∈ S′} and S = S′. If cf µ < cf ν, then, again
applying the PDL, we find a stationary set S ⊂ S′ and γ0 < cf µ such
that f(δ) = γ0 for each δ ∈ S. In either case, putting µ′ = M(γ0) and
ν′ = N(δ0), we have found a stationary set S ⊂ N−1(Vµ(X)) ∩ Lim(cf ν)
such that (µ′, µ]× (ν′, N(δ)] ∩X ⊂ U(δ) for each δ ∈ S.

For each δ and δ′ in S, define δ ∼ δ′ by U(δ) = U(δ′). Then ∼ is
an equivalence relation on S, so let S/∼ be its quotient space. For each
E ∈ S/∼, put UE = U(δ) for some (any) δ ∈ E. Note that members of
{UE : E ∈ S/∼} are all distinct. There are two cases to consider.

First assume that there is E ∈ S/∼ such that E is unbounded in cf ν.
In this case, since (µ′, µ] × (ν′, N(δ)] ∩X ⊂ U(δ) = UE for each δ ∈ E, we
have (µ′, µ]× (ν′, ν) ∩X ⊂ UE . For each U ∈ U , put

F (U) =
{

(µ′, µ]× (ν′, ν) ∩X if U = UE ,
∅ otherwise.

Then F = {F (U) : U ∈ U} is the desired shrinking of U .
Next assume all E’s, E ∈ S/∼, are bounded in cf ν. By induction, define

δ(η) ∈ E(η) ∈ S/∼ for each η ∈ cf ν so that η + sup(
⋃
ζ<η E(ζ)) < δ(η).

Clearly E(η)’s are all distinct and {δ(η) : η < cf ν} is strictly increasing and
unbounded in cf ν. For each U ∈ U , put

F (U) =
{

(µ′, µ]× (ν′, N(δ(η))] ∩X if U = UE(η) for some η < cf ν,
∅ otherwise.

Then F = {F (U) : U ∈ U} is the desired shrinking of U .
(2) For each δ ∈ N−1(Vµ(X)) ∩ Lim(cf ν), fix f(δ) < cf µ and g(δ) < δ

such that (M(f(δ)), µ]× (N(g(δ)), N(δ)]∩X meets at most one member of
H. Then as in (1), we can find desired ν′ < ν and µ′ < µ.

Lemma 6. Assume ω1 ≤ cf ν 6= cf µ, X ⊂ (µ+ 1)× (ν+ 1) \ {〈µ, ν〉} and
Vµ(X) ∩ ν is stationary in ν. If X{µ} and X{ν} are separated , then there
are µ′ < µ and ν′ < ν such that (µ′, µ]× (ν′, ν) ∩X is closed (and trivially
open) in X.

P r o o f. Since X{µ} and X{ν} are separated, take an open set V such that
X{µ} ⊂ V ⊂ ClV ⊂ X \ X{ν}. For each δ ∈ N−1(Vµ(X)) ∩ Lim(cf ν), fix
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f(δ) < cf µ and g(δ) < δ such that (M(f(δ)), µ]× (N(g(δ)), N(δ)]∩X ⊂ V .
Then as in Lemma 5, we can find µ′ < µ and ν′ < ν such that (µ′, µ] ×
(ν′, ν)∩X ⊂ V . Since ClV ∩X{ν} = ∅, we conclude that (µ′, µ]× (ν′, ν)∩X
is closed in X.

Lemma 7. Let P be a topological property which is closed under taking
closed subspaces and free unions. Assume X ⊂ (µ+ 1)× (ν + 1) and Xµ′+1

has the property P for each µ′ < µ.

(1) If cf µ = ω, then Xµ has the property P.
(2) If cf µ ≥ ω1 and C is a cub set in cf µ and V is an open set in X

containing XM(C)∪{µ}, then X \ V has the property P.

P r o o f. (1) Since Xµ =
⊕

n∈ωX(M(n−1),M(n)] and X(M(n−1),M(n)] is a
closed subspace of XM(n)+1, Xµ has the property P.

(2) For each γ ∈ C, put h(γ) = sup(C ∩ γ). Note that h(γ) < γ if
γ ∈ C \ Lim(C). For each γ ∈ C \ Lim(C), put Y (γ) = X(M(h(γ)),M(γ)] \ V .
Since Y (γ) is a closed subspace of XM(γ)+1, it has the property P. Therefore
X \ V =

⊕
γ∈C\Lim(C) Y (γ) has the property P.

Lemma 8. Assume ω1 ≤ cf µ < cf ν, X ⊂ (µ + 1) × (ν + 1) \ {〈µ, ν〉}
and Aνµ is stationary in µ. If there are cub sets C in cf µ and D in cf ν
such that XM(C)∪{µ} and X{ν} are separated , and XN(D)∪{ν} and X{µ} are
separated , then there are µ′ < µ and ν′ < ν such that (µ′, µ)× (ν′, ν)∩X is
closed (and trivially open) in X.

P r o o f. Take open sets V and W in X such that

XM(C)∪{µ} ⊂ V ⊂ ClV ⊂ X \X{ν},
XN(D)∪{ν} ⊂W ⊂ ClW ⊂ X \X{µ}.

First fix γ ∈ C ∩M−1(Aνµ)∩Lim(cf µ). For each δ ∈ D ∩N−1(VM(γ)(X))∩
Lim(cf ν), since 〈M(γ), N(δ)〉 ∈ V ∩W , fix f(γ, δ) < γ and g(γ, δ) < δ such
that

(M(f(γ, δ)),M(γ)]× (N(g(γ, δ)), N(δ)] ∩X ⊂ V ∩W.
Since f(γ, δ) < γ and g(γ, δ) < δ for each δ ∈ D ∩ N−1(VM(γ)(X)) ∩
Lim(cf ν), noting that cf µ < cf ν and applying the PDL, we have f(γ) < γ,
g(γ) < cf ν and a stationary set Sγ ⊂ D ∩N−1(VM(γ)(X))∩ Lim(cf ν) such
that f(γ, δ) = f(γ) and g(γ, δ) = g(γ) for each δ ∈ Sγ . Put δ0 = sup{g(γ) :
γ ∈ C ∩M−1(Aνµ) ∩ Lim(cf µ)}.

Next, since f(γ) < γ for each γ ∈ C ∩M−1(Aνµ) ∩ Lim(cf µ), again ap-
plying the PDL, we have γ0 < cf µ and a stationary set T ⊂ C∩M−1(Aνµ)∩
Lim(cf µ) such that f(γ) = γ0 for each γ ∈ T . Then we have

(M(γ0), µ)× (N(δ0), ν) ∩X ⊂ V ∩W.
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Put µ′ = M(γ0) and ν′ = N(δ0). Since ClV ∩ClW is disjoint from X{µ} ∪
X{ν}, we conclude that (µ′, µ)× (ν′, ν) ∩X is closed in X.

Lemma 9. Assume ω1 ≤ cf µ < cf ν, X ⊂ µ × ν and Aνµ is stationary
in µ.

(1) If U is an open cover of X , then there are µ′ < µ, ν′ < ν and a
shrinking F of U by clopen sets in X such that

⋃F = (µ′, µ)× (ν′, ν) ∩X.
(2) If H is a discrete collection of closed sets in X , there are µ′ < µ and

ν′ < ν such that (µ′, µ)× (ν′, ν) ∩X meets at most one member of H.

P r o o f. (1) First fix γ ∈ M−1(Aνµ) ∩ Lim(cf µ). For each δ ∈
N−1(VM(γ)(X)) ∩ Lim(cf ν), using 〈M(γ), N(δ)〉 ∈ X, fix f(γ, δ) < γ,
g(γ, δ) < δ and U(γ, δ) ∈ U such that

(M(f(γ, δ)),M(γ)]× (N(g(γ, δ)), N(δ)] ∩X ⊂ U(γ, δ).

As in the proof of Lemma 8, applying the PDL twice, we find a stationary set
T ⊂M−1(Aνµ)∩Lim(cf µ), a stationary set Sγ ⊂ N−1(VM(γ)(X))∩Lim(cf ν)
for each γ ∈ T , µ′ < µ and ν′ < ν such that (µ′,M(γ)] × (ν′, N(δ)] ∩X ⊂
U(γ, δ) for each δ ∈ Sγ with γ ∈ T .

Put H =
⋃
γ∈T {γ}×Sγ . For each 〈γ, δ〉 and 〈γ′, δ′〉 in H, define 〈γ, δ〉 ∼

〈γ′, δ′〉 by U(γ, δ) = U(γ′, δ′). For each E ∈ H/∼, define UE = U(γ, δ) for
some (any) 〈γ, δ〉 ∈ E. Then note that

(i)
⋃

〈γ,δ〉∈E
(µ′,M(γ)]× (ν′, N(δ)] ∩X ⊂ UE .

For each γ ∈ T and E ∈ H/∼, put

j(E, γ) = sup{δ ∈ Sγ : 〈γ, δ〉 ∈ E}.
Then put T (E) = {γ ∈ T : j(E, γ) = cf ν} and k(E) = supT (E).

Claim 1. (µ′,M(γ)]× (ν′, ν) ∩X ⊂ UE for each γ ∈ T (E).

P r o o f. Assume 〈α, β〉 ∈ (µ′,M(γ)] × (ν′, ν) ∩X with γ ∈ T (E). Since
β < ν and γ ∈ T (E), there is a δ ∈ Sγ with 〈γ, δ〉 ∈ E such that β < N(δ).
Then, by (i), 〈α, β〉 ∈ UE . This completes the proof of Claim 1.

There are some cases to consider.

C a s e 1: There is an E ∈ H/∼ such that k(E) = cf µ. In this case, by
Claim 1, (µ′, µ)× (ν′, ν) ∩X ⊂ UE . So for each U ∈ U , put

F (U) =
{

(µ′, µ)× (ν′, ν) ∩X if U = UE ,
∅ otherwise.

Then F = {F (U) : U ∈ U} is the desired shrinking of U .

C a s e 2: k(E) < cf µ for each E ∈ H/∼. There are two subcases.
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(2-1): sup{k(E) : E ∈ H/∼} = cf µ. By induction, define two se-
quences {E(ζ) : ζ < cf µ} in H/∼ and {γ(ζ) : ζ < cf µ} in T so that
ζ + supη<ζ k(E(η)) < γ(ζ) ∈ T (E(ζ)). Observe that E(ζ)’s are all dis-
tinct and {γ(ζ) : ζ < cf µ} is strictly increasing and unbounded in cf µ. By
Claim 1, Z(ζ) = (µ′,M(γ(ζ))]× (ν′, ν) ∩X ⊂ UE(γ(ζ)). So for each U ∈ U ,
put

F (U) =
{
Z(ζ) if U = UE(ζ) for some ζ < cf µ,
∅ otherwise.

Then F = {F (U) : U ∈ U} is the desired shrinking of U .

(2-2): γ0 = sup{k(E) : E ∈ H/∼} < cf µ. Put T ′ = T \ [0, γ0], H ′ =⋃
γ∈T ′{γ} × Sγ and j(E) = sup{j(E, γ) : γ ∈ T ′} for each E ∈ H/∼. Then,

since j(E, γ) < cf ν for each γ ∈ T ′ and |T ′| ≤ cf µ < cf ν, we have

(ii) j(E) < cf ν.

Let ≺ be the co-lexicographic order on cf µ× cf ν, that is, 〈ζ ′, η′〉 ≺ 〈ζ, η〉 is
defined by η′ < η or (η′ = η and ζ ′ < ζ). Since cf µ < cf ν, the ≺-order type
of cf µ×cf ν is cf ν. By ≺-induction, we shall define two sequences {E(ζ, η) :
〈ζ, η〉 ∈ cf µ × cf ν} in H/∼ and {〈γ(ζ, η), δ(ζ, η)〉 : 〈ζ, η〉 ∈ cf µ × cf ν} in
H ′ with 〈γ(ζ, η), δ(ζ, η)〉 ∈ E(ζ, η) as follows.

Assume E(ζ ′, η′), γ(ζ ′, η′) and δ(ζ ′, η′) are defined with 〈γ(ζ ′, η′),
δ(ζ ′, η′)〉 ∈ E(ζ ′, η′) for all 〈ζ ′, η′〉 ≺ 〈ζ, η〉. By (ii), take δ < cf ν with η +
sup{j(E(ζ ′, η′)) : 〈ζ ′, η′〉 ≺ 〈ζ, η〉} < δ. When ζ = 0, take 〈γ(ζ, η), δ(ζ, η)〉 ∈
H ′ with δ < δ(ζ, η), and let E(ζ, η) be the equivalence class with
〈γ(ζ, η), δ(ζ, η)〉 ∈ E(ζ, η). When ζ > 0, noting that γ(ζ ′, η) has been defined
for all ζ ′ < ζ, take γ < cf µ such that ζ+sup{γ(ζ ′, η) : ζ ′ < ζ} < γ, and take
〈γ(ζ, η), δ(ζ, η)〉 ∈ H ′ with δ < δ(ζ, η) and γ < γ(ζ, η). Finally, let E(ζ, η)
be the equivalence class with 〈γ(ζ, η), δ(ζ, η)〉 ∈ E(ζ, η). This completes the
construction.

By the construction, E(ζ, η)’s are all distinct,

(iii) {δ(ζ, η) : 〈ζ, η〉 ∈ cf µ× cf ν} is strictly increasing and unbounded in
cf ν,

and

(iv) {γ(ζ, η) : ζ ∈ cf µ} is also strictly increasing and unbounded in cf µ
for each η < cf ν.

As 〈γ(ζ, η), δ(ζ, η)〉 ∈ E(ζ, η), by (i) we have Z(ζ, η) = (µ′,M(γ(ζ, η))]×
(ν′, N(δ(ζ, η))] ⊂ UE(ζ,η). Moreover, by (iii) and (iv), {Z(ζ, η) : 〈ζ, η〉 ∈
cf µ× cf ν} covers (µ′, µ)× (ν′, ν) ∩X.

For each U ∈ U , put

F (U) =
{
Z(ζ, η) if U = UE(ζ,η) for some 〈ζ, η〉 ∈ cf µ× cf ν,
∅ otherwise.
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Then F = {F (U) : U ∈ U} is the desired shrinking of U .
The proof of (2) is easier, so we leave it to the reader.

Lemma 10. Assume ω1 ≤ cf µ = cf ν = κ, X ⊂ (µ + 1) × (ν + 1) \
{〈µ, ν〉} and 4MN (X) is stationary in κ. If X(4,M,N) and X{µ} ∪X{ν}
are separated , then there are µ′ < µ and ν′ < ν such that (µ′, µ)×(ν′, ν)∩X
is closed (and trivially open) in X.

P r o o f. Take an open set V in X such that X(4,M,N) ⊂ V ⊂ ClV ⊂
X \(X{µ}∪X{ν}). For each γ ∈ 4MN (X)∩Lim(κ), take f(γ) < γ such that
(M(f(γ)),M(γ)]× (N(f(γ)), N(γ)] ∩X ⊂ V . By the PDL, we find µ′ < µ
and ν′ < ν such that (µ′, µ) × (ν′, ν) ∩X ⊂ V . Since ClV is disjoint from
X{µ} ∪X{ν}, we conclude that (µ′, µ)× (ν′, ν) ∩X is closed in X.

Lemma 11. Assume ω1 ≤ cf µ = cf ν = κ, X ⊂ µ × ν and 4MN (X) is
stationary in κ.

(1) If U is an open cover of X, then there are µ′ < µ, ν′ < ν and a
shrinking F of U by clopen sets in X such that

⋃F = (µ′, µ)× (ν′, ν)∩X.
(2) If H is a discrete collection of closed sets in X, there are µ′ < µ and

ν′ < ν such that (µ′, µ)× (ν′, ν) ∩X meets at most one member of H.

P r o o f. (1) For each δ ∈ 4MN (X) ∩ Lim(κ), fix g(δ) < δ and U(δ) ∈ U
such that (M(g(δ)),M(δ)] × (N(g(δ)), N(δ)] ∩X ⊂ U(δ). By the PDL, we
find µ′ < µ, ν′ < ν and a stationary set S ⊂ 4MN (X) ∩ Lim(κ) such that
(µ′,M(δ)] × (ν′, N(δ)] ∩ X ⊂ U(δ) for each δ ∈ S. Then by an argument
similar to the proof of Lemma 5, making use of the equivalence relation, we
can find the desired shrinking of U .

(2) is easy.

Lemma 12. Let P be a topological property which is closed under taking
closed subspaces and free unions. Assume ω1 ≤ cf µ = cf ν = κ, X ⊂
(µ+ 1) × (ν + 1) \ {〈µ, ν〉}, Vµ(X) is stationary in κ, but 4MN (X) is
not stationary in κ; moreover , Xµ′+1 and Xν′+1 have the property P for
each µ′ < µ and ν′ < ν. If V is an open set in X containing X{µ}, then
X(R,M,N) \ V has the property P.

P r o o f. Take a cub set D in Lim(κ) disjoint from 4MN (X). For each
δ ∈ N−1(Vµ(X)) ∩D, fix f(δ) < κ and g(δ) < δ such that

(M(f(δ)), µ]× (N(g(δ)), N(δ)] ∩X ⊂ V.
For each δ ∈ κ \ [N−1(Vµ(X))∩D], put f(δ) = 0. By the PDL, take δ0 < κ
and a stationary set S ⊂ N−1(Vµ(X)) ∩ D such that g(δ) = δ0 for each
δ ∈ S. Put ν′ = N(δ0), D′ = {δ < κ : ∀δ′ < δ (f(δ′) < δ)} and W =⋃
δ∈S(M(f(δ)), µ]× (ν′, N(δ)] ∩X. Then D′ is cub in κ and W ⊂ V . Since

Xν′+1\V (and therefore X(R,M,N)ν
′+1\V ) has the property P, it suffices
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to represent Y = X(R,M,N)(ν′,ν] \W as the free union of subspaces having
the property P. Here note that Y is closed in X and disjoint from X{µ} ∪
X{ν}. To show this, put C = Lim(S) ∩ D′. Then C is cub and C ⊂ D ∩
D′. For each δ ∈ C, put h(δ) = sup(C ∩ δ). Then by the closedness of
C, h(δ) ∈ C and h(δ) ≤ δ. For each δ ∈ C \ Lim(C) (in other words,
h(δ) < δ), put Y (δ) = Y(M(h(δ)),M(δ)]. Then each Y (δ) is clopen in Y , and
therefore closed in X. Moreover, as Y (δ) ⊂ XM(δ)+1, Y (δ) has the property
P. Since Y (δ)’s, δ ∈ C \ Lim(C), are pairwise disjoint, it suffices to show
Y =

⋃
δ∈C\Lim(C) Y (δ). To show this, let 〈α, β〉 ∈ Y . Note α < µ, ν′ < β < ν

and m(α) ≥ n(β). Let δ be the minimal ordinal number with m(α) ≤ δ ∈ C.
Note that n(β) ≤ δ.

First assume n(β) = δ. Since δ = n(β) ≤ m(α) ≤ δ, we have δ ∈
4MN (X) ∩ C. This contradicts C ⊂ D. Therefore n(β) < δ.

Next assume δ ∈ Lim(C). Then by the minimality of δ, we have m(α) =
δ. Using n(β) < δ and δ ∈ C ⊂ Lim(S)∩D′, pick δ′ ∈ S with n(β) < δ′ < δ.
Since δ ∈ D′, we have f(δ′) < δ = m(α), and therefore M(f(δ′)) < α.
Moreover, as n(β) < δ′, we have

〈α, β〉 ∈ (M(f(δ′)), µ]× (ν′, N(δ′)] ∩X ⊂W.
This contradicts Y ∩W = ∅. Therefore δ ∈ C \ Lim(C). By the minimality
of δ, this shows that h(δ) < m(α) ≤ δ. This means α ∈ (M(h(δ)),M(δ)],
hence

〈α, β〉 ∈ Y(M(h(δ)),M(δ)] = Y (δ).

This completes the proof.

3. Proof of the Theorem. The implications (1)→(3) and (2)→(3) are
evident.

(3)→(4). Let X be normal and 〈µ, ν〉 ∈ (λ + 1)2 \X with ω ≤ cf µ and
ω ≤ cf ν. Since 〈µ, ν〉 6∈ X, X{µ} and X{ν} are disjoint closed sets in the
normal space X. Thus (4-1) holds.

To show (4-2), assume ω1 ≤ cf ν and Vµ(X) ∩ ν is not stationary in ν.
Then there is a cub set D in cf ν such that Vµ(X) ∩N(D) = ∅. Since X{µ}
and XN(D)∪{ν} are disjoint closed sets, (4-2) holds.

(4-3) is similar.
To show (4-4), since the remaining case is similar, we may assume ω1 ≤

cf µ < cf ν, Vµ(X)∩ν is not stationary in ν, and both Hν(X)∩µ and Aνµ are
non-stationary in µ. By the non-stationarity of Aνµ and Lemma 3, there are
cub sets C ′ in cf µ and D′ in cf ν such that X ∩M(C ′)×N(D′) = ∅. Since
Vµ(X) ∩ ν and Hν(X) ∩ µ are non-stationary in cf ν and cf µ respectively,
take cub sets C ⊂ C ′ and D ⊂ D′ such that M(C) ∩ Hν(X) = ∅ and
N(D)∩Vµ(X) = ∅. Then X ∩ (M(C)∪{µ})× (N(D)∪{ν}) = ∅. Therefore
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XM(C)∪{µ} and XN(D)∪{ν} are disjoint closed sets in the normal space X.
This shows (4-4).

To show (4-5), assume ω1 ≤ cf µ = cf ν = κ. By 〈µ, ν〉 6∈ X, X(4,M,N)
and X{µ} ∪X{ν} are disjoint closed sets in the normal space X. This shows
(4-5-a).

To show (4-5-b), assume 4MN (X) is not stationary in κ. Since X is
normal, (b1) and (b3) are evident. Assume Vµ(X) ∩ ν is not stationary in
ν. By Lemma 4 and the non-stationarity of Vµ(X) ∩ ν, there is a cub set
D ⊂ κ such that X ∩M(D) × N(D) = ∅ and N(D) ∩ Vµ(X) = ∅. Then
X ∩ (M(D)∪{µ})×N(D) = ∅. Since X(R,M,N) is disjoint from X{ν}, we
have X(R,M,N) ∩ (M(D) ∪ {µ}) × (N(D) ∪ {ν}) = ∅. Since X(R,M,N)
is closed in X, X(R,M,N)M(D)∪{µ} and X(R,M,N)N(D)∪{ν} are disjoint
closed sets in the normal space X. This shows (b2).

Similarly we can show (b4).
(4)→(1). Assume (4) holds but X is not shrinking. Put

µ = min{ζ ≤ λ : Xζ+1 is not shrinking},
ν = min{η ≤ λ : Xη+1

µ+1 is not shrinking}.
Note that Xν+1

µ+1 is not shrinking, but Xν+1
µ′+1 and Xν′+1

µ+1 are shrinking for
each µ′ < µ and ν′ < ν. Since Xν+1

µ+1 is a clopen subspace of X, we may
assume X = Xν+1

µ+1 . Then again note that X is not shrinking, but Xµ′+1 and
Xν′+1 are shrinking for each µ′ < µ and ν′ < ν. So there is an open cover
U of X which does not have a closed shrinking which covers X.

Claim 1. 〈µ, ν〉 6∈ X.

P r o o f. Assume 〈µ, ν〉 ∈ X. Then there are µ′ < µ, ν′ < ν and U ∈
U such that Z = (µ′, µ] × (ν′, ν] ∩ X ⊂ U . Since Z is clopen in X and
Xµ′+1 ∪Xν′+1 ∪Z = X, and Xµ′+1 and Xν′+1 are shrinking, by Lemma 1,
U has a closed shrinking which covers X, a contradiction. This completes
the proof of Claim 1.

Claim 2. ω ≤ cf µ and ω ≤ cf ν.

P r o o f. Assume µ = µ′ + 1. Since X is the free union Xµ ⊕ X{µ} of
shrinking subspaces, U can be shrunk, a contradiction. Therefore ω ≤ cf µ.
Similarly ω ≤ cf ν.

First we consider the following case.

C a s e 1: cf µ 6= cf ν. We may assume cf µ < cf ν. We consider two
subcases:

(1-1): Vµ(X) ∩ ν is stationary in ν. Applying Lemma 5 (1) to U|Xν , we
find µ′ < µ, ν′ < ν and a shrinking F of U|Xν by closed sets in Xν such
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that
⋃F = (µ′, µ]×(ν′, ν)∩X. Since X{µ} and X{ν} are separated by (4-1),

applying Lemma 6, we get µ′′ < µ and ν′′ < ν with µ′ < µ′′ and ν′ < ν′′

such that Z = (µ′′, µ]× (ν′′, ν)∩X is closed in X. Then F|Z is a shrinking
of U by closed sets in X which covers Z. Since Xµ′′+1, Xν′′+1 and X{ν}

are shrinking closed subspaces and X = Xµ′′+1 ∪ Xν′′+1 ∪ X{ν} ∪ Z, by
Lemma 1, U has a closed shrinking which covers X. A contradiction.

(1-2): Vµ(X) ∩ ν is not stationary in ν. In this case, by (4-2), there is a
cub set D in cf ν such that X{µ} and XN(D)∪{ν} are separated. Take disjoint
open sets V and W containing X{µ} and XN(D)∪{ν} respectively. Assume
cf µ = ω. Then by Lemma 7 (1), Xµ is shrinking, thus X \ V is shrinking.
Moreover, by (2) of the analogue of Lemma 7, X \ W is also shrinking.
Therefore by Lemma 1, X is shrinking, a contradiction. Therefore we have
ω1 ≤ cf µ.

Then by an argument similar to (1-1), assuming Hν(X) ∩ µ is station-
ary in µ, we get a contradiction (of course we would use the “analogous”
lemmas). So Hν(X) ∩ µ is not stationary in µ.

Now we are in the situation where ω1 ≤ cf µ < cf ν, and Hν(X) ∩ µ and
Vµ(X)∩ ν are not stationary in µ and ν respectively. By (4-3), we also have
a cub set C in cf µ such that X{ν} and XM(C)∪{µ} are separated. Again, we
consider two subcases:

(1-2-1): Aνµis stationary in µ. In this case by Lemmas 8 and 9 (1), we
find µ′ < µ, ν′ < ν and a shrinking F of U by closed sets in X such that
Z = (µ′, µ)× (ν′, ν) ∩X is clopen in X and

⋃F = Z. Since Xµ′+1, Xν′+1,
X{µ} and X{ν} are shrinking closed subspaces and X = Xµ′+1 ∪ Xν′+1 ∪
X{µ} ∪X{ν} ∪Z, by Lemma 1, U has a closed shrinking which covers X. A
contradiction.

(1-2-2) : Aνµ is not stationary in µ. In this case by (4-4), there are cub sets
C in cf µ and D in cf ν such that XM(C)∪{µ} and XN(D)∪{ν} are separated.
Take disjoint open sets V and W containing XM(C)∪{µ} and XN(D)∪{ν}

respectively. Then by Lemma 7 (2), X \ V and X \W are shrinking closed
subspaces. Therefore by Lemma 1, X is shrinking, a contradiction.

Next we consider the remaining case.

C a s e 2: cf µ = cf ν = κ. Assume κ = ω. Then by Lemma 7 (1), Xµ

and Xν are shrinking. By (4-1), X{µ} and X{ν} are separated. Then by
Lemma 2, X = Xµ ∪ Xν is shrinking, a contradiction. Therefore ω1 ≤ κ.
Two subcases are now considered:

(2-1): 4MN (X) is stationary in κ. In this case by Lemmas 10 and 11,
we have a contradiction as previously.
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(2-2): 4MN (X) is not stationary in κ. Since X is the union of the closed
subspaces X(R,M,N) and X(L,M,N), we may assume that U does not
have a closed shrinking which covers X(R,M,N). Two cases are to consider:

(2-2-1): Vµ(X) ∩ ν is stationary in ν. As in the proof of Lemma 5 (1),
for each δ ∈ N−1(Vµ(X)) ∩ Lim(κ), fix f(δ) < κ, g(δ) < δ and U(δ) ∈ U
such that (M(f(δ)), µ] × (N(g(δ)), N(δ)] ∩ X ⊂ U(δ). Applying the PDL,
we can find δ0 < κ and a stationary set S ⊂ N−1(Vµ(X)) ∩ Lim(κ) such
that g(δ) = δ0 for each δ ∈ S. Put ν′ = N(δ0).

Claim 3. There is a closed shrinking F of U such that {µ}×(ν′, ν)∩X ⊂
Int(

⋃F) and
⋃F is closed in X.

P r o o f. As previously, for each δ and δ′ in S, define δ ∼ δ′ by U(δ) =
U(δ′), and let S/∼ be its quotient. For each E ∈ S/∼, put UE = U(δ) for
some (any) δ ∈ E. Observe that (M(f(δ)), µ]× (ν′, N(δ)]∩X ⊂ UE for each
δ ∈ E.

First, assume there is E ∈ S/∼ such that E is unbounded in κ. Put
W =

⋃
δ∈E(M(f(δ)), µ]× (ν′, N(δ)] ∩X. Note that W ⊂ UE . Since by the

condition (b1), X{µ} and X \ (W ∪ Xν′+1) are separated, we can find an
open set V in X such that {µ} × (ν′, ν) ∩ X ⊂ V ⊂ ClV ⊂ W . For each
U ∈ U , put

F (U) =
{ClV if U = UE ,
∅ otherwise.

Then F = {F (U) : U ∈ U} is the desired shrinking of U .
Next assume all E’s, E ∈ S/∼, are bounded in κ. As in Lemma 5, define

δ(η) ∈ E(η) ∈ S/∼ for each η ∈ κ so that η + sup(
⋃
ζ<η E(ζ)) < δ(η). For

each U ∈ U , put

W (U) =

{
(M(f(δ(η))), µ]× (ν′, N(δ(η))] ∩X

if U = UE(η) for some η < κ,
∅ otherwise.

Then W = {W (U) : U ∈ U} is a shrinking of U by clopen sets in X with
{µ} × (ν′, ν) ∩X ⊂ ⋃W. By the condition (b1), take an open set V in X
such that {µ} × (ν′, ν) ∩X ⊂ V ⊂ ClV ⊂ ⋃W.

For each U ∈ U , put

F (U) = W (U) ∩ ClV.

Then F = {F (U) : U ∈ U} is the desired shrinking of U . This completes the
proof of the claim.

Take the shrinking F of U in Claim 3. By Lemma 12,

Z = X(R,N,M)(ν′,ν] \ Int
(⋃

F
)
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is a shrinking closed subspace. Since X(R,M,N) ⊂ Xν′+1 ∪ Z ∪ ⋃F , by
Lemma 1, U has a closed shrinking which covers X(R,M,N). A contradic-
tion.

(2-2-2): Vµ(X) ∩ ν is not stationary in ν. Using the clause (b2), take a
cub set D in κ such that X(R,M,N)M(D)∪{µ} and X(R,M,N)N(D)∪{ν} are
separated. Take disjoint open sets V andW containingX(R,M,N)M(D)∪{µ}
and X(R,M,N)N(D)∪{ν} respectively. Then applying Lemma 7 (2) to
X(R,M,N), we see that X(R,M,N)\V and X(R,M,N)\W are shrinking.
Therefore by Lemma 1, X(R,M,N) is shrinking, a contradiction.

Thus in all cases, we get contradictions. This completes the proof of
(4)→(1).

(4)→(2). This proof is almost similar to the one of (4) → (1) except for
the case (2-2-1). So we only give a proof of case (2-2-1) for the CWN case.

(2-2-1): ω1 ≤ cf µ = cf ν = κ, 4MN (X) is not stationary in κ, Vµ(X)∩ν
is stationary in ν and H is a discrete collection of closed sets in X which
cannot be separated. In this case, for each δ ∈ N−1(Vµ(X)) ∩ Lim(κ), fix
g(δ) < δ such that {µ}× (N(g(δ)), N(δ)]∩X meets at most one element of
H. By the PDL, we can take ν′ < ν such that {µ} × (ν′, ν) ∩ X meets at
most one element of H.

Claim 3′. There is an open set V such that {µ} × (ν′, ν) ∩X ⊂ V and
ClV meets at most one element of H.

P r o o f. Put H′ = {H ∈ H : H ∩ ({µ} × (ν′, ν) ∩ X) = ∅}, and W =
X \ ⋃H′. Since {µ} × (ν′, ν) ∩ X ⊂ W , take an open set V such that
{µ} × (ν′, ν) ∩ X ⊂ V ⊂ ClV ⊂ W using the clause (b1). Then this V
works.

As X(R,M,N) is covered by closed sets Xν′+1, Z =X(R,M,N)(ν′,ν]\V
and ClV , we get a contradiction as in case (2-2-1) in the proof of (4)→(1).
This completes the proof.

4. Non-normal examples and related questions. In [KOT], it is
proved that, for subspaces A and B of ω1, A × B is normal (countably
paracompact) if and only if A is not stationary in ω1, B is not stationary in
ω1 or A ∩B is stationary.

According to this result, if A is a countable subspace of ω1, then, since
A is non-stationary, A × B is normal for each B ⊂ ω1. In particular, as is
well known, (ω + 1) × ω1 is normal. But as is shown in the next example,
there is a non-normal subspace of (ω + 1)× ω1.

Example 1. Put X = ω×ω1∪{ω}×(ω1\Lim(ω1)). Put F = ω×Lim(ω1)
and H = {ω}× (ω1 \Lim(ω1)). Then F and H are disjoint closed sets in X.
Let U be an open set containing H. For each α ∈ ω1\Lim(ω1), pick n(α) ∈ ω
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such that [n(α), ω] × {α} ⊂ U . Since ω1 \ Lim(ω1) is uncountable, there is
an uncountable subset C ⊂ ω1 \ Lim(ω1) and n ∈ ω such that n(α) = n for
each α ∈ C. Observe that [n, ω] × C ⊂ U . Pick α ∈ Lim(C). Noting that
Lim(C) ⊂ Lim(ω1), we have 〈n, α〉 ∈ [n, ω]× Lim(C) ∩ F ⊂ ClU ∩ F . This
argument shows X is not normal.

Next we give a corollary of the Theorem for subspaces of ω2
1 . For sim-

plicity, we use the following notation: Let X ⊂ ω2
1 , α < ω1 and β < ω1.

Put Vα(X) = {β < ω1 : 〈α, β〉 ∈ X}, Hβ(X) = {α < ω1 : 〈α, β〉 ∈ X}
and 4(X) = {α < ω1 : 〈α, α〉 ∈ X}. For subsets C and D of ω1, put
XC = X ∩ C × ω1, XD = X ∩ ω1 ×D and XD

C = X ∩ C ×D.
Consider M and N as the identity map on ω1 if µ = ν = ω1 in the

Theorem. Then, by checking all clauses in (4) of the Theorem, we can see:

Corollary. Let X ⊂ ω2
1. Then the following are equivalent.

(1) X is normal.
(2) (2-1-a) If α is a limit ordinal in ω1 and Vα(X) is not stationary in

ω1, then there is a cub set D ⊂ ω1 such that X{α} and XD

are separated.
(2-1-b) If β is a limit ordinal in ω1 and Hβ(X) is not stationary in

ω1, then there is a cub set C ⊂ ω1 such that X{β} and XC

are separated.
(2-2) If 4(X) is not stationary in ω1, then there is a cub set

C ⊂ ω1 such that XC and XC are separated.

Intuitively, we may consider (2-1-a) to be a condition which guarantees
the normality of Xα+1 for each α < ω1, and (2-1-b) the normality of Xβ+1

for each β < ω1. If we know that Xα+1 and Xβ+1 are normal for each
α, β < ω1, then (2-2) is a condition which guarantees the normality of X.

Consider X = ω2
1 . Since Vα(X) and Hβ(X) are the stationary set ω1 for

each α, β < ω1 and 4(X) is also the stationary set ω1, the clause (2) of the
Corollary is satisfied. So X is normal.

Example 2. Let A and B be disjoint stationary sets in ω1 and put
X = A×B. Let α be a limit ordinal in ω1. Then we have

Vα(X) =
{
B if α ∈ A,
∅ otherwise.

Therefore, if Vα(X) is not stationary, then necessarily α 6∈ A and Vα(X) = ∅,
so X{α} = ∅. Therefore X{α} and Xω1 are separated. This argument proves
(2-1-a). Similarly we have (2-1-b). Therefore Xα+1 and Xβ+1 are normal for
each α, β < ω1.

Note that 4(X) = ∅. Let C be a cub set in ω1. Then X ∩ C2 = (A ∩
C) × (B ∩ C) 6= ∅, equivalently XC ∩ XC 6= ∅. Thus XC and XC cannot
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be separated. Therefore X is not normal, because the clause (2-2) is not
satisfied.

Example 3. Let X = {〈α, β〉 ∈ ω2
1 : α ≤ β}, Y = {〈α, β〉 ∈ ω2

1 : α < β}.
Checking (2-1-a) and (2-1-b), we can show that Xα+1, Xβ+1, Yα+1 and
Y β+1 are normal for each α, β < ω1.

Since 4(X) = ω1 is stationary, (2-2) for X is satisfied. Thus X is normal
(but this is obvious, because X is a closed subspace of ω2

1). On the other
hand, note that 4(Y ) = ∅. For each cub set C in ω1, pick α and β in C
with α < β. Then 〈α, β〉 ∈ Y ∩ C2. Therefore (2-2) for Y is not satisfied.
Thus Y is not normal.

Let X = ω1 × (ω1 + 1). Observe that X ∩ ω2
1 = ω2

1 is normal, and Xα+1

and Xβ+1 are normal for each α, β < ω1. Since {〈α, α〉 : α ∈ ω1} and X{ω1}

cannot be separated, X is not normal. Note that both 4(X) and Hω1(X)
are the stationary set ω1. Next we give a similar example X ⊂ ω1× (ω1 +1),
but with 4(X) and Hω1(X) not stationary.

Example 4. Let

X = [ω1 \ Lim(ω1)]× [(ω1 + 1) \ Lim(ω1)] ∪ {〈α, α+ 1〉 : α ∈ Lim(ω1)}.
Observe that X ∩ω2

1 is normal, Xα+1 and Xβ+1 are normal for each α, β <
ω1 and both 4(X) and Hω1(X) are the non-stationary set ω1 \ Lim(ω1).
By an argument similar to that for Claim 1 of Lemma 4, we can see that
F = {〈α, α + 1〉 : α ∈ Lim(ω1)} is closed (discrete). We shall show F and
X{ω1} cannot be separated. To see this, let U be an open set containing F .
For each α ∈ Lim(ω1), since 〈α, α + 1〉 ∈ F ⊂ U , take f(α) < α such that
(f(α), α]×{α+1}∩X ⊂ U . By the PDL, there are α0 < ω1 and a stationary
set S ⊂ Lim(ω1) such that f(α) = α0 for each α ∈ S. Take β ∈ ω1 \Lim(ω1)
with α0 < β. Noting that 〈β, α + 1〉 ∈ X for each α ∈ S with α > β, we
have

〈β, ω1〉 ∈ Cl{〈β, α+ 1〉 : α ∈ S, α > β} ∩X{ω1} ⊂ ClU ∩X{ω1}.

Thus F and X{ω1} cannot be separated.

In this connection, we have the next question which relates to the clause
(4-4) of the Theorem.

Question 1. Does there exist a non-normal subspace X of ω1×ω2 such
that Xα+1 and Xβ+1 are normal for each α < ω1 and β < ω2?

In this connection, we show:

Proposition. If X = A × B is a subspace of ω1 × ω2 such that Xα+1

and Xβ+1 are normal for each α < ω1 and β < ω2, then X is normal.

P r o o f. If A is not stationary in ω1, then take a cub set C in ω1

disjoint from A. Put h(α) = sup(C ∩ α) for each α ∈ C. Observe that
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X =
⊕

α∈C\Lim(C)X(h(α),α]. Since X(h(α),α] is a closed subspace of Xα+1,
by the inductive assumption, X is normal. Similarly X is normal if B is
not stationary in ω2. So we may assume A and B are stationary in respec-
tively ω1 and ω2. Let U = {Ui : i ∈ 2} be an open cover of X. Fix α ∈ A.
For each β ∈ B, fix f(α, β) < α, g(α, β) < β and i(α, β) ∈ 2 such that
(f(α, β), α] × (g(α, β), β] ∩ X ⊂ Ui(α,β). Applying the PDL to B, we find
f(α) < α, g(α) < ω2, i(α) ∈ 2 and a stationary set B(α) ⊂ B in ω2 such
that f(α, β) = f(α), g(α, β) = g(α) and i(α, β) = i(α) for each β ∈ B(α).
Then, applying the PDL to A, we find α0 < ω1, i0 ∈ 2 and a stationary
set A′ ⊂ A in ω1 such that f(α) = α0 and i(α) = i0 for each α ∈ A′. Put
β0 = sup{g(α) : α ∈ A′}. Then we have Z = (α0, ω1)× (β0, ω2) ∩X ⊂ Ui0 .
Since X is the union of closed subspaces, Xα0+1, Xβ0+1 and Z, U has a
closed shrinking which covers X. Therefore X = A×B is normal.

By the result in [KOT], normality and countable paracompactness of
A×B ⊂ ω2

1 are equivalent. In this connection, it is natural to ask:

Question 2. For any X ⊂ ω2
1 , are normality and countable paracom-

pactness of X equivalent?

Note that, by [KS], normality implies countable paracompactness in the
realm of subspaces of product spaces of two ordinals.

Finally, we restate a question from [KOT]:

Question 3. For any subspace X of the product space of two ordinals,
are countable paracompactness, expandability, strong D-property and weak
D(ω)-property of X equivalent?
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