Normal subspaces in products of two ordinals

by

Nobuyuki Kemoto (Oita), Tsugunori Nogura (Matsuyama), Kerry D. Smith (Franklin, Ind.) and Yukinobu Yajima (Yokohama)

Abstract. Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of $(\lambda + 1)^2$.

1. Introduction. It is well known that any ordinal with the order topology is shrinking and collectionwise normal hereditarily. But, in general, products of two ordinals are not. In fact, $(\omega_1 + 1) \times \omega_1$ is not normal. In [KOT], it was proved that the normality, collectionwise normality and shrinking property of $A \times B$, where A and B are subspaces of ordinals, are equivalent. It was asked whether these properties are also equivalent for *all* subspaces of products of two ordinals [KOT, Problem (i)]. The aim of this paper is to give an affirmative answer.

We recall some basic definitions and introduce some specific notation.

In our discussion, we always assume $X \subset (\lambda+1)^2$ for some suitably large ordinal λ . Moreover, in general, the letters μ and ν stand for limit ordinals with $\mu \leq \lambda$ and $\nu \leq \lambda$. For each $A \subset \lambda+1$ and $B \subset \lambda+1$ put

$$X_A = A \times (\lambda + 1) \cap X, \quad X^B = (\lambda + 1) \times B \cap X,$$

and

$$X_A^B = X_A \cap X^B.$$

For each $\alpha \leq \lambda$ and $\beta \leq \lambda$, put

$$V_{\alpha}(X) = \{ \beta \le \lambda : \langle \alpha, \beta \rangle \in X \}, \quad H_{\beta}(X) = \{ \alpha \le \lambda : \langle \alpha, \beta \rangle \in X \}.$$

cf μ denotes the cofinality of the ordinal μ . When $\omega_1 \leq \operatorname{cf} \mu$, a subset S of μ called *stationary in* μ if it intersects all cub (closed and unbounded) sets

¹⁹⁹¹ Mathematics Subject Classification: 54B10, 54D18.

Key words and phrases: (collectionwise) normal, shrinking, product space.

in μ . For each $\mu \leq \lambda$ and $\nu \leq \lambda$ with $\omega_1 \leq \operatorname{cf} \mu$ and $\omega_1 \leq \operatorname{cf} \nu$, put

$$A^{\nu}_{\mu} = \{ \alpha < \mu : V_{\alpha}(X) \cap \nu \text{ is stationary in } \nu \},$$

$$B^{\nu}_{\mu} = \{ \beta < \nu : H_{\beta}(X) \cap \mu \text{ is stationary in } \mu \}.$$

Moreover, for each $A \subset \mu$, $\lim_{\mu}(A)$ is the set $\{\alpha < \mu : \alpha = \sup(A \cap \alpha)\}$, in other words, the set of all cluster points of A in μ . Therefore $\lim_{\mu}(A)$ is cub in μ whenever A is unbounded in μ . We will simply denote $\lim_{\mu}(A)$ by $\lim_{\mu}(A)$ if the situation is clear in its context.

A strictly increasing function $M: \operatorname{cf} \mu \to \mu$ is said to be *normal* if $M(\gamma) = \sup\{M(\gamma'): \gamma' < \gamma\}$ for each limit ordinal $\gamma < \operatorname{cf} \mu$, and $\mu = \sup\{M(\gamma): \gamma < \operatorname{cf} \mu\}$. Note that a normal function on $\operatorname{cf} \mu$ always exists if $\operatorname{cf} \mu \geq \omega$. So we always fix a normal function $M: \operatorname{cf} \mu \to \mu$ for each ordinal μ with $\operatorname{cf} \mu \geq \omega$.

For convenience, we define M(-1) = -1. Then M carries of μ homeomorphically to the range ran M of M and ran M is closed in μ . Note that for all $S \subset \mu$ with $\omega_1 \leq \operatorname{cf} \mu$, S is stationary in μ if and only if $M^{-1}(S)$ is stationary in $\operatorname{cf} \mu$.

Let μ and ν be two limit ordinals with $\mu \leq \lambda$ and $\nu \leq \lambda$; moreover, let $M: \text{cf } \mu \to \mu$ and $N: \text{cf } \nu \to \nu$ be the fixed normal functions on $\text{cf } \mu$ and $\text{cf } \nu$ respectively. For each $\alpha \in \mu$ and $\beta \in \nu$, define

$$m(\alpha) = \min\{\gamma < \operatorname{cf} \mu : \alpha \le M(\gamma)\},\$$

$$n(\beta) = \min\{\delta < \operatorname{cf} \nu : \beta \le N(\delta)\},\$$

where min A denotes the minimal ordinal number in A. Note that, if $\alpha \in \operatorname{ran} M$, then $m(\alpha) = M^{-1}(\alpha)$.

Furthermore, assume $\langle \mu, \nu \rangle \notin X$ and $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$. We will use the following notation:

$$X(L, M, N) = \{ \langle \alpha, \beta \rangle \in X \cap \mu \times \nu : m(\alpha) \leq n(\beta) \} \cup X_{\mu}^{\{\nu\}},$$

$$X(R, M, N) = \{ \langle \alpha, \beta \rangle \in X \cap \mu \times \nu : m(\alpha) \geq n(\beta) \} \cup X_{\{\mu\}}^{\{\nu\}},$$

$$X(\triangle, M, N) = \{ \langle M(\gamma), N(\gamma) \rangle \in X : \gamma < \kappa \},$$

$$\triangle_{MN}(X) = \{ \gamma < \kappa : \langle M(\gamma), N(\gamma) \rangle \in X \}.$$

Intuitively, X(L,M,N) is considered as the upper-left half of $X_{\mu+1}^{\nu+1}$, X(R,M,N) as the lower-right half of $X_{\mu+1}^{\nu+1}$ and $X(\triangle,M,N)$ as the diagonal part of $X_{\mu+1}^{\nu+1}$. Since M and N are homeomorphic closed embeddings, observe that $X(\triangle,M,N)$ and $\triangle_{MN}(X)$ are homeomorphic and that X(L,M,N), X(R,M,N) and $X(\triangle,M,N)$ are closed in X.

Let Y be a topological space. Subsets F and G of Y are said to be separated if there are disjoint open sets U and V containing F and G respectively; of course, separated sets are disjoint, and \emptyset and G are separated for each $G \subset Y$. More generally, a collection \mathcal{H} of subsets of Y is said to

be separated if there is a pairwise disjoint collection $\mathcal{U} = \{U(H) : H \in \mathcal{H}\}$ of open sets in Y such that each U(H) contains H. A space Y is said to be CWN (CollectionWise Normal) if any discrete collection of closed sets is separated. Let \mathcal{U} be an open cover of Y. A collection $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ of subsets of Y indexed by \mathcal{U} is a shrinking of \mathcal{U} if $F(U) \subset \mathcal{U}$ for each $U \in \mathcal{U}$. A closed shrinking is a shrinking by closed sets. Throughout the paper, for convenience, we do not require \mathcal{F} to cover Y. We call a space Y shrinking if each open cover of Y has a closed shrinking which covers Y.

2. Theorem and lemmas. Using the notation described in Section 1, we shall show:

THEOREM. Assume $X \subset (\lambda + 1)^2$. The following (1)–(4) are equivalent:

- (1) X is shrinking.
- (2) X is CWN.
- (3) X is normal.
- (4) For every $\langle \mu, \nu \rangle \in (\lambda + 1)^2 \setminus X$ with $\omega \leq \operatorname{cf} \mu$ and $\omega \leq \operatorname{cf} \nu$, the following (4-1)-(4-5) hold:
- (4-1) $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated.
- (4-2) If $\omega_1 \leq \operatorname{cf} \nu$ and $V_{\mu}(X) \cap \nu$ is not stationary in ν , then there is a cub set D in $\operatorname{cf} \nu$ such that $X_{\{\mu\}}$ and $X^{N(D) \cup \{\nu\}}$ are separated.
- (4-3) If $\omega_1 \leq \operatorname{cf} \mu$ and $H_{\nu}(X) \cap \mu$ is not stationary in μ , then there is a cub set C in cf μ such that $X^{\{\nu\}}$ and $X_{M(C) \cup \{\mu\}}$ are separated.
- (4-4) If $(\omega_1 \leq \operatorname{cf} \mu < \operatorname{cf} \nu, V_{\mu}(X) \cap \nu \text{ is not stationary in } \nu, \text{ and both } H_{\nu}(X) \cap \mu \text{ and } A^{\nu}_{\mu} \text{ are non-stationary in } \mu) \text{ or } (\omega_1 \leq \operatorname{cf} \nu < \operatorname{cf} \mu, H_{\nu}(X) \cap \mu \text{ is not stationary in } \mu, \text{ and both } V_{\mu}(X) \cap \nu \text{ and } B^{\nu}_{\mu} \text{ are non-stationary in } \nu), \text{ then there are cub sets } C \text{ in } \operatorname{cf} \mu \text{ and } D \text{ in } \operatorname{cf} \nu \text{ such that } X_{M(C) \cup \{\mu\}} \text{ and } X^{N(D) \cup \{\nu\}} \text{ are separated.}$
- (4-5) If $\omega_1 \leq \text{cf } \mu = \text{cf } \nu = \kappa$, then (4-5-a) and (4-5-b) hold. (4-5-a) $X(\triangle, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are separated.
 - (4-5-b) If $\triangle_{MN}(X)$ is not stationary in κ , then (b1)–(b4) hold:
 - (b1) If $V_{\mu}(X) \cap \nu$ is stationary in ν , then $X_{\{\mu\}}$ and any closed set disjoint from $X_{\{\mu\}}$ are separated.
 - (b2) If $V_{\mu}(X) \cap \nu$ is not stationary in ν , then there is a cub set D in κ such that the sets $X(R, M, N)_{M(D) \cup \{\mu\}}$ and $X(R, M, N)^{N(D) \cup \{\nu\}}$ are separated.
 - (b3) If $H_{\nu}(X) \cap \mu$ is stationary in μ , then $X^{\{\nu\}}$ and any closed set disjoint from $X^{\{\nu\}}$ are separated.
 - (b4) If $H_{\nu}(X) \cap \mu$ is not stationary in μ , then there is a cub set C in κ such that the sets $X(L, M, N)^{N(C) \cup \{\nu\}}$ and $X(L, M, N)_{M(C) \cup \{\mu\}}$ are separated.

To prove the theorem, we need several lemmas. First it is straightforward to show:

LEMMA 1. Let X be the finite union of closed subspaces X_i $(i \in n)$.

- (1) Let \mathcal{U} be an open cover of X. If $\mathcal{U}|X_i = \{U \cap X_i : U \in \mathcal{U}\}$ has a closed shrinking covering X_i for each $i \in n$, then \mathcal{U} has a closed shrinking which covers X.
- (2) Let \mathcal{H} be a discrete collection of closed sets in X. If $\mathcal{H}|X_i$ is separated in X_i for each $i \in n$, then \mathcal{H} is separated in X.

This lemma implies:

LEMMA 2. If X is the union of two normal (shrinking, CWN) open subspaces Y and Z such that $X \setminus Y$ and $X \setminus Z$ are separated, then X is normal (shrinking, CWN).

LEMMA 3. Assume $\omega_1 \leq \operatorname{cf} \mu < \operatorname{cf} \nu$ and $X \subset (\mu+1) \times (\nu+1) \setminus \{\langle \mu, \nu \rangle\}$. If A^{ν}_{μ} is not stationary in μ , then there are cub sets C in $\operatorname{cf} \mu$ and D in $\operatorname{cf} \nu$ such that

$$X \cap M(C) \times N(D) = \emptyset.$$

Proof. Assume A^{ν}_{μ} is not stationary in μ . Take a cub set C in cf μ such that $M(C) \cap A^{\nu}_{\mu} = \emptyset$. For each $\gamma \in C$, by the non-stationarity of $V_{M(\gamma)}(X) \cap \nu$, fix a cub set D_{γ} in cf μ such that $V_{M(\gamma)}(X) \cap N(D_{\gamma}) = \emptyset$. Put $D = \bigcap_{\gamma \in C} D_{\gamma}$. Since $|C| \leq \text{cf } \mu < \text{cf } \nu$, D is cub in cf ν . Then these cub sets C and D work. \blacksquare

In an analogous way, we can show:

LEMMA 3'. Assume $\omega_1 \leq \operatorname{cf} \nu < \operatorname{cf} \mu$ and $X \subset (\mu+1) \times (\nu+1) \setminus \{\langle \mu, \nu \rangle\}$. If B^{ν}_{μ} is not stationary in ν , then there are cub sets C in cf μ and D in cf ν such that

$$X \cap M(C) \times N(D) = \emptyset.$$

Hereafter, we will not write down such analogous lemmas, but refer to them as "the analogues" of Lemmas 5–9.

LEMMA 4. Assume $\omega_1 \leq \operatorname{cf} \nu = \operatorname{cf} \mu = \kappa$ and $X \subset (\mu + 1) \times (\nu + 1) \setminus \{\langle \mu, \nu \rangle\}$. If X is normal and $\triangle_{MN}(X)$ is not stationary in κ , then there is a cub set C in κ such that

$$X \cap M(C) \times N(C) = \emptyset.$$

Proof. First we show A^{ν}_{μ} is not stationary in μ . Assume, on the contrary, that A^{ν}_{μ} is stationary in μ . Then $A = M^{-1}(A^{\nu}_{\mu}) \cap \text{Lim}(\kappa)$ is stationary in κ . For each $\gamma \in A$, pick

$$h(\gamma) \in N^{-1}(V_{M(\gamma)}(X)) \cap \bigcap_{\gamma' \in A \cap \gamma} \operatorname{Lim}(N^{-1}(V_{M(\gamma')}(X))) \cap \operatorname{Lim}(\kappa)$$

with $\gamma < h(\gamma) < \kappa$. This can be done, because $N^{-1}(V_{M(\gamma)}(X))$ is stationary in κ , $\operatorname{Lim}(N^{-1}(V_{M(\gamma')}(X)))$ is cub in κ for each $\gamma' \in A \cap \gamma$, $|A \cap \gamma| < \kappa$ and $\operatorname{Lim}(\kappa) = \operatorname{Lim}_{\kappa}(\kappa)$ is cub in κ , so the intersection is stationary in κ . For each $\gamma \in \kappa \setminus A$, put $h(\gamma) = 0$. Take a cub set C' in κ disjoint from $\triangle_{MN}(X)$, and put

 $C = \{ \gamma < \kappa : \forall \gamma' < \gamma (h(\gamma') < \gamma) \} \cap C'.$

Since C is cub in κ and A is stationary in κ , $A' = A \cap C$ is stationary in κ . For each $\gamma \in A'$, put $x_{\gamma} = \langle M(\gamma), N(h(\gamma)) \rangle$. Since, by the definition of $h(\gamma)$, $N(h(\gamma)) \in V_{M(\gamma)}(X)$, we have $x_{\gamma} \in X$ for each $\gamma \in A'$.

CLAIM 1. $F = \{x_{\gamma} : \gamma \in A'\}$ is closed discrete in X.

Proof. Note that $F \subset M(C) \times \operatorname{ran} N$. Let $\langle \alpha, \beta \rangle \in X$. We will find an open neighborhood U of $\langle \alpha, \beta \rangle$ which intersects F in at most one point.

Case 1. $\alpha \in \mu \setminus M(C)$ or $\beta \in \nu \setminus \operatorname{ran} N$. If $\alpha \in \mu \setminus M(C)$, then, by the closedness of M(C) in μ , there is $\alpha' < \alpha$ such that $(\alpha', \alpha] \cap M(C) = \emptyset$. Then $U = (\alpha', \alpha] \times (\nu + 1) \cap X$ is a neighborhood of $\langle \alpha, \beta \rangle$ missing F.

If $\beta \in \nu \setminus \operatorname{ran} N$, then there is $\beta' < \beta$ such that $(\beta', \beta] \cap \operatorname{ran} N = \emptyset$. Then $U = (\mu + 1) \times (\beta', \beta] \cap X$ is as desired.

Case 2. Otherwise, i.e., $\alpha \in M(C) \cup \{\mu\}$ and $\beta \in \operatorname{ran} N \cup \{\nu\}$. There are two subcases.

(2-1): $\alpha \in M(C) \cup \{\mu\}$ and $\beta \in \operatorname{ran} N$. If $\alpha > M(n(\beta))$, then put $U = (M(n(\beta)), \alpha] \times [0, \beta] \cap X$. Assume $U \ni \langle M(\gamma), N(h(\gamma)) \rangle$ for some $\gamma \in A'$. Then we have $n(\beta) < \gamma$ and $N(h(\gamma)) \le \beta$ (thus $h(\gamma) \le n(\beta)$). Therefore $h(\gamma) < \gamma$. But this contradicts the definition of $h(\gamma)$. So $U \cap F = \emptyset$.

If $\alpha \leq M(n(\beta))$, then, since $M(n(\beta)) < \mu$, we have $\alpha \in M(C)$ in this case. Therefore, as $\alpha = M(m(\alpha)) \leq M(n(\beta))$, we have $m(\alpha) \leq n(\beta)$. Assume $m(\alpha) = n(\beta)$. Since $\langle M(m(\alpha)), N(n(\beta)) \rangle = \langle \alpha, \beta \rangle \in X$, it follows that $m(\alpha) = n(\beta) \in \Delta_{MN}(X)$. On the other hand, since $m(\alpha) \in C \subset C' \subset \kappa \setminus \Delta_{MN}(X)$, we get a contradiction. Hence we have $m(\alpha) < n(\beta)$. Put $U = [0, \alpha] \times (N(m(\alpha)), \beta] \cap X$. Assume $U \ni x_{\gamma} = \langle M(\gamma), N(h(\gamma)) \rangle$ for some $\gamma \in A'$ with $m(\alpha) \neq \gamma$. As $M(\gamma) \leq \alpha = M(m(\alpha))$ and $m(\alpha) \neq \gamma$, we have $\gamma < m(\alpha)$. Since $\gamma < m(\alpha) \in C$, we get $h(\gamma) < m(\alpha)$. On the other hand, from $N(m(\alpha)) < N(h(\gamma))$ it follows that $m(\alpha) < h(\gamma)$. This is a contradiction. This argument implies $U \cap F \subset \{x_{m(\alpha)}\}$.

(2-2): $\alpha \in M(C) \cup \{\mu\}$ and $\beta = \nu$. Since $\langle \alpha, \beta \rangle \in X$ but $\langle \mu, \nu \rangle \notin X$, we have $\alpha \in M(C)$. Put $U = [0, \alpha] \times (N(m(\alpha)), \beta] \cap X$. Then $|U \cap F| \leq 1$ as above.

This completes the proof of Claim 1.

Decompose A' into disjoint stationary sets T_0 and T_1 in κ , and put $F_i = \{x_\gamma : \gamma \in T_i\}$ for $i \in 2 = \{0, 1\}$. Let U_i be an open set containing F_i for each $i \in 2$.

CLAIM 2. $\operatorname{Cl} U_0 \cap \operatorname{Cl} U_1 \neq \emptyset$.

Proof. For each $\gamma \in T_i$ with $i \in 2$, since $x_{\gamma} = \langle M(\gamma), N(h(\gamma)) \rangle \in U_i$ and γ and $h(\gamma)$ are in $\text{Lim}(\kappa)$, there are $f(\gamma) < \gamma$ and $g(\gamma) < h(\gamma)$ such that $\gamma \leq g(\gamma)$ and

$$(M(f(\gamma)), M(\gamma)] \times (N(g(\gamma)), N(h(\gamma))] \cap X \subset U_i$$
.

By the PDL, for each $i \in 2$, there are $\zeta_i < \kappa$ and a stationary set $T_i' \subset T_i$ such that $f(\gamma) = \zeta_i$ for each $\gamma \in T_i'$. Put $\gamma_0 = \max\{\zeta_0, \zeta_1\}$. Then

$$(M(\gamma_0), M(\gamma)] \times (N(g(\gamma)), N(h(\gamma))] \cap X \subset U_i$$

for each $i \in 2$ and $\gamma \in T'_i$.

Take γ_1 and γ_2 such that $\gamma_0 < \gamma_1 \in A$ and $\gamma_1 < \gamma_2 \in \bigcap_{i \in 2} \operatorname{Lim}(T_i')$. We shall show $\langle M(\gamma_1), N(\gamma_2) \rangle \in \operatorname{Cl} U_0 \cap \operatorname{Cl} U_1$. To see this, let V be a neighborhood of $\langle M(\gamma_1), N(\gamma_2) \rangle$. As $\gamma_2 \in \operatorname{Lim}(\kappa)$, there is $\gamma_3 < \gamma_2$ with $\gamma_1 \leq \gamma_3$ such that $\{M(\gamma_1)\} \times (N(\gamma_3), N(\gamma_2)] \cap X \subset V$. Then, since $\gamma_2 \in \operatorname{Lim}(T_0')$, there are γ_4 and γ_5 in T_0' with $\gamma_3 < \gamma_4 < \gamma_5 < \gamma_2$. Since $\gamma_5 \in T_0' \subset A' \subset C$, the definition of C yields $\gamma_4 < h(\gamma_4) < \gamma_5$. As $\gamma_1 \in A \cap \gamma_4$, the definition of $h(\gamma_4)$ shows that $h(\gamma_4) \in \operatorname{Lim}(N^{-1}(V_{M(\gamma_1)}(X)))$. Then, since $\gamma_4 \leq g(\gamma_4) < h(\gamma_4)$, there is $\gamma_6 \in N^{-1}(V_{M(\gamma_1)}(X))$ such that $g(\gamma_4) < \gamma_6 < h(\gamma_4)$. Finally, $\langle M(\gamma_1), N(\gamma_6) \rangle \in \{M(\gamma_1)\}$

 $\times (N(\gamma_3), N(\gamma_2)] \cap (M(\gamma_0), M(\gamma_4)] \times (N(g(\gamma_4)), N(h(\gamma_4))] \cap X \subset V \cap U_0.$ This means $\langle M(\gamma_1), N(\gamma_2) \rangle \in \text{Cl } U_0$. Similarly we have $\langle M(\gamma_1), N(\gamma_2) \rangle \in \text{Cl } U_1$. This completes the proof of Claim 2.

Claim 2 contradicts the normality of X. Therefore A^{ν}_{μ} is not stationary in μ . By a similar argument, B^{ν}_{μ} is not stationary in ν .

Finally, since $\triangle_{MN}(X)$ is not stationary in κ , take a cub set D in κ such that $D \cap [M^{-1}(A^{\nu}_{\mu}) \cup N^{-1}(B^{\nu}_{\mu}) \cup \triangle_{MN}(X)] = \emptyset$. For each $\gamma \in D$, since $V_{M(\gamma)}(X) \cap \nu$ is not stationary in ν and $H_{N(\gamma)}(X) \cap \mu$ is not stationary in μ , we can take a cub set C_{γ} in κ disjoint from $N^{-1}(V_{M(\gamma)}(X)) \cup M^{-1}(H_{N(\gamma)}(X))$. Then by an argument similar to [Ku, II, Lemma 6.14], the diagonal intersection

$$E = \{ \delta \in D : \forall \gamma \in D \cap \delta \, (\delta \in C_{\gamma}) \}$$

is cub in κ . Assume $\langle M(\gamma), N(\delta) \rangle \in X$ for some γ and δ in E. Since D is disjoint from $\triangle_{MN}(X)$ and $E \subset D$, we have $\gamma \neq \delta$. So we may assume $\gamma < \delta$. Then since $\gamma \in D \cap \delta$ and $\delta \in E$, we have $\delta \in C_{\gamma}$, and thus $N(\delta) \notin V_{M(\gamma)}(X)$. This contradicts $\langle M(\gamma), N(\delta) \rangle \in X$. This means $X \cap M(E) \times N(E) = \emptyset$. This completes the proof of Lemma 4. \blacksquare

LEMMA 5. Assume $\omega_1 \leq \operatorname{cf} \nu \neq \operatorname{cf} \mu$ and $X \subset (\mu + 1) \times \nu$. If $V_{\mu}(X) \cap \nu$ is stationary in ν , then the following hold:

- (1) For each open cover \mathcal{U} of X, there are $\mu' < \mu$, $\nu' < \nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F} = (\mu', \mu] \times (\nu', \nu) \cap X$.
- (2) For each discrete collection \mathcal{H} of closed sets in X, there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu] \times (\nu', \nu) \cap X$ meets at most one member of \mathcal{H} .

Proof. (1) For each $\delta \in N^{-1}(V_{\mu}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, fix $f(\delta) < \operatorname{cf} \mu$, $g(\delta) < \delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(f(\delta)), \mu] \times (N(g(\delta)), N(\delta)] \cap X \subset U(\delta)$. Applying the PDL, we can find $\delta_0 < \operatorname{cf} \nu$ and a stationary set $S' \subset N^{-1}(V_{\mu}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$ such that $g(\delta) = \delta_0$ for each $\delta \in S'$. If $\operatorname{cf} \mu > \operatorname{cf} \nu$, then put $\gamma_0 = \sup\{f(\delta) : \delta \in S'\}$ and S = S'. If $\operatorname{cf} \mu < \operatorname{cf} \nu$, then, again applying the PDL, we find a stationary set $S \subset S'$ and $\gamma_0 < \operatorname{cf} \mu$ such that $f(\delta) = \gamma_0$ for each $\delta \in S$. In either case, putting $\mu' = M(\gamma_0)$ and $\nu' = N(\delta_0)$, we have found a stationary set $S \subset N^{-1}(V_{\mu}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$ such that $(\mu', \mu] \times (\nu', N(\delta)] \cap X \subset U(\delta)$ for each $\delta \in S$.

For each δ and δ' in S, define $\delta \sim \delta'$ by $U(\delta) = U(\delta')$. Then \sim is an equivalence relation on S, so let S/\sim be its quotient space. For each $E \in S/\sim$, put $U_E = U(\delta)$ for some (any) $\delta \in E$. Note that members of $\{U_E : E \in S/\sim\}$ are all distinct. There are two cases to consider.

First assume that there is $E \in S/\sim$ such that E is unbounded in cf ν . In this case, since $(\mu', \mu] \times (\nu', N(\delta)] \cap X \subset U(\delta) = U_E$ for each $\delta \in E$, we have $(\mu', \mu] \times (\nu', \nu) \cap X \subset U_E$. For each $U \in \mathcal{U}$, put

$$F(U) = \begin{cases} (\mu', \mu] \times (\nu', \nu) \cap X & \text{if } U = U_E, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} .

Next assume all E's, $E \in S/\sim$, are bounded in cf ν . By induction, define $\delta(\eta) \in E(\eta) \in S/\sim$ for each $\eta \in$ cf ν so that $\eta + \sup(\bigcup_{\zeta < \eta} E(\zeta)) < \delta(\eta)$. Clearly $E(\eta)$'s are all distinct and $\{\delta(\eta) : \eta < \text{cf } \nu\}$ is strictly increasing and unbounded in cf ν . For each $U \in \mathcal{U}$, put

$$F(U) = \begin{cases} (\mu', \mu] \times (\nu', N(\delta(\eta))] \cap X & \text{if } U = U_{E(\eta)} \text{ for some } \eta < \operatorname{cf} \nu, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} .

(2) For each $\delta \in N^{-1}(V_{\mu}(X)) \cap \text{Lim}(\text{cf } \nu)$, fix $f(\delta) < \text{cf } \mu$ and $g(\delta) < \delta$ such that $(M(f(\delta)), \mu] \times (N(g(\delta)), N(\delta)] \cap X$ meets at most one member of \mathcal{H} . Then as in (1), we can find desired $\nu' < \nu$ and $\mu' < \mu$.

LEMMA 6. Assume $\omega_1 \leq \operatorname{cf} \nu \neq \operatorname{cf} \mu$, $X \subset (\mu+1) \times (\nu+1) \setminus \{\langle \mu, \nu \rangle\}$ and $V_{\mu}(X) \cap \nu$ is stationary in ν . If $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated, then there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu] \times (\nu', \nu) \cap X$ is closed (and trivially open) in X.

Proof. Since $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated, take an open set V such that $X_{\{\mu\}} \subset V \subset \operatorname{Cl} V \subset X \setminus X^{\{\nu\}}$. For each $\delta \in N^{-1}(V_{\mu}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, fix

 $f(\delta) < \operatorname{cf} \mu$ and $g(\delta) < \delta$ such that $(M(f(\delta)), \mu] \times (N(g(\delta)), N(\delta)] \cap X \subset V$. Then as in Lemma 5, we can find $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu] \times (\nu', \nu) \cap X \subset V$. Since $\operatorname{Cl} V \cap X^{\{\nu\}} = \emptyset$, we conclude that $(\mu', \mu] \times (\nu', \nu) \cap X$ is closed in X.

LEMMA 7. Let \mathcal{P} be a topological property which is closed under taking closed subspaces and free unions. Assume $X \subset (\mu+1) \times (\nu+1)$ and $X_{\mu'+1}$ has the property \mathcal{P} for each $\mu' < \mu$.

- (1) If cf $\mu = \omega$, then X_{μ} has the property \mathcal{P} .
- (2) If cf $\mu \geq \omega_1$ and C is a cub set in cf μ and V is an open set in X containing $X_{M(C)\cup\{\mu\}}$, then $X\setminus V$ has the property \mathcal{P} .

Proof. (1) Since $X_{\mu} = \bigoplus_{n \in \omega} X_{(M(n-1),M(n)]}$ and $X_{(M(n-1),M(n)]}$ is a closed subspace of $X_{M(n)+1}$, X_{μ} has the property \mathcal{P} .

(2) For each $\gamma \in C$, put $h(\gamma) = \sup(C \cap \gamma)$. Note that $h(\gamma) < \gamma$ if $\gamma \in C \setminus \text{Lim}(C)$. For each $\gamma \in C \setminus \text{Lim}(C)$, put $Y(\gamma) = X_{(M(h(\gamma)),M(\gamma)]} \setminus V$. Since $Y(\gamma)$ is a closed subspace of $X_{M(\gamma)+1}$, it has the property \mathcal{P} . Therefore $X \setminus V = \bigoplus_{\gamma \in C \setminus \text{Lim}(C)} Y(\gamma)$ has the property \mathcal{P} .

LEMMA 8. Assume $\omega_1 \leq \operatorname{cf} \mu < \operatorname{cf} \nu$, $X \subset (\mu+1) \times (\nu+1) \setminus \{\langle \mu, \nu \rangle\}$ and A^{ν}_{μ} is stationary in μ . If there are cub sets C in $\operatorname{cf} \mu$ and D in $\operatorname{cf} \nu$ such that $X_{M(C) \cup \{\mu\}}$ and $X^{\{\nu\}}$ are separated, and $X^{N(D) \cup \{\nu\}}$ and $X_{\{\mu\}}$ are separated, then there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu) \times (\nu', \nu) \cap X$ is closed (and trivially open) in X.

Proof. Take open sets V and W in X such that

$$X_{M(C)\cup\{\mu\}} \subset V \subset \operatorname{Cl} V \subset X \setminus X^{\{\nu\}},$$

$$X^{N(D)\cup\{\nu\}} \subset W \subset \operatorname{Cl} W \subset X \setminus X_{\{\mu\}}.$$

First fix $\gamma \in C \cap M^{-1}(A^{\nu}_{\mu}) \cap \operatorname{Lim}(\operatorname{cf} \mu)$. For each $\delta \in D \cap N^{-1}(V_{M(\gamma)}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, since $\langle M(\gamma), N(\delta) \rangle \in V \cap W$, fix $f(\gamma, \delta) < \gamma$ and $g(\gamma, \delta) < \delta$ such that

$$(M(f(\gamma,\delta)),M(\gamma)]\times (N(g(\gamma,\delta)),N(\delta)]\cap X\subset V\cap W.$$

Since $f(\gamma, \delta) < \gamma$ and $g(\gamma, \delta) < \delta$ for each $\delta \in D \cap N^{-1}(V_{M(\gamma)}(X)) \cap \text{Lim}(\text{cf }\nu)$, noting that cf $\mu < \text{cf }\nu$ and applying the PDL, we have $f(\gamma) < \gamma$, $g(\gamma) < \text{cf }\nu$ and a stationary set $S_{\gamma} \subset D \cap N^{-1}(V_{M(\gamma)}(X)) \cap \text{Lim}(\text{cf }\nu)$ such that $f(\gamma, \delta) = f(\gamma)$ and $g(\gamma, \delta) = g(\gamma)$ for each $\delta \in S_{\gamma}$. Put $\delta_0 = \sup\{g(\gamma) : \gamma \in C \cap M^{-1}(A^{\nu}_{\mu}) \cap \text{Lim}(\text{cf }\mu)\}$.

Next, since $f(\gamma) < \gamma$ for each $\gamma \in C \cap M^{-1}(A^{\nu}_{\mu}) \cap \text{Lim}(\text{cf }\mu)$, again applying the PDL, we have $\gamma_0 < \text{cf }\mu$ and a stationary set $T \subset C \cap M^{-1}(A^{\nu}_{\mu}) \cap \text{Lim}(\text{cf }\mu)$ such that $f(\gamma) = \gamma_0$ for each $\gamma \in T$. Then we have

$$(M(\gamma_0), \mu) \times (N(\delta_0), \nu) \cap X \subset V \cap W.$$

Put $\mu' = M(\gamma_0)$ and $\nu' = N(\delta_0)$. Since $\operatorname{Cl} V \cap \operatorname{Cl} W$ is disjoint from $X_{\{\mu\}} \cup X^{\{\nu\}}$, we conclude that $(\mu', \mu) \times (\nu', \nu) \cap X$ is closed in X.

LEMMA 9. Assume $\omega_1 \leq \operatorname{cf} \mu < \operatorname{cf} \nu$, $X \subset \mu \times \nu$ and A^{ν}_{μ} is stationary in μ .

- (1) If \mathcal{U} is an open cover of X, then there are $\mu' < \mu$, $\nu' < \nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F} = (\mu', \mu) \times (\nu', \nu) \cap X$.
- (2) If \mathcal{H} is a discrete collection of closed sets in X, there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu) \times (\nu', \nu) \cap X$ meets at most one member of \mathcal{H} .
- Proof. (1) First fix $\gamma \in M^{-1}(A^{\nu}_{\mu}) \cap \operatorname{Lim}(\operatorname{cf} \mu)$. For each $\delta \in N^{-1}(V_{M(\gamma)}(X)) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, using $\langle M(\gamma), N(\delta) \rangle \in X$, fix $f(\gamma, \delta) < \gamma$, $g(\gamma, \delta) < \delta$ and $U(\gamma, \delta) \in \mathcal{U}$ such that

$$(M(f(\gamma, \delta)), M(\gamma)] \times (N(g(\gamma, \delta)), N(\delta)] \cap X \subset U(\gamma, \delta).$$

As in the proof of Lemma 8, applying the PDL twice, we find a stationary set $T \subset M^{-1}(A^{\nu}_{\mu}) \cap \text{Lim}(\text{cf }\mu)$, a stationary set $S_{\gamma} \subset N^{-1}(V_{M(\gamma)}(X)) \cap \text{Lim}(\text{cf }\nu)$ for each $\gamma \in T$, $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', M(\gamma)] \times (\nu', N(\delta)] \cap X \subset U(\gamma, \delta)$ for each $\delta \in S_{\gamma}$ with $\gamma \in T$.

Put $H = \bigcup_{\gamma \in T} \{\gamma\} \times S_{\gamma}$. For each $\langle \gamma, \delta \rangle$ and $\langle \gamma', \delta' \rangle$ in H, define $\langle \gamma, \delta \rangle \sim \langle \gamma', \delta' \rangle$ by $U(\gamma, \delta) = U(\gamma', \delta')$. For each $E \in H/\sim$, define $U_E = U(\gamma, \delta)$ for some (any) $\langle \gamma, \delta \rangle \in E$. Then note that

(i)
$$\bigcup_{\langle \gamma, \delta \rangle \in E} (\mu', M(\gamma)] \times (\nu', N(\delta)] \cap X \subset U_E.$$

For each $\gamma \in T$ and $E \in H/\sim$, put

$$j(E, \gamma) = \sup\{\delta \in S_{\gamma} : \langle \gamma, \delta \rangle \in E\}.$$

Then put $T(E) = \{ \gamma \in T : j(E, \gamma) = \operatorname{cf} \nu \}$ and $k(E) = \sup T(E)$.

CLAIM 1.
$$(\mu', M(\gamma)] \times (\nu', \nu) \cap X \subset U_E$$
 for each $\gamma \in T(E)$.

Proof. Assume $\langle \alpha, \beta \rangle \in (\mu', M(\gamma)] \times (\nu', \nu) \cap X$ with $\gamma \in T(E)$. Since $\beta < \nu$ and $\gamma \in T(E)$, there is a $\delta \in S_{\gamma}$ with $\langle \gamma, \delta \rangle \in E$ such that $\beta < N(\delta)$. Then, by (i), $\langle \alpha, \beta \rangle \in U_E$. This completes the proof of Claim 1.

There are some cases to consider.

Case 1: There is an $E \in H/\sim$ such that $k(E) = \operatorname{cf} \mu$. In this case, by Claim 1, $(\mu', \mu) \times (\nu', \nu) \cap X \subset U_E$. So for each $U \in \mathcal{U}$, put

$$F(U) = \begin{cases} (\mu', \mu) \times (\nu', \nu) \cap X & \text{if } U = U_E, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} .

Case 2: $k(E) < \text{cf } \mu \text{ for each } E \in H/\sim$. There are two subcases.

(2-1): $\sup\{k(E): E\in H/\sim\} = \operatorname{cf} \mu$. By induction, define two sequences $\{E(\zeta): \zeta < \operatorname{cf} \mu\}$ in H/\sim and $\{\gamma(\zeta): \zeta < \operatorname{cf} \mu\}$ in T so that $\zeta + \sup_{\eta < \zeta} k(E(\eta)) < \gamma(\zeta) \in T(E(\zeta))$. Observe that $E(\zeta)$'s are all distinct and $\{\gamma(\zeta): \zeta < \operatorname{cf} \mu\}$ is strictly increasing and unbounded in $\operatorname{cf} \mu$. By Claim 1, $Z(\zeta) = (\mu', M(\gamma(\zeta))] \times (\nu', \nu) \cap X \subset U_{E(\gamma(\zeta))}$. So for each $U \in \mathcal{U}$, put

 $F(U) = \begin{cases} Z(\zeta) & \text{if } U = U_{E(\zeta)} \text{ for some } \zeta < \operatorname{cf} \mu, \\ \emptyset & \text{otherwise.} \end{cases}$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} .

(2-2): $\gamma_0 = \sup\{k(E) : E \in H/\sim\} < \operatorname{cf} \mu$. Put $T' = T \setminus [0, \gamma_0]$, $H' = \bigcup_{\gamma \in T'} \{\gamma\} \times S_{\gamma}$ and $j(E) = \sup\{j(E, \gamma) : \gamma \in T'\}$ for each $E \in H/\sim$. Then, since $j(E, \gamma) < \operatorname{cf} \nu$ for each $\gamma \in T'$ and $|T'| \le \operatorname{cf} \mu < \operatorname{cf} \nu$, we have

(ii)
$$j(E) < \operatorname{cf} \nu$$
.

Let \prec be the co-lexicographic order on cf $\mu \times$ cf ν , that is, $\langle \zeta', \eta' \rangle \prec \langle \zeta, \eta \rangle$ is defined by $\eta' < \eta$ or $(\eta' = \eta \text{ and } \zeta' < \zeta)$. Since cf $\mu <$ cf ν , the \prec -order type of cf $\mu \times$ cf ν is cf ν . By \prec -induction, we shall define two sequences $\{E(\zeta, \eta) : \langle \zeta, \eta \rangle \in \text{cf } \mu \times \text{cf } \nu\}$ in H/\sim and $\{\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle : \langle \zeta, \eta \rangle \in \text{cf } \mu \times \text{cf } \nu\}$ in H' with $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in E(\zeta, \eta)$ as follows.

Assume $E(\zeta', \eta')$, $\gamma(\zeta', \eta')$ and $\delta(\zeta', \eta')$ are defined with $\langle \gamma(\zeta', \eta'), \delta(\zeta', \eta') \rangle \in E(\zeta', \eta')$ for all $\langle \zeta', \eta' \rangle \prec \langle \zeta, \eta \rangle$. By (ii), take $\delta <$ cf ν with $\eta +$ sup $\{j(E(\zeta', \eta')) : \langle \zeta', \eta' \rangle \prec \langle \zeta, \eta \rangle\} < \delta$. When $\zeta = 0$, take $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in H'$ with $\delta < \delta(\zeta, \eta)$, and let $E(\zeta, \eta)$ be the equivalence class with $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in E(\zeta, \eta)$. When $\zeta > 0$, noting that $\gamma(\zeta', \eta)$ has been defined for all $\zeta' < \zeta$, take $\gamma <$ cf μ such that $\zeta +$ sup $\{\gamma(\zeta', \eta) : \zeta' < \zeta\} < \gamma$, and take $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in H'$ with $\delta < \delta(\zeta, \eta)$ and $\gamma < \gamma(\zeta, \eta)$. Finally, let $E(\zeta, \eta)$ be the equivalence class with $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in E(\zeta, \eta)$. This completes the construction.

By the construction, $E(\zeta, \eta)$'s are all distinct,

(iii) $\{\delta(\zeta,\eta): \langle \zeta,\eta \rangle \in \operatorname{cf} \mu \times \operatorname{cf} \nu \}$ is strictly increasing and unbounded in $\operatorname{cf} \nu$,

and

(iv) $\{\gamma(\zeta,\eta):\zeta\in\operatorname{cf}\mu\}$ is also strictly increasing and unbounded in cf μ for each $\eta<\operatorname{cf}\nu$.

As $\langle \gamma(\zeta, \eta), \delta(\zeta, \eta) \rangle \in E(\zeta, \eta)$, by (i) we have $Z(\zeta, \eta) = (\mu', M(\gamma(\zeta, \eta))] \times (\nu', N(\delta(\zeta, \eta))] \subset U_{E(\zeta, \eta)}$. Moreover, by (iii) and (iv), $\{Z(\zeta, \eta) : \langle \zeta, \eta \rangle \in \text{cf } \mu \times \text{cf } \nu\}$ covers $(\mu', \mu) \times (\nu', \nu) \cap X$.

For each $U \in \mathcal{U}$, put

$$F(U) = \begin{cases} Z(\zeta, \eta) & \text{if } U = U_{E(\zeta, \eta)} \text{ for some } \langle \zeta, \eta \rangle \in \text{cf } \mu \times \text{cf } \nu, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} . The proof of (2) is easier, so we leave it to the reader.

LEMMA 10. Assume $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$, $X \subset (\mu + 1) \times (\nu + 1) \setminus \{\langle \mu, \nu \rangle\}$ and $\triangle_{MN}(X)$ is stationary in κ . If $X(\triangle, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are separated, then there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu) \times (\nu', \nu) \cap X$ is closed (and trivially open) in X.

Proof. Take an open set V in X such that $X(\Delta, M, N) \subset V \subset \operatorname{Cl} V \subset X \setminus (X_{\{\mu\}} \cup X^{\{\nu\}})$. For each $\gamma \in \Delta_{MN}(X) \cap \operatorname{Lim}(\kappa)$, take $f(\gamma) < \gamma$ such that $(M(f(\gamma)), M(\gamma)] \times (N(f(\gamma)), N(\gamma)] \cap X \subset V$. By the PDL, we find $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu) \times (\nu', \nu) \cap X \subset V$. Since $\operatorname{Cl} V$ is disjoint from $X_{\{\mu\}} \cup X^{\{\nu\}}$, we conclude that $(\mu', \mu) \times (\nu', \nu) \cap X$ is closed in X.

LEMMA 11. Assume $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$, $X \subset \mu \times \nu$ and $\triangle_{MN}(X)$ is stationary in κ .

- (1) If \mathcal{U} is an open cover of X, then there are $\mu' < \mu$, $\nu' < \nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F} = (\mu', \mu) \times (\nu', \nu) \cap X$.
- (2) If \mathcal{H} is a discrete collection of closed sets in X, there are $\mu' < \mu$ and $\nu' < \nu$ such that $(\mu', \mu) \times (\nu', \nu) \cap X$ meets at most one member of \mathcal{H} .

Proof. (1) For each $\delta \in \triangle_{MN}(X) \cap \operatorname{Lim}(\kappa)$, fix $g(\delta) < \delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(g(\delta)), M(\delta)] \times (N(g(\delta)), N(\delta)] \cap X \subset U(\delta)$. By the PDL, we find $\mu' < \mu$, $\nu' < \nu$ and a stationary set $S \subset \triangle_{MN}(X) \cap \operatorname{Lim}(\kappa)$ such that $(\mu', M(\delta)] \times (\nu', N(\delta)] \cap X \subset U(\delta)$ for each $\delta \in S$. Then by an argument similar to the proof of Lemma 5, making use of the equivalence relation, we can find the desired shrinking of \mathcal{U} .

(2) is easy. \blacksquare

LEMMA 12. Let \mathcal{P} be a topological property which is closed under taking closed subspaces and free unions. Assume $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$, $X \subset (\mu+1) \times (\nu+1) \setminus \{\langle \mu, \nu \rangle\}$, $V_{\mu}(X)$ is stationary in κ , but $\Delta_{MN}(X)$ is not stationary in κ ; moreover, $X_{\mu'+1}$ and $X^{\nu'+1}$ have the property \mathcal{P} for each $\mu' < \mu$ and $\nu' < \nu$. If V is an open set in X containing $X_{\{\mu\}}$, then $X(R, M, N) \setminus V$ has the property \mathcal{P} .

Proof. Take a cub set D in $Lim(\kappa)$ disjoint from $\triangle_{MN}(X)$. For each $\delta \in N^{-1}(V_{\mu}(X)) \cap D$, fix $f(\delta) < \kappa$ and $g(\delta) < \delta$ such that

$$(M(f(\delta)), \mu] \times (N(g(\delta)), N(\delta)] \cap X \subset V.$$

For each $\delta \in \kappa \setminus [N^{-1}(V_{\mu}(X)) \cap D]$, put $f(\delta) = 0$. By the PDL, take $\delta_0 < \kappa$ and a stationary set $S \subset N^{-1}(V_{\mu}(X)) \cap D$ such that $g(\delta) = \delta_0$ for each $\delta \in S$. Put $\nu' = N(\delta_0)$, $D' = \{\delta < \kappa : \forall \delta' < \delta (f(\delta') < \delta)\}$ and $W = \bigcup_{\delta \in S} (M(f(\delta)), \mu] \times (\nu', N(\delta)] \cap X$. Then D' is cub in κ and $W \subset V$. Since $X^{\nu'+1} \setminus V$ (and therefore $X(R, M, N)^{\nu'+1} \setminus V$) has the property \mathcal{P} , it suffices

to represent $Y = X(R, M, N)^{(\nu', \nu]} \setminus W$ as the free union of subspaces having the property \mathcal{P} . Here note that Y is closed in X and disjoint from $X_{\{\mu\}} \cup X^{\{\nu\}}$. To show this, put $C = \operatorname{Lim}(S) \cap D'$. Then C is cub and $C \subset D \cap D'$. For each $\delta \in C$, put $h(\delta) = \sup(C \cap \delta)$. Then by the closedness of C, $h(\delta) \in C$ and $h(\delta) \leq \delta$. For each $\delta \in C \setminus \operatorname{Lim}(C)$ (in other words, $h(\delta) < \delta$), put $Y(\delta) = Y_{(M(h(\delta)),M(\delta)]}$. Then each $Y(\delta)$ is clopen in Y, and therefore closed in X. Moreover, as $Y(\delta) \subset X_{M(\delta)+1}$, $Y(\delta)$ has the property \mathcal{P} . Since $Y(\delta)$'s, $\delta \in C \setminus \operatorname{Lim}(C)$, are pairwise disjoint, it suffices to show $Y = \bigcup_{\delta \in C \setminus \operatorname{Lim}(C)} Y(\delta)$. To show this, let $\langle \alpha, \beta \rangle \in Y$. Note $\alpha < \mu, \nu' < \beta < \nu$ and $m(\alpha) \geq n(\beta)$. Let δ be the minimal ordinal number with $m(\alpha) \leq \delta \in C$. Note that $n(\beta) \leq \delta$.

First assume $n(\beta) = \delta$. Since $\delta = n(\beta) \le m(\alpha) \le \delta$, we have $\delta \in \Delta_{MN}(X) \cap C$. This contradicts $C \subset D$. Therefore $n(\beta) < \delta$.

Next assume $\delta \in \text{Lim}(C)$. Then by the minimality of δ , we have $m(\alpha) = \delta$. Using $n(\beta) < \delta$ and $\delta \in C \subset \text{Lim}(S) \cap D'$, pick $\delta' \in S$ with $n(\beta) < \delta' < \delta$. Since $\delta \in D'$, we have $f(\delta') < \delta = m(\alpha)$, and therefore $M(f(\delta')) < \alpha$. Moreover, as $n(\beta) < \delta'$, we have

$$\langle \alpha, \beta \rangle \in (M(f(\delta')), \mu] \times (\nu', N(\delta')] \cap X \subset W.$$

This contradicts $Y \cap W = \emptyset$. Therefore $\delta \in C \setminus \text{Lim}(C)$. By the minimality of δ , this shows that $h(\delta) < m(\alpha) \leq \delta$. This means $\alpha \in (M(h(\delta)), M(\delta)]$, hence

$$\langle \alpha, \beta \rangle \in Y_{(M(h(\delta)), M(\delta)]} = Y(\delta).$$

This completes the proof. ■

- **3. Proof of the Theorem.** The implications $(1) \rightarrow (3)$ and $(2) \rightarrow (3)$ are evident.
- $(3) \rightarrow (4)$. Let X be normal and $\langle \mu, \nu \rangle \in (\lambda + 1)^2 \setminus X$ with $\omega \leq \operatorname{cf} \mu$ and $\omega \leq \operatorname{cf} \nu$. Since $\langle \mu, \nu \rangle \notin X$, $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are disjoint closed sets in the normal space X. Thus (4-1) holds.

To show (4-2), assume $\omega_1 \leq \text{cf } \nu$ and $V_{\mu}(X) \cap \nu$ is not stationary in ν . Then there is a cub set D in cf ν such that $V_{\mu}(X) \cap N(D) = \emptyset$. Since $X_{\{\mu\}}$ and $X^{N(D) \cup \{\nu\}}$ are disjoint closed sets, (4-2) holds.

(4-3) is similar.

To show (4-4), since the remaining case is similar, we may assume $\omega_1 \leq$ cf $\mu <$ cf ν , $V_{\mu}(X) \cap \nu$ is not stationary in ν , and both $H_{\nu}(X) \cap \mu$ and A^{ν}_{μ} are non-stationary in μ . By the non-stationarity of A^{ν}_{μ} and Lemma 3, there are cub sets C' in cf μ and D' in cf ν such that $X \cap M(C') \times N(D') = \emptyset$. Since $V_{\mu}(X) \cap \nu$ and $H_{\nu}(X) \cap \mu$ are non-stationary in cf ν and cf μ respectively, take cub sets $C \subset C'$ and $D \subset D'$ such that $M(C) \cap H_{\nu}(X) = \emptyset$ and $N(D) \cap V_{\mu}(X) = \emptyset$. Then $X \cap (M(C) \cup \{\mu\}) \times (N(D) \cup \{\nu\}) = \emptyset$. Therefore

 $X_{M(C)\cup\{\mu\}}$ and $X^{N(D)\cup\{\nu\}}$ are disjoint closed sets in the normal space X. This shows (4-4).

To show (4-5), assume $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$. By $\langle \mu, \nu \rangle \notin X$, $X(\Delta, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are disjoint closed sets in the normal space X. This shows (4-5-a).

To show (4-5-b), assume $\triangle_{MN}(X)$ is not stationary in κ . Since X is normal, (b1) and (b3) are evident. Assume $V_{\mu}(X) \cap \nu$ is not stationary in ν . By Lemma 4 and the non-stationarity of $V_{\mu}(X) \cap \nu$, there is a cub set $D \subset \kappa$ such that $X \cap M(D) \times N(D) = \emptyset$ and $N(D) \cap V_{\mu}(X) = \emptyset$. Then $X \cap (M(D) \cup \{\mu\}) \times N(D) = \emptyset$. Since X(R, M, N) is disjoint from $X^{\{\nu\}}$, we have $X(R, M, N) \cap (M(D) \cup \{\mu\}) \times (N(D) \cup \{\nu\}) = \emptyset$. Since X(R, M, N) is closed in X, $X(R, M, N)_{M(D) \cup \{\mu\}}$ and $X(R, M, N)^{N(D) \cup \{\nu\}}$ are disjoint closed sets in the normal space X. This shows (b2).

Similarly we can show (b4).

 $(4)\rightarrow(1)$. Assume (4) holds but X is not shrinking. Put

$$\begin{split} \mu &= \min\{\zeta \leq \lambda: X_{\zeta+1} \text{ is not shrinking}\}, \\ \nu &= \min\{\eta \leq \lambda: X_{\mu+1}^{\eta+1} \text{ is not shrinking}\}. \end{split}$$

Note that $X_{\mu+1}^{\nu+1}$ is not shrinking, but $X_{\mu'+1}^{\nu+1}$ and $X_{\mu+1}^{\nu'+1}$ are shrinking for each $\mu' < \mu$ and $\nu' < \nu$. Since $X_{\mu+1}^{\nu+1}$ is a clopen subspace of X, we may assume $X = X_{\mu+1}^{\nu+1}$. Then again note that X is not shrinking, but $X_{\mu'+1}$ and $X^{\nu'+1}$ are shrinking for each $\mu' < \mu$ and $\nu' < \nu$. So there is an open cover \mathcal{U} of X which does not have a closed shrinking which covers X.

Claim 1.
$$\langle \mu, \nu \rangle \notin X$$
.

Proof. Assume $\langle \mu, \nu \rangle \in X$. Then there are $\mu' < \mu$, $\nu' < \nu$ and $U \in \mathcal{U}$ such that $Z = (\mu', \mu] \times (\nu', \nu] \cap X \subset U$. Since Z is clopen in X and $X_{\mu'+1} \cup X^{\nu'+1} \cup Z = X$, and $X_{\mu'+1}$ and $X^{\nu'+1}$ are shrinking, by Lemma 1, \mathcal{U} has a closed shrinking which covers X, a contradiction. This completes the proof of Claim 1.

Claim 2.
$$\omega \leq \operatorname{cf} \mu$$
 and $\omega \leq \operatorname{cf} \nu$.

Proof. Assume $\mu = \mu' + 1$. Since X is the free union $X_{\mu} \oplus X_{\{\mu\}}$ of shrinking subspaces, \mathcal{U} can be shrunk, a contradiction. Therefore $\omega \leq \operatorname{cf} \mu$. Similarly $\omega \leq \operatorname{cf} \nu$.

First we consider the following case.

Case 1: cf $\mu \neq$ cf ν . We may assume cf $\mu <$ cf ν . We consider two subcases:

(1-1): $V_{\mu}(X) \cap \nu$ is stationary in ν . Applying Lemma 5 (1) to $\mathcal{U}|X^{\nu}$, we find $\mu' < \mu$, $\nu' < \nu$ and a shrinking \mathcal{F} of $\mathcal{U}|X^{\nu}$ by closed sets in X^{ν} such

that $\bigcup \mathcal{F} = (\mu', \mu] \times (\nu', \nu) \cap X$. Since $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated by (4-1), applying Lemma 6, we get $\mu'' < \mu$ and $\nu'' < \nu$ with $\mu' < \mu''$ and $\nu' < \nu''$ such that $Z = (\mu'', \mu] \times (\nu'', \nu) \cap X$ is closed in X. Then $\mathcal{F}|Z$ is a shrinking of \mathcal{U} by closed sets in X which covers Z. Since $X_{\mu''+1}$, $X^{\nu''+1}$ and $X^{\{\nu\}}$ are shrinking closed subspaces and $X = X_{\mu''+1} \cup X^{\nu''+1} \cup X^{\{\nu\}} \cup Z$, by Lemma 1, \mathcal{U} has a closed shrinking which covers X. A contradiction.

(1-2): $V_{\mu}(X) \cap \nu$ is not stationary in ν . In this case, by (4-2), there is a cub set D in cf ν such that $X_{\{\mu\}}$ and $X^{N(D)\cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X_{\{\mu\}}$ and $X^{N(D)\cup\{\nu\}}$ respectively. Assume cf $\mu = \omega$. Then by Lemma 7 (1), X_{μ} is shrinking, thus $X \setminus V$ is shrinking. Moreover, by (2) of the analogue of Lemma 7, $X \setminus W$ is also shrinking. Therefore by Lemma 1, X is shrinking, a contradiction. Therefore we have $\omega_1 \leq \operatorname{cf} \mu$.

Then by an argument similar to (1-1), assuming $H_{\nu}(X) \cap \mu$ is stationary in μ , we get a contradiction (of course we would use the "analogous" lemmas). So $H_{\nu}(X) \cap \mu$ is not stationary in μ .

Now we are in the situation where $\omega_1 \leq \operatorname{cf} \mu < \operatorname{cf} \nu$, and $H_{\nu}(X) \cap \mu$ and $V_{\mu}(X) \cap \nu$ are not stationary in μ and ν respectively. By (4-3), we also have a cub set C in cf μ such that $X^{\{\nu\}}$ and $X_{M(C)\cup\{\mu\}}$ are separated. Again, we consider two subcases:

(1-2-1): A^{ν}_{μ} is stationary in μ . In this case by Lemmas 8 and 9 (1), we find $\mu' < \mu$, $\nu' < \nu$ and a shrinking \mathcal{F} of \mathcal{U} by closed sets in X such that $Z = (\mu', \mu) \times (\nu', \nu) \cap X$ is clopen in X and $\bigcup \mathcal{F} = Z$. Since $X_{\mu'+1}$, $X^{\nu'+1}$, $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are shrinking closed subspaces and $X = X_{\mu'+1} \cup X^{\nu'+1} \cup X_{\{\mu\}} \cup X^{\{\nu\}} \cup Z$, by Lemma 1, \mathcal{U} has a closed shrinking which covers X. A contradiction.

 $(1-2-2): A^{\nu}_{\mu}$ is not stationary in μ . In this case by (4-4), there are cub sets C in cf μ and D in cf ν such that $X_{M(C)\cup\{\mu\}}$ and $X^{N(D)\cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X_{M(C)\cup\{\mu\}}$ and $X^{N(D)\cup\{\nu\}}$ respectively. Then by Lemma 7 (2), $X \setminus V$ and $X \setminus W$ are shrinking closed subspaces. Therefore by Lemma 1, X is shrinking, a contradiction.

Next we consider the remaining case.

Case 2: cf μ = cf ν = κ . Assume κ = ω . Then by Lemma 7(1), X_{μ} and X^{ν} are shrinking. By (4-1), $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated. Then by Lemma 2, $X = X_{\mu} \cup X^{\nu}$ is shrinking, a contradiction. Therefore $\omega_1 \leq \kappa$. Two subcases are now considered:

(2-1): $\triangle_{MN}(X)$ is stationary in κ . In this case by Lemmas 10 and 11, we have a contradiction as previously.

(2-2): $\triangle_{MN}(X)$ is not stationary in κ . Since X is the union of the closed subspaces X(R, M, N) and X(L, M, N), we may assume that \mathcal{U} does not have a closed shrinking which covers X(R, M, N). Two cases are to consider:

(2-2-1): $V_{\mu}(X) \cap \nu$ is stationary in ν . As in the proof of Lemma 5 (1), for each $\delta \in N^{-1}(V_{\mu}(X)) \cap \text{Lim}(\kappa)$, fix $f(\delta) < \kappa$, $g(\delta) < \delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(f(\delta)), \mu] \times (N(g(\delta)), N(\delta)] \cap X \subset U(\delta)$. Applying the PDL, we can find $\delta_0 < \kappa$ and a stationary set $S \subset N^{-1}(V_{\mu}(X)) \cap \text{Lim}(\kappa)$ such that $g(\delta) = \delta_0$ for each $\delta \in S$. Put $\nu' = N(\delta_0)$.

CLAIM 3. There is a closed shrinking \mathcal{F} of \mathcal{U} such that $\{\mu\} \times (\nu', \nu) \cap X \subset \operatorname{Int}(\bigcup \mathcal{F})$ and $\bigcup \mathcal{F}$ is closed in X.

Proof. As previously, for each δ and δ' in S, define $\delta \sim \delta'$ by $U(\delta) = U(\delta')$, and let S/\sim be its quotient. For each $E \in S/\sim$, put $U_E = U(\delta)$ for some (any) $\delta \in E$. Observe that $(M(f(\delta)), \mu] \times (\nu', N(\delta)] \cap X \subset U_E$ for each $\delta \in E$.

First, assume there is $E \in S/\sim$ such that E is unbounded in κ . Put $W = \bigcup_{\delta \in E} (M(f(\delta)), \mu] \times (\nu', N(\delta)] \cap X$. Note that $W \subset U_E$. Since by the condition (b1), $X_{\{\mu\}}$ and $X \setminus (W \cup X^{\nu'+1})$ are separated, we can find an open set V in X such that $\{\mu\} \times (\nu', \nu) \cap X \subset V \subset \operatorname{Cl} V \subset W$. For each $U \in \mathcal{U}$, put

$$F(U) = \begin{cases} \operatorname{Cl} V & \text{if } U = U_E, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} .

Next assume all E's, $E \in S/\sim$, are bounded in κ . As in Lemma 5, define $\delta(\eta) \in E(\eta) \in S/\sim$ for each $\eta \in \kappa$ so that $\eta + \sup(\bigcup_{\zeta < \eta} E(\zeta)) < \delta(\eta)$. For each $U \in \mathcal{U}$, put

$$W(U) = \begin{cases} (M(f(\delta(\eta))), \mu] \times (\nu', N(\delta(\eta))] \cap X \\ & \text{if } U = U_{E(\eta)} \text{ for some } \eta < \kappa, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $\mathcal{W} = \{W(U) : U \in \mathcal{U}\}$ is a shrinking of \mathcal{U} by clopen sets in X with $\{\mu\} \times (\nu', \nu) \cap X \subset \bigcup \mathcal{W}$. By the condition (b1), take an open set V in X such that $\{\mu\} \times (\nu', \nu) \cap X \subset V \subset \operatorname{Cl} V \subset \bigcup \mathcal{W}$.

For each $U \in \mathcal{U}$, put

$$F(U) = W(U) \cap \operatorname{Cl} V.$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U} . This completes the proof of the claim.

Take the shrinking \mathcal{F} of \mathcal{U} in Claim 3. By Lemma 12,

$$Z = X(R, N, M)^{(\nu', \nu]} \setminus \operatorname{Int}\left(\bigcup \mathcal{F}\right)$$

is a shrinking closed subspace. Since $X(R, M, N) \subset X^{\nu'+1} \cup Z \cup \bigcup \mathcal{F}$, by Lemma 1, \mathcal{U} has a closed shrinking which covers X(R, M, N). A contradiction.

(2-2-2): $V_{\mu}(X) \cap \nu$ is not stationary in ν . Using the clause (b2), take a cub set D in κ such that $X(R,M,N)_{M(D)\cup\{\mu\}}$ and $X(R,M,N)^{N(D)\cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X(R,M,N)_{M(D)\cup\{\mu\}}$ and $X(R,M,N)^{N(D)\cup\{\nu\}}$ respectively. Then applying Lemma 7 (2) to X(R,M,N), we see that $X(R,M,N)\backslash V$ and $X(R,M,N)\backslash W$ are shrinking. Therefore by Lemma 1, X(R,M,N) is shrinking, a contradiction.

Thus in all cases, we get contradictions. This completes the proof of $(4)\rightarrow(1)$.

 $(4)\rightarrow(2)$. This proof is almost similar to the one of $(4)\rightarrow(1)$ except for the case (2-2-1). So we only give a proof of case (2-2-1) for the CWN case.

(2-2-1): $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \kappa$, $\triangle_{MN}(X)$ is not stationary in κ , $V_{\mu}(X) \cap \nu$ is stationary in ν and \mathcal{H} is a discrete collection of closed sets in X which cannot be separated. In this case, for each $\delta \in N^{-1}(V_{\mu}(X)) \cap \operatorname{Lim}(\kappa)$, fix $g(\delta) < \delta$ such that $\{\mu\} \times (N(g(\delta)), N(\delta)] \cap X$ meets at most one element of \mathcal{H} . By the PDL, we can take $\nu' < \nu$ such that $\{\mu\} \times (\nu', \nu) \cap X$ meets at most one element of \mathcal{H} .

CLAIM 3'. There is an open set V such that $\{\mu\} \times (\nu', \nu) \cap X \subset V$ and ClV meets at most one element of \mathcal{H} .

Proof. Put $\mathcal{H}' = \{ H \in \mathcal{H} : H \cap (\{\mu\} \times (\nu', \nu) \cap X) = \emptyset \}$, and $W = X \setminus \bigcup \mathcal{H}'$. Since $\{\mu\} \times (\nu', \nu) \cap X \subset W$, take an open set V such that $\{\mu\} \times (\nu', \nu) \cap X \subset V \subset \operatorname{Cl} V \subset W$ using the clause (b1). Then this V works.

As X(R,M,N) is covered by closed sets $X^{\nu'+1}$, $Z=X(R,M,N)^{(\nu',\nu]}\setminus V$ and $\operatorname{Cl} V$, we get a contradiction as in case (2-2-1) in the proof of (4) \to (1). This completes the proof. \blacksquare

4. Non-normal examples and related questions. In [KOT], it is proved that, for subspaces A and B of ω_1 , $A \times B$ is normal (countably paracompact) if and only if A is not stationary in ω_1 , B is not stationary in ω_1 or $A \cap B$ is stationary.

According to this result, if A is a countable subspace of ω_1 , then, since A is non-stationary, $A \times B$ is normal for each $B \subset \omega_1$. In particular, as is well known, $(\omega + 1) \times \omega_1$ is normal. But as is shown in the next example, there is a non-normal subspace of $(\omega + 1) \times \omega_1$.

EXAMPLE 1. Put $X = \omega \times \omega_1 \cup \{\omega\} \times (\omega_1 \setminus \text{Lim}(\omega_1))$. Put $F = \omega \times \text{Lim}(\omega_1)$ and $H = \{\omega\} \times (\omega_1 \setminus \text{Lim}(\omega_1))$. Then F and H are disjoint closed sets in X. Let U be an open set containing H. For each $\alpha \in \omega_1 \setminus \text{Lim}(\omega_1)$, pick $n(\alpha) \in \omega$

such that $[n(\alpha), \omega] \times \{\alpha\} \subset U$. Since $\omega_1 \setminus \text{Lim}(\omega_1)$ is uncountable, there is an uncountable subset $C \subset \omega_1 \setminus \text{Lim}(\omega_1)$ and $n \in \omega$ such that $n(\alpha) = n$ for each $\alpha \in C$. Observe that $[n, \omega] \times C \subset U$. Pick $\alpha \in \text{Lim}(C)$. Noting that $\text{Lim}(C) \subset \text{Lim}(\omega_1)$, we have $\langle n, \alpha \rangle \in [n, \omega] \times \text{Lim}(C) \cap F \subset \text{Cl} U \cap F$. This argument shows X is not normal.

Next we give a corollary of the Theorem for subspaces of ω_1^2 . For simplicity, we use the following notation: Let $X \subset \omega_1^2$, $\alpha < \omega_1$ and $\beta < \omega_1$. Put $V_{\alpha}(X) = \{\beta < \omega_1 : \langle \alpha, \beta \rangle \in X\}$, $H_{\beta}(X) = \{\alpha < \omega_1 : \langle \alpha, \beta \rangle \in X\}$ and $\Delta(X) = \{\alpha < \omega_1 : \langle \alpha, \alpha \rangle \in X\}$. For subsets C and D of ω_1 , put $X_C = X \cap C \times \omega_1$, $X^D = X \cap \omega_1 \times D$ and $X_C^D = X \cap C \times D$.

Consider M and N as the identity map on ω_1 if $\mu = \nu = \omega_1$ in the Theorem. Then, by checking all clauses in (4) of the Theorem, we can see:

COROLLARY. Let $X \subset \omega_1^2$. Then the following are equivalent.

- (1) X is normal.
- (2) (2-1-a) If α is a limit ordinal in ω_1 and $V_{\alpha}(X)$ is not stationary in ω_1 , then there is a cub set $D \subset \omega_1$ such that $X_{\{\alpha\}}$ and X^D are separated.
 - (2-1-b) If β is a limit ordinal in ω_1 and $H_{\beta}(X)$ is not stationary in ω_1 , then there is a cub set $C \subset \omega_1$ such that $X^{\{\beta\}}$ and X_C are separated.
 - (2-2) If $\triangle(X)$ is not stationary in ω_1 , then there is a cub set $C \subset \omega_1$ such that X_C and X^C are separated.

Intuitively, we may consider (2-1-a) to be a condition which guarantees the normality of $X_{\alpha+1}$ for each $\alpha < \omega_1$, and (2-1-b) the normality of $X^{\beta+1}$ for each $\beta < \omega_1$. If we know that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta < \omega_1$, then (2-2) is a condition which guarantees the normality of X.

Consider $X = \omega_1^2$. Since $V_{\alpha}(X)$ and $H_{\beta}(X)$ are the stationary set ω_1 for each $\alpha, \beta < \omega_1$ and $\Delta(X)$ is also the stationary set ω_1 , the clause (2) of the Corollary is satisfied. So X is normal.

EXAMPLE 2. Let A and B be disjoint stationary sets in ω_1 and put $X = A \times B$. Let α be a limit ordinal in ω_1 . Then we have

$$V_{\alpha}(X) = \begin{cases} B & \text{if } \alpha \in A, \\ \emptyset & \text{otherwise.} \end{cases}$$

Therefore, if $V_{\alpha}(X)$ is not stationary, then necessarily $\alpha \notin A$ and $V_{\alpha}(X) = \emptyset$, so $X_{\{\alpha\}} = \emptyset$. Therefore $X_{\{\alpha\}}$ and X^{ω_1} are separated. This argument proves (2-1-a). Similarly we have (2-1-b). Therefore $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta < \omega_1$.

Note that $\triangle(X) = \emptyset$. Let C be a cub set in ω_1 . Then $X \cap C^2 = (A \cap C) \times (B \cap C) \neq \emptyset$, equivalently $X_C \cap X^C \neq \emptyset$. Thus X_C and X^C cannot

be separated. Therefore X is not normal, because the clause (2-2) is not satisfied.

EXAMPLE 3. Let $X = \{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta\}$, $Y = \{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha < \beta\}$. Checking (2-1-a) and (2-1-b), we can show that $X_{\alpha+1}$, $X^{\beta+1}$, $Y_{\alpha+1}$ and $Y^{\beta+1}$ are normal for each $\alpha, \beta < \omega_1$.

Since $\triangle(X) = \omega_1$ is stationary, (2-2) for X is satisfied. Thus X is normal (but this is obvious, because X is a closed subspace of ω_1^2). On the other hand, note that $\triangle(Y) = \emptyset$. For each cub set C in ω_1 , pick α and β in C with $\alpha < \beta$. Then $\langle \alpha, \beta \rangle \in Y \cap C^2$. Therefore (2-2) for Y is not satisfied. Thus Y is not normal.

Let $X = \omega_1 \times (\omega_1 + 1)$. Observe that $X \cap \omega_1^2 = \omega_1^2$ is normal, and $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta < \omega_1$. Since $\{\langle \alpha, \alpha \rangle : \alpha \in \omega_1 \}$ and $X^{\{\omega_1\}}$ cannot be separated, X is not normal. Note that both $\Delta(X)$ and $H_{\omega_1}(X)$ are the stationary set ω_1 . Next we give a similar example $X \subset \omega_1 \times (\omega_1 + 1)$, but with $\Delta(X)$ and $H_{\omega_1}(X)$ not stationary.

Example 4. Let

$$X = [\omega_1 \setminus \operatorname{Lim}(\omega_1)] \times [(\omega_1 + 1) \setminus \operatorname{Lim}(\omega_1)] \cup \{\langle \alpha, \alpha + 1 \rangle : \alpha \in \operatorname{Lim}(\omega_1)\}.$$

Observe that $X \cap \omega_1^2$ is normal, $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta < \omega_1$ and both $\Delta(X)$ and $H_{\omega_1}(X)$ are the non-stationary set $\omega_1 \setminus \text{Lim}(\omega_1)$. By an argument similar to that for Claim 1 of Lemma 4, we can see that $F = \{\langle \alpha, \alpha+1 \rangle : \alpha \in \text{Lim}(\omega_1)\}$ is closed (discrete). We shall show F and $X^{\{\omega_1\}}$ cannot be separated. To see this, let U be an open set containing F. For each $\alpha \in \text{Lim}(\omega_1)$, since $\langle \alpha, \alpha+1 \rangle \in F \subset U$, take $f(\alpha) < \alpha$ such that $(f(\alpha), \alpha] \times \{\alpha+1\} \cap X \subset U$. By the PDL, there are $\alpha_0 < \omega_1$ and a stationary set $S \subset \text{Lim}(\omega_1)$ such that $f(\alpha) = \alpha_0$ for each $\alpha \in S$. Take $\beta \in \omega_1 \setminus \text{Lim}(\omega_1)$ with $\alpha_0 < \beta$. Noting that $\langle \beta, \alpha+1 \rangle \in X$ for each $\alpha \in S$ with $\alpha > \beta$, we have

$$\langle \beta, \omega_1 \rangle \in \mathrm{Cl}\{\langle \beta, \alpha+1 \rangle : \alpha \in S, \ \alpha > \beta\} \cap X^{\{\omega_1\}} \subset \mathrm{Cl}\, U \cap X^{\{\omega_1\}}.$$

Thus F and $X^{\{\omega_1\}}$ cannot be separated.

In this connection, we have the next question which relates to the clause (4-4) of the Theorem.

QUESTION 1. Does there exist a non-normal subspace X of $\omega_1 \times \omega_2$ such that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha < \omega_1$ and $\beta < \omega_2$?

In this connection, we show:

PROPOSITION. If $X = A \times B$ is a subspace of $\omega_1 \times \omega_2$ such that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha < \omega_1$ and $\beta < \omega_2$, then X is normal.

Proof. If A is not stationary in ω_1 , then take a cub set C in ω_1 disjoint from A. Put $h(\alpha) = \sup(C \cap \alpha)$ for each $\alpha \in C$. Observe that

 $X = \bigoplus_{\alpha \in C \setminus \text{Lim}(C)} X_{(h(\alpha),\alpha]}$. Since $X_{(h(\alpha),\alpha]}$ is a closed subspace of $X_{\alpha+1}$, by the inductive assumption, X is normal. Similarly X is normal if B is not stationary in ω_2 . So we may assume A and B are stationary in respectively ω_1 and ω_2 . Let $\mathcal{U} = \{U_i : i \in 2\}$ be an open cover of X. Fix $\alpha \in A$. For each $\beta \in B$, fix $f(\alpha, \beta) < \alpha$, $g(\alpha, \beta) < \beta$ and $i(\alpha, \beta) \in 2$ such that $(f(\alpha,\beta),\alpha]\times(g(\alpha,\beta),\beta]\cap X\subset U_{i(\alpha,\beta)}$. Applying the PDL to B, we find $f(\alpha) < \alpha, g(\alpha) < \omega_2, i(\alpha) \in 2$ and a stationary set $B(\alpha) \subset B$ in ω_2 such that $f(\alpha, \beta) = f(\alpha)$, $g(\alpha, \beta) = g(\alpha)$ and $i(\alpha, \beta) = i(\alpha)$ for each $\beta \in B(\alpha)$. Then, applying the PDL to A, we find $\alpha_0 < \omega_1$, $i_0 \in 2$ and a stationary set $A' \subset A$ in ω_1 such that $f(\alpha) = \alpha_0$ and $i(\alpha) = i_0$ for each $\alpha \in A'$. Put $\beta_0 = \sup\{g(\alpha) : \alpha \in A'\}$. Then we have $Z = (\alpha_0, \omega_1) \times (\beta_0, \omega_2) \cap X \subset U_{i_0}$. Since X is the union of closed subspaces, X_{α_0+1} , X^{β_0+1} and Z, U has a closed shrinking which covers X. Therefore $X = A \times B$ is normal.

By the result in [KOT], normality and countable paracompactness of $A \times B \subset \omega_1^2$ are equivalent. In this connection, it is natural to ask:

QUESTION 2. For any $X \subset \omega_1^2$, are normality and countable paracompactness of X equivalent?

Note that, by [KS], normality implies countable paracompactness in the realm of subspaces of product spaces of two ordinals.

Finally, we restate a question from [KOT]:

QUESTION 3. For any subspace X of the product space of two ordinals, are countable paracompactness, expandability, strong D-property and weak $D(\omega)$ -property of X equivalent?

References

- [KOT] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Topology Appl. 45 (1992), 245–260.
 - [KS]N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, ibid., to appear.
 - K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, [Ku] Amsterdam, 1980.

Department of Mathematics Faculty of Education Oita University Dannoharu, Oita, 870-11, Japan E-mail: nkemoto@cc.oita-u.ac.jp Department of Mathematical Sciences Franklin College

Franklin, Indiana 46131, U.S.A. E-mail: smithk@franklincoll.edu

Department of Mathematics Faculty of Science Ehime University Matsuyama, Japan E-mail: nogura@dpcs4370.dpc.ehime-u.ac.jp

Department of Mathematics Kanagawa University Yokohama 221, Japan

E-mail: yuki@kani.cc.kanagawa-u.ac.jp

Received 3 June 1996