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Monotone σ-complete groups with unbounded refinement

by

Friedrich W e h r u n g (Caen)

Abstract. The real line R may be characterized as the unique non-atomic directed
partially ordered abelian group which is monotone σ-complete (countable increasing
bounded sequences have suprema), has the countable refinement property (countable sums∑

m
am =

∑
n
bn of positive (possibly infinite) elements have common refinements) and

is linearly ordered. We prove here that the latter condition is not redundant, thus solving
an old problem by A. Tarski, by proving that there are many spaces (in particular, of
arbitrarily large cardinality) satisfying all the above listed axioms except linear ordering.

0. Introduction. The real line R may be characterized up to isomor-
phism as the unique partially ordered abelian group G with the following
properties: G is non-atomic (i.e., there are no minimal elements of G+\{0}),
directed (i.e., every element is the difference of two positive elements), mono-
tone σ-complete (i.e., every bounded increasing sequence of elements has a
supremum), G+ ∪{∞} has the countable refinement property (i.e., if (am)m
and (bn)n are sequences of elements of G+∪{∞} such that

∑
m am =

∑
n bn,

then there exists a double sequence (cmn)m,n of elements of G+ ∪{∞} such
that for all m, am =

∑
n cmn and for all n, bn =

∑
m cmn)—call cardi-

nal groups (Definition 2.1) those partially ordered abelian groups satisfy-
ing all these conditions—and, last but not least, G is linearly ordered (i.e.,
G = G+ ∪ (−G+)).

The question whether the latter condition results from the others was
posed in Tarski’s 1949 book [9] (in the form “are there non-linearly ordered
simple cardinal algebras?”), and, since then, has remained unsolved. The pa-
pers [3] and [4] indicate that if there exists a non-linearly ordered cardinal
group, then it has to be a rather unusual space, while the statement of the
classification theorem presented in [5] involves these hypothetical objects.
The main advance made about these objects is probably Chuaqui’s result
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[3, Corollary 3.3] that if a cardinal group is not linearly ordered, then it is
divisible (thus a partially ordered vector space over the reals); the hard core
of the proof of this result is Bradford’s very difficult Decomposition Theorem
[2]. Another property of non-linearly ordered cardinal groups is that they
are prime, i.e., any two strictly positive elements lie above some strictly pos-
itive element. In [8, Theorem IV.18.4 + additional remark] two examples are
shown of non-linearly ordered prime directed monotone σ-complete partially
ordered abelian groups whose positive cone has the finite refinement prop-
erty (one of them is divisible, the other is not), but unfortunately, they fail
to be cardinal groups. Nevertheless, although no example of non-linearly
ordered cardinal group has ever been constructed, the alleged answer to
Tarski’s question has been positive.

In this paper, we confirm this view and thus we solve Tarski’s problem;
in fact, we show that every directed Archimedean partially ordered abelian
group embeds cofinally into a cardinal group, in a way preserving bounded
countable suprema when they exist (monotone σ-complete embeddings, Def-
inition 1.6). Thus not only are there non-linearly ordered cardinal groups,
but they can be taken of arbitrarily large cardinality. The embedding meth-
ods that we use are elementary, and their context is the one of partially
ordered vector spaces. The hard core of the proof is, when a and bn (n a
non-negative integer) are positive elements such that

∑
n bn = ∞, to find

elements xn (for all n) in some extension such that 0 ≤ xn ≤ an (for all n)
and a =

∑
n∈ω xn (Lemmas 2.3–2.6).

For all sets X and Y , XY denotes the set of all mappings from Y to X.
We denote as usual by ω the first infinite ordinal, that is, ω = {0, 1, 2, . . .},
and we put N = ω \ {0}.

If X and Y are two subsets of a partially ordered abelian group (G,+,≤),
write X + Y = {x + y : x ∈ X and y ∈ Y }, and write X ≤ Y if and only
if x ≤ y for all x ∈ X and y ∈ Y ; in the latter case, write x ≤ Y (resp.
X ≤ y) when X = {x} (resp. Y = {y}). If m is a non-negative integer, write
mX = {mx : x ∈ X}.

If G is a partially ordered abelian group, then we let∞ be an object not
in G and let G+∪{∞} be the commutative monoid whose addition extends
the one of G+ in such a way that x+∞ =∞ for all x; the ordering of G+

is extended by stating that ∞ is maximum. If m is a positive integer, say
as in [7] that G is m-unperforated when it satisfies (∀x)(mx ≥ 0⇒ x ≥ 0),
unperforated when it is m-unperforated for all m ∈ N, and Archimedean
when for all a, b ∈ G, if a ≤ mb for every positive integer m, then 0 ≤ b.

The finite refinement property is the axiom (in the language (+,=))

(∀i<2ai, bi)(a0 + a1 = b0 + b1

⇒ (∃i,j<2cij)(∀i < 2)(ai = ci0 + ci1 and bi = c0i + c1i)).
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An interpolation group is a partially ordered abelian group G whose
positive cone G+ has the finite refinement property (for an explanation
of this terminology, see [7, Proposition 2.1]). For example, every abelian
lattice-ordered group is an interpolation group. This is in particular the
case for G = `∞, the space of all bounded sequences of real numbers, with
positive cone (`∞)+, the subset of all bounded sequences (indexed by ω)
of non-negative real numbers. We will denote by 0 (resp. 1) the constant
sequence with value 0 (resp. 1), and for every n ∈ ω, we will denote by en
the element of `∞ defined by en(i) = 0 if i 6= n, and en(n) = 1. We will
denote by ∨,

∨
the supremum operation, and by ∧,

∧
the infimum operation

(in any partially ordered set). If x is a real number (resp. a sequence of real
numbers), we will write x+ = x∨ 0 (resp. x∨0). Unless specified otherwise,
all vector spaces will be over the reals.

1. Preliminary embedding results. The techniques and results pre-
sented in this section are essentially standard, but they may not be of im-
mediate access; thus, since the proofs are anyway easy, we give some of them
here for convenience. We first define monotone σ-complete partially ordered
abelian groups as in [7]:

1.1. Definition. A partially ordered abelian group G is monotone σ-
complete when every bounded countable increasing sequence of elements of
G admits a supremum.

Thus if G is a partially ordered abelian group, then it is monotone σ-
complete if and only if every countable increasing sequence of elements of
G+∪{∞} admits a supremum. In general, if G is a partially ordered abelian
group and if a ∈ G+∪{∞} and (ai)i∈I is a family of elements of G+∪{∞},
write a =

∑
i∈I ai when a is the supremum of all finite sums

∑
i∈J ai, where

J ranges over all finite subsets of I. We record the following classical (and
easily checked) properties of suprema and infinite sums:

1.2. Lemma. Let G be a partially ordered group, and let X and Y be
two subsets of G. If both

∨
X and

∨
Y exist , then

∨
(X + Y ) exists, and∨

(X + Y ) =
∨
X +

∨
Y .

1.3. Lemma. Let G be a monotone σ-complete partially ordered abelian
group. Then the following holds:

(i) If I is a countable set and Ik (k ∈ ω) are mutually disjoint subsets
such that I =

⋃
k∈ω Ik and if (ai)i∈I is a family of elements of G+ ∪ {∞},

then ∑

i∈I
ai =

∑

k∈ω

∑

i∈Ik
ai.
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(ii) If I is a countable set and (ai)i∈I and (bi)i∈I are families of elements
of G+ ∪ {∞}, then ∑

i∈I
(ai + bi) =

∑

i∈I
ai +

∑

i∈I
bi.

In addition, if G is a partially ordered vector space, then the following holds:

(iii) If I is a countable set and (ai)i∈I is a family of elements of G+ ∪
{∞}, then for every λ ∈ R+,

λ ·
∑

i∈I
ai =

∑

i∈I
λ · ai (with the usual convention 0 · ∞ = 0).

Now, if G is a monotone σ-complete partially ordered vector space and
a = (an)n∈ω is a sequence of elements of G+ ∪ {∞} while s = (sn)n∈ω ∈
(R+)ω, we shall write s(a) =

∑
n∈ω snan. Thus, in particular, s(a) = ∞

if and only if either there exists n such that sn > 0 while an = ∞, or all
the an’s are finite (i.e., they belong to G+) and the set of all partial sums∑
i<n siai for n ∈ ω is unbounded in G.

1.4. Lemma. (i) Let E be an Archimedean partially ordered vector space,
let (λn)n∈ω be a sequence of real numbers with supremum λ ∈ R and let
a ∈ E+. Then

∨
n∈ω(λna) exists in E and is equal to λa.

(ii) Let E be an Archimedean monotone σ-complete partially ordered
vector space, and let a ∈ (E+\{0})ω. Let (sn)n∈ω be an increasing sequence
of elements of (R+)ω such that the set {sn(a) : n ∈ ω} is bounded above
in E. Then the supremum s =

∨
n∈ω sn belongs to (R+)ω and s(a) =∨

n∈ω sn(a).

P r o o f. (i) Without loss of generality, λ ≤ λn + 1/(n + 1) for all n.
Therefore, if b is an upper bound for {λna : n ∈ ω}, then for all n, we have
λa− b ≤ (1/(n+ 1))a for all n, thus, since E is Archimedean, λa ≤ b.

(ii) Put a = (ak)k∈ω, s = (sk)k∈ω and sn = (skn)k∈ω for all n. By
assumption, for all k, the set {sknak : n ∈ ω} is bounded, thus, since ak > 0
and E is Archimedean, {skn : n ∈ ω} is bounded, whence sk ∈ R+. Thus to
conclude, it suffices to show that every element b of G+ which is an upper
bound for all sn(a) (n ∈ ω) is larger than or equal to s(a). For all m,n ∈ ω,
we have

∑
k<m s

k
nak ≤ sn(a) ≤ b, whence, by taking the supremum over n

and using Lemmas 1.2 and 1.4(i), we obtain
∑
k<m s

kak ≤ b. This holds for
every m, whence s(a) ≤ b.

In view of Lemma 1.4(i), if x and a are two elements of an Archimedean
partially ordered vector space E such that a > 0, we shall write

(x : a) =
{∨{λ ∈ R : λa ≤ x} if (∃λ ∈ R)(λa ≤ x),
−∞ otherwise;

therefore, (x : a) ∈ R if and only if (∃λ ∈ R)(λa ≤ x), and then (x : a)a ≤ x.
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1.5. Lemma. Let m be a non-negative integer and let G be a partially
ordered abelian group that is k-unperforated for all k such that 0 ≤ k ≤ m.
Then for every subset X of G, if

∨
X exists, then

∨
(mX) exists and∨

(mX) = m ·∨X.

P r o o f (by induction on m). This is trivial for m = 0, so suppose that
m > 0. Put a =

∨
X; it suffices to prove that if b is an upper bound for

mX, then ma ≤ b. For all elements x and y of X, we have mx ≤ b and
my ≤ b, whence (m − 1)my ≤ (m − 1)b, thus, adding the first and third
inequalities, we obtain m(x+ (m− 1)y) ≤ mb, whence, by m-unperforation,
(m− 1)y ≤ b− x. When x is fixed this holds for all y, whence, by induction
hypothesis, (m− 1)a ≤ b− x. This holds for all x, whence, by definition of
a, a ≤ b− (m− 1)a, whence ma ≤ b.

1.6. Definition. Let f : G → H be a homomorphism of partially or-
dered abelian groups. Then f is complete (resp. monotone σ-complete) when
for every subset (resp. range of a bounded increasing sequence) X of G, if∨
X exists in G, then

∨
f [X] exists in H and

∨
f [X] = f(

∨
X).

Recall now that for every directed Archimedean partially ordered abelian
group G, there exists a unique (up to isomorphism) embedding from G into
a (Dedekind) complete lattice-ordered group Ĝ such that every element of Ĝ
is a supremum of elements of G (see for example [1] for more information).
Then denote by Gσ (the Dedekind σ-completion of G) the closure of G in Ĝ
under countable suprema and infima.

1.7. Lemma. For every directed Archimedean partially ordered abelian
group G, the natural embedding from G into Ĝ is complete; thus so is the
natural embedding from G into Gσ.

P r o o f. Let X be a subset of G, with supremum a ∈ G. To prove the
result about Ĝ, it suffices to prove that for every element y of Ĝ, if y is an
upper bound of X, then a ≤ y. Since −y is a supremum of elements of G,
there exists a subset Y of G such that y =

∧
Y , and so X ≤ y means that

X ≤ Y ; but now, both X and Y are subsets of G, thus a ≤ Y by definition
of a; whence a ≤ y. Thus the natural embedding from G into Ĝ is complete.
Since G ⊆ Gσ ⊆ Ĝ, the result for Gσ follows immediately.

The result of this lemma will be of importance in the following proposi-
tion:

1.8. Proposition. Let G be a directed Archimedean partially ordered
abelian group. Then G admits a complete cofinal embedding into a Dedekind
σ-complete vector space E such that |E| ≤ |G|ℵ0 .

P r o o f. First, let G′ be the divisible, unperforated closure of G (it can
for example be realized as the tensor product G⊗Q): thus G′ is a partially
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ordered vector space over Q and every element of G′ can be written as
(1/n)x for some n ∈ N and x ∈ G. It is easy to verify that G′ is also
directed and Archimedean. Using Lemma 1.5, it is easy to verify that the
natural embedding from G into G′ is complete. We conclude by taking for
E the Dedekind σ-completion of G′ (taking the σ-completion instead of the
completion yields the bound on the cardinality).

Thus from now on, we are going to focus attention on partially ordered
vector spaces.

2. The main result; unbounded refinement property. For every
interpolation group G, it results immediately from the definitions that G is
monotone σ-complete if and only if G+ ∪{∞} is a weak cardinal algebra (in
the sense, for example, of [10, Definition 2.2]). Of course, in all well-known
cases except for the closed subgroups of R (where G is isomorphic either to
R or to Z), G+ ∪ {∞} fails to be a cardinal algebra. The caveat for this lies
in the following definition:

2.1. Definition. Let G be a monotone σ-complete partially ordered
abelian group. Then G+ has the unbounded refinement property when for
all a, bn (n ∈ ω) in G+ such that

∑
n∈ω bn = ∞, there exists a sequence

(an)n∈ω of elements of G+ such that (∀n ∈ ω)(an ≤ bn) and a =
∑
n∈ω an.

If G is a directed monotone σ-complete partially ordered abelian group and
G+ has both the finite refinement property and the unbounded refinement
property, we will say that G is a cardinal group; if in addition G is a vector
space, then we will say that G is a cardinal space.

Note that it is sufficient to verify the condition above for a and all the
bn’s in E+ \ {0}. It is also to be noted that, for example by [7, Theorem
16.10], every directed monotone σ-complete interpolation group (thus every
cardinal group) is Archimedean (by contrast, there exist non-Archimedean
directed monotone σ-complete partially ordered abelian groups, for example
G = Z × Z endowed with the positive cone G+ defined by (x, y) ∈ G+ ⇔
(x = y = 0 or (x > 0 and y ≥ 0))).

Although the following proposition will not be used in the sequel, it is
worth recording:

2.2. Proposition. For every cardinal group G, the positive cone G+ ∪
{∞} has the general (countable) refinement property, i.e., for all elements
am, bn (m,n ∈ ω) of G+ ∪ {∞} such that

∑
m∈ω am =

∑
n∈ω bn, there

exists a double sequence (cmn)m,n∈ω such that (∀m ∈ ω)(am =
∑
n∈ω cmn)

and (∀n ∈ ω)(bn =
∑
m∈ω cmn).

P r o o f. By [6, Theorem 1.6] (whose proof is far from being trivial!),
G+ ∪ {∞} is a cardinal algebra.
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By Chuaqui’s result [3, Corollary 3.3], itself resulting from Bradford’s
Decomposition Theorem [2], every non-linearly ordered cardinal group is a
cardinal space.

Note also that uncountable versions of Proposition 2.2 do not hold, even
for the very simple structure R+∪{∞}: for example, in this structure, there
is no refinement for the equality 1 + . . .+ 1︸ ︷︷ ︸

ω times

= 1 + . . .+ 1︸ ︷︷ ︸
ω1 times

.

Now, from 2.3 to 2.6, we will fix a directed Archimedean monotone σ-
complete partially ordered vector space E and elements a, bn (n ∈ ω) of E+\
{0} (write b = (bn)n∈ω) such that

∑
n∈ω bn = ∞, and we will construct a

monotone σ-complete embedding of E into a directed Archimedean partially
ordered abelian group Ẽ with elements xn (n ∈ ω) such that for all n,
0 < xn < bn and the sum

∑
n∈ω xn exists and is equal to a.

Let I be the set of all bounded sequences of non-negative real numbers
s such that s(b) < ∞. For all (x, t) ∈ E × `∞, let Λ(x, t) be the set of all
real numbers λ such that (−t − λ1)+ ∈ I and x ≥ λa + (−t − λ1)+(b).
Furthermore, let P be the set of all those (x, t) ∈ E × `∞ such that Λ(x, t)
6= ∅ and let F be the subspace of E × `∞ generated by the vector (a,−1).

2.3. Lemma. For all (x, t) ∈ E × `∞, Λ(x, t) is a compact subset of
the interval [− sup(t), (x : a)] (the latter being by convention empty if
− sup(t) > (x : a)).

P r o o f. Let λ ∈ Λ(x, t). If λ < − sup(t), then there exists ε > 0 such that
(λ+ ε)1 ≤ −t, whence ε1 ≤ (−λ1− t)+; since (−λ1− t)+ ∈ I and 0 ≤ ε1,
it follows that ε1 ∈ I, whence 1 ∈ I, a contradiction. Hence − sup(t) ≤ λ.
Moreover, λa ≤ λa+ (−λ1− t)+(b) ≤ x, whence λ ≤ (x : a).

Now let us prove that Λ(x, t) is compact. Thus let λ be a point in the
closure of Λ(x, t). Thus λ is the limit of a sequence (λn)n∈ω of points of
Λ(x, t), and we may assume that (λn)n∈ω is either increasing or decreasing.
Thus we distinguish two cases:

C a s e 1: (λn)n∈ω is increasing. Then for all n ∈ ω, we have x ≥ λna+
(−λn1 − t)+(b) ≥ λna + (−λ1 − t)+(b) (in particular, (−λ1 − t)+ ∈ I),
whence, by Lemma 1.4(i), x ≥ λa+ (−λ1− t)+(b). Hence, λ ∈ Λ(x, t).

C a s e 2: (λn)n∈ω is decreasing. For all n ∈ ω, put sn = (−λn1 − t)+.
Then sn ∈ I and x ≥ λna + sn(b), whence x ≥ λa + sn(b). Therefore, by
Lemma 1.4(ii), s = (−λ1− t)+ =

∨
n∈ω sn belongs to I, and x ≥ λa+ s(b).

Thus we can conclude again that λ ∈ Λ(x, t).

In both cases, Λ(x, t) is compact.

2.4. Lemma. The set P is the positive cone of a structure of partially
preordered vector space on E × `∞, and P ∩ (−P ) = F . Furthermore, the
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quotient space Ẽ = (E× `∞,+, (0,0), P )/F , is a directed Archimedean par-
tially ordered vector space, and the natural map j : E → Ẽ, x 7→ (x,0) +F ,
is a cofinal embedding of partially ordered vector spaces.

P r o o f. It is easy to verify that in fact, for all elements (x, t) and (x′, t′)
of E×`∞ and for all real λ ≥ 0, we have Λ(x, t)+Λ(x′, t′) ⊆ Λ(x+x′, t+t′)
and λ · Λ(x, t) ⊆ Λ(λx, λt); hence, P + P ⊆ P and λP ⊆ P .

Next, let (x, t) be an element of P ∩ (−P ). Let λ ∈ Λ(x, t) and λ′ ∈
Λ(−x,−t); put s = (−λ1 − t)+ and s′ = (−λ′1 + t)+, so that both s and
s′ belong to I and x ≥ λa + s(b) and −x ≥ λ′a + s′(b). By adding both
inequalities together we obtain 0 = x+(−x) ≥ (λ+λ′)a, whence λ+λ′ ≤ 0.
On the other hand, −(λ + λ′)1 ≤ s + s′ ∈ I, whence one cannot have
λ+λ′ < 0 (because 1 6∈ I); thus, λ+λ′ = 0. Thus 0 = x+(−x) ≥ (s+s′)(b)
with s and s′ in (`∞)+ and all the bn’s (strictly) positive, whence s = s′ = 0,
so that t = −λ1 and x = λa; therefore, (x, t) = (λa,−λ1) ∈ F .

We now prove that Ẽ is Archimedean. It suffices to prove that if (x, t) and
(x0, t0) are elements of E×`∞ such that for all n ∈ N, (x, t)+(1/n)(x0, t0) ∈
P , then (x, t) ∈ P . First, since E+ × (`∞)+ ⊆ P and both E and `∞

are directed, we may assume without loss of generality that x0 ≥ 0 and
t0 ≥ 0. Next, for all n ∈ N, let λn be any element of Λ(x + (1/n)x0, t +
(1/n)t0). Then − sup(t + t0) ≤ λn ≤ (x + x0 : a), thus (λn)n∈N has a
convergent subsequence, say (λn)n∈S for some infinite subset S of N. Let
λ = limn∈S,n→∞ λn. Without loss of generality, (λn)n∈S is either increasing
or decreasing.

C a s e 1: (λn)n∈S is increasing. Then for all n ∈ S, we have x +
(1/n)x0 ≥ λna + (−λn1 − t − (1/n)t0)+(b) ≥ λna + sn(b), where sn =
(−λ1 − t − (1/n)t0)+. Thus for all n ∈ S, sn(b) ≤ x + x0 − λ0a, whence
s = (−λ1 − t)+ =

∨
n∈S sn belongs to I and, by Lemmas 1.2 and 1.4 and

the fact that E is Archimedean, x ≥ λa + s(b); thus λ ∈ Λ(x, t), whence
(x, t) ∈ P .

C a s e 2: (λn)n∈S is decreasing. Then for all n ∈ S, we have x +
(1/n)x0 ≥ λna + sn(b), where sn = (−λn1 − t − (1/n)t0)+; thus x +
(1/n)x0 ≥ λa + sn(b); it follows that sn(b) ≤ x + x0 − λa, thus s =
(−λ1 − t)+ =

∨
n∈S sn belongs to I and, by Lemma 1.4(ii) and the fact

that E is Archimedean, x ≥ λa+ s(b); thus we obtain λ ∈ Λ(x, t), whence
(x, t) ∈ P again.

The fact that j is a homomorphism of partially ordered vector spaces
is obvious. If x ∈ E and (x,0) ∈ P , then, for all λ ∈ Λ(x,0), we have
(−λ1)+ ∈ I, whence λ ≥ 0 (again because 1 6∈ I); thus x ≥ 0, and it
follows that j is an embedding of partially ordered vector spaces. For all
(x, t) ∈ E×`∞, we have (λa,−t) ∈ P where λ = sup(t), whence (x, t)+F ≤
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(x+ λa,0) + F ∈ j[E]; thus j is cofinal. Since E is directed, it follows that
Ẽ is also directed.

For all (x, t) ∈ E × `∞, denote by [x, t] its projection on Ẽ (that is,
[x, t] = (x, t) + F ).

2.5. Lemma. The embedding j is monotone σ-complete.

P r o o f. Let (cn)n∈ω be a bounded increasing sequence of elements of E,
with supremum c. We prove that for all (x, t) ∈ E×`∞, if (∀n ∈ ω)([cn,0] ≤
[x, t]), then [c,0] ≤ [x, t]. For all n ∈ ω, let λn be the infimum of Λ(x−cn, t).
Note that (λn)n∈ω is increasing and that for all n, λn ≤ (x − cn : a) ≤
(x − c0 : a), thus λ =

∨
n∈ω λn is a real number. Moreover, for all n, sn =

(−λn1 − t)+ belongs to I and x − cn ≥ λna + sn(b) ≥ λna + s(b), where
s =

∧
n∈ω sn = (−λ1− t)+. This holds for all n, thus, by Lemmas 1.2 and

1.4(i), x ≥ c+ λa+ s(b); whence λ ∈ Λ(x− c, t), so that [c,0] ≤ [x, t].

Now, for all n ∈ ω, put xn = [0,en].

2.6. Lemma. The space Ẽ satisfies the following statements:

(i) (∀n ∈ ω)(0 < xn < j(bn)).
(ii) j(a) =

∑
n∈ω xn.

P r o o f. (i) It is easy to verify that 0 ∈ Λ(0,en), 0 ∈ Λ(bn,−en) and that
both (0, en) and (b,−en) do not belong to F .

(ii) For all n ∈ ω, put fn =
∑
k<n ek. Since 1 ∈ Λ(a,−fn), we have∑

k<n xk ≤ j(a). Thus, to conclude, it suffices to show that for every upper
bound [x, t] of

{∑
k<n xk : n ∈ ω}, we have j(a) ≤ [x, t]. For all n ∈ ω,

Λ(x, t− fn) is non-empty and thus it contains as an element its supremum
λn; note that (λn)n∈ω is decreasing and λn ≥ − sup(t− fn) ≥ − sup(t) for
all n, thus λ =

∧
n∈ω λn is a real number. For all n, sn = (−λn1− t + fn)+

belongs to I and x ≥ λna+ sn(b) ≥ λa+ sn(b), whence, by Lemma 1.4(ii),
s = (−λ1− t + 1)+ =

∨
n∈ω sn belongs to I and s(b) =

∨
n∈ω sn(b). Thus,

by Lemma 1.4(ii), x ≥ λa+ s(b); since s = (−(λ− 1)1− t)+, it follows that
λ− 1 ∈ Λ(x− a, t). Hence j(a) ≤ [x, t] and we are done.

In the sequel, we shall identify E and j[E], and write Ẽ = E[a;
∑
n∈ω bn

=∞]. We can now state our main theorem:

2.7. Lemma. Every directed Archimedean partially ordered abelian group
G admits a monotone σ-complete cofinal embedding into a cardinal space E
such that |E| = |G|ℵ0 .

P r o o f. By Proposition 1.8, it suffices to prove the theorem when G is
a (non-trivial) monotone σ-complete (or even Dedekind σ-complete) vector
space. Thus for every directed Archimedean monotone σ-complete partially
ordered vector space E, we shall first construct a certain extension E′ of E.
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Start with E0 = E. Enumerate all ordered pairs (a, (bn)n∈ω) such that
a, bn ∈ E+ \ {0} (for all n) and

∑
n∈ω bn =∞ in a list (aξ, (bξn)n∈ω)0<ξ<θ,

where θ = |E|ℵ0 . Define inductively Eξ (ξ < θ) and Fξ (0 < ξ ≤ θ) by the
following rule:

Fξ =
⋃

η<ξ

Eη, Eξ =
(
Fξ

[
aξ;
∑
n∈ω

bξn =∞
])σ

.

Clearly, |Eξ| ≤ |E|ℵ0 . Since (Eξ)ξ<θ is strictly increasing for inclusion, E′ =
Fθ has cardinality exactly |E|ℵ0 . By Lemmas 1.7, 2.4 and 2.5, for ξ ≤ η < θ,
the transition map Eξ → Eη is monotone σ-complete cofinal, thus so is
the natural embedding from E into E′. Since, by König’s Theorem, θ has
uncountable cofinality, and by construction (in particular, we use again the
fact that the transition maps are monotone σ-complete), E′ is monotone
σ-complete.

Moreover, all the E+
ξ have the finite refinement property (because Eξ is

Dedekind σ-complete), thus E′+ has the finite refinement property. Finally,
if a and bn (n ∈ ω) are elements of E+ \ {0} such that

∑
n∈ω bn =∞, then

there exists ξ < θ such that a = aξ and (bn)n∈ω = (bξn)n∈ω, thus, since the
natural embedding from Eξ into E′ is monotone σ-complete, and by Lemma
2.6, there are elements xn (n ∈ ω) of Eξ (thus of E′) such that for all n,
0 < xn < bn while a =

∑
n∈ω xn.

Finally, put E(0) = E, E(α+1) = (E(α))′ for all α < ω1, and for every
countable limit ordinal λ, E(λ) = (

⋃
β<λE

(β))σ. Then E∗ =
⋃
α<ω1

E(α)

satisfies the required conditions.

2.8. Problem. By Theorem 2.7, there are non-linearly ordered cardinal
spaces of cardinality 2ℵ0 , thus they can be encoded by subsets of R. What is
the complexity of these subsets? Can they for example be taken in the Borel
hierarchy? Note that in order to make the construction of non-trivial cardinal
spaces as effective as possible, one should at least be able to avoid the
consideration of the enumeration (aξ, (bξn)n∈ω)ξ<θ of the proof of Theorem
2.7, thus to carry out the construction of Ẽ (from 2.3 to 2.6) for all those
families simultaneously (i.e., to consider the amalgamated sum of all the
E[a;

∑
n∈ω bn =∞]’s over E). One may also try to modify the construction

of [8, Theorem IV.18.4].

2.9. Problem. If G is a cardinal space, is |G| equal to |G|ℵ0? How many
cardinal spaces are there of a given cardinality?

2.10. Problem. In [12], we construct “non-measurable” directed par-
tially ordered vector spaces (over the rationals) with interpolation and order-
unit, of cardinality ℵ2; in particular, they cannot be isomorphic to K0(R)
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for any (von Neumann) regular ring R. Study the analogue of this for the
more restrictive class of cardinal groups.

2.11. Problem. Generalize the results of this paper to monotone κ-
complete partially ordered abelian groups (which means for example that
suprema of bounded increasing families indexed by an ordinal < κ exist).
Note, as we have remarked above, that all the possible “reasonable” versions
of infinite refinement are not equivalent.
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Département de Mathématiques
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