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There exists a polyhedron dominating infinitely
many different homotopy types

by

Danuta K o ł o d z i e j c z y k (Warszawa)

Abstract. We answer a question of K. Borsuk (1968) by showing that there exists a
polyhedron dominating infinitely many polyhedra of different homotopy types. This also
gives solutions of two other problems in shape theory.

In this paper, every polyhedron is finite. Without loss of generality, we
assume every polyhedron and CW -complex to be connected.

In 1979 at the International Topological Conference in Moscow K. Borsuk
[B] defined the capacity C(A) of a compactum A as the cardinality of the
class of the shapes of all compacta X for which Sh(X) ≤ Sh(A) and asked:

Is the capacity of each polyhedron finite?

Actually this question appeared for the first time in 1968, at the Topo-
logical Conference in Herceg-Novi (see also [B3]).

The problem was stated in both pointed and unpointed case, but by
Hastings and Heller’s results [HH], one can deduce that the pointed and
unpointed capacity of each polyhedron are the same.

For many years the answer to Borsuk’s question has been known only
in dimension 1. Indeed, every compactum dominated by a 1-dimensional
polyhedron has the shape of a movable continuum of dimension 1. Thus,
by the result of Trybulec [Tr], it is shape equivalent to some continuum in
E2. Since two continua in E2 have the same shape if and only if their first
Betti numbers coincide (see [B1], Theorem 7.1, p. 221), the capacity of each
1-dimensional polyhedron is finite.

In the present paper we show that the answer to Borsuk’s question is
negative:
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There exists a polyhedron (of dimension 2) which homotopy dominates
infinitely many polyhedra of different homotopy types.

We also indicate a few consequences of this result. One of them is a
negative solution of some problem of Borsuk and Olędzki on retracts of
polyhedra (see [BO], p. 69):

Let T be a triangulation of a polyhedron P . By a T -retract of P we
understand a retract of P which is the union of some simplexes of T . Is it
true that for each retract A of P , there is a T -retract of P which is homotopy
equivalent to A?

Moreover, we observe that every polyhedron P having C(P ) =∞ leads
either to a counterexample to the above question or to an example of a poly-
hedron with infinitely many different shape factors which is still unknown.

We suppose the reader to be familiar with the basic notions and theorems
in shape theory; the classical work here is [B1].

Since every polyhedron is homotopy equivalent to a finite CW -complex
of the same dimension, and conversely, we use the terms “polyhedron” and
“finite CW -complex” interchangeably.

1. There exists a polyhedron dominating infinitely many differ-
ent homotopy types. In 1949 J. H. C. Whitehead proved the following
theorem:

Theorem (J. H. C. Whitehead, [Wh1], [Wh2]). Assume that X and Y
are finite CW -complexes, dimX = dimY = 2 and π1(X) ∼= π1(Y ). Then
there exist integers mX and mY such that

X ∨
∨
mX

S2 ' Y ∨
∨
mY

S2 (1).

Therefore, we may consider the directed tree whose vertices are the ho-
motopy types of 2-dimensional polyhedra with a given fundamental group
and where the homotopy type of X is joined by an edge to the homotopy
type of X ∨ S2 (this graph clearly contains no circuits).

Each such tree is partitioned into levels by the Euler–Poincaré charac-
teristic χ, i.e. the types of X and Y are on the same level in the tree iff
χ(X) = χ(Y ).

By junctions in a tree we mean homotopy types with two or more im-
mediate predecessors, i.e. ones which have two or more inequivalent factor-
izations involving an S2 summand. Our example of a polyhedron P with
infinite C(P ) will be obtained as an infinite junction in some tree.

(1) Here
∨
k
S2, where k ∈ N, denotes the wedge of k spheres S2.
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Let P be a finite 2-dimensional CW -complex with a single vertex. It is
well known that one can assign to P a presentation P(P ) of its fundamental
group π1(P ) in which the generators correspond to the 1-cells of P and the
relators are given by the characteristic maps of the 2-cells of P , where for
every sphere S2, i.e. a 2-cell attached in a trivial way, we add the relation
1 = 1.

Conversely, if P is a finite presentation of some group G, then there is
a finite 2-dimensional CW -complex K(P) with a single vertex in which the
1-cells correspond to the generators of P and the attaching maps of the
2-cells are given by the relations of P, i.e. if P = 〈g1, . . . , gk | r1, . . . , rm〉,
then

K(P) = (e0 ∪ e1
1 ∪ . . . ∪ e1

k) ∪r1 e2
1 ∪r2 . . . ∪rm e2

m.

It is easily seen that π1(K(P)) ∼= G.
So there is a 1-1 correspondence between finite 2-dimensional CW -com-

plexes with a single vertex with fundamental group isomorphic to G, and
finite presentations of this group in which we admit relations 1 = 1.

From now on we assume every 2-dimensional CW -complex to have only
one vertex. This involves no loss of generality, since it is well known that
each CW -complex homotopy deforms into a one-vertex CW -complex of the
same dimension (see for instance [FF], p. 34).

Let us begin with the remark that, by its proof (see for example [Wh2],
p. 49, Theorem 14), the Whitehead theorem on trees can be strengthened
as follows:

Theorem. Let X and Y be finite CW -complexes with dimX = dimY
= 2 and π1(X) ∼= π1(Y ) such that the associated presentations P(X) and
P(Y ) have a generators and b relations, and c generators and d relations
(respectively). Then

X ∨
∨

a+d

S2 ' Y ∨
∨

b+c

S2.

Using the above and the result of M. Lustig [Lu], we obtain:

Theorem 1. There exists a polyhedron P with dimP = 2 and infinitely
many polyhedra Pi with dimPi = 2, of different homotopy types, such that
Pi ∨ S2 ' P .

P r o o f. First observe that from the Whitehead theorem on trees as
formulated above, it follows that if there exists a level in some tree con-
taining infinitely many different homotopy types of CW -complexes Ki with
dimKi = 2 for which P(Ki) have the same number of generators, then there
exist infinitely many finite CW -complexes Pi with dimPi = 2, of different
homotopy types, such that Pi ∨ S2 are all homotopy equivalent.
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Let Ki, for i a prime, be the 2-dimensional CW -complex with a single
vertex associated with the presentation

Pi = 〈r, s, t | s2 = t3, [r2, s2i+1] = 1, [r2, t3i+1] = 1〉.
M. Lustig [Lu] has shown that the Ki have isomorphic fundamental groups
and pairwise different homotopy types.

Since each Pi has 3 generators and 3 relations, the polyhedron K =
K1 ∨

∨
6 S

2 has C(K) = ∞. Moreover, there exists an infinite junction in
the tree of the group π1(Ki), which is the desired conclusion.

R e m a r k 1. In 1979 M. N. Dyer conjectured [Dy] that if X and Y are
polyhedra with dimX = dimY = 2, then X ∨S2∨S2 ' Y ∨S2∨S2 implies
that X ∨S2 ' Y ∨S2. So it is of interest to ask whether the CW -complexes
Ki ∨ S2, for Ki from the proof of Theorem 1, are all homotopy equivalent.

R e m a r k 2. Note that the CW -complexes Ki are obtained by attach-
ing two 2-cells to the CW -complex associated with the presentation 〈s, t |
s2 = t3〉 of the trefoil group T . The above-mentioned result of Lustig [Lu] is
based on the earlier result of Dunwoody [Du] stating that for each integer i,
the pair s2i+1, t3i+1 generates T . Moreover, the so-called relation modules
of T corresponding to these generating systems are pairwise non-isomorphic
ZT -modules [BDu]. The corresponding presentations of T have each no more
than d relations, for some integer d independent of i (see [MP]). The ques-
tion arises if there are infinitely many different homotopy types among the
associated CW -complexes.

Let us now state some consequences of Theorem 1. The first is an im-
mediate negative solution of the following problem in shape theory [DKN]:

Is it true that for a polyhedron P , the cardinality of the class of the shapes
of all movable P -like compacta is finite?

Corollary 1. There exists a polyhedron P (with dimP = 2) such that
the cardinality of the class of the shapes of all movable P -like compacta is
infinite.

P r o o f. Indeed, by the known result of Trybulec (see [Kd]), every space
dominated by a given polyhedron P has the shape of some P -like com-
pactum. Obviously, every polyhedron is movable. This ends the proof.

Borsuk also asked about the relations between C(A), C(B), C(A ∩ B)
and C(A∪B), for two compacta A and B ([B], answered in [K1]). Our main
result implies the following:

Corollary 2. There exist two finite CW -complexes P and Q with
dimP = dimQ = 2 such that C(P ), C(Q) and C(P ∩ Q) are finite, while
C(P ∪Q) is infinite.
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P r o o f. For 1 ≤ i ≤ 4, let Li be the finite 2-dimensional CW -complex
associated with the presentation Ri, where

R1 = 〈r, s, t〉,
R2 = 〈r, s, t | s2 = t3〉,
R3 = 〈r, s, t | s2 = t3, [r2, s3] = 1〉,
R4 = 〈r, s, t | s2 = t3, [r2, s3] = 1, [r2, t4] = 1〉,

and let Li = L4 ∨
∨
i−4 S

2, for 5 ≤ i ≤ 10.
Note that for i ≥ 2, Li = L′i−1 ∪Bi, where L′i−1 is a finite CW -complex

homotopy equivalent to Li−1, Bi is a topological disk, and L′i−1 ∩ Bi is a
circle S1.

Here L10 = K, where K is the polyhedron dominating infinitely many
different homotopy types of polyhedra from the proof of Theorem 1. Since
C(L1) is finite (we have C(

∨
k S

1) = k + 1, see the introduction), there
exists an integer 2 ≤ i ≤ 10 such that C(Li−1) is finite while C(Li) is
infinite. Taking P = L′i−1 and Q = Bi, we finish the proof.

2. An answer to some question concerning retracts of polyhe-
dra. We now answer the question of Borsuk and Olędzki on T -retracts (see
the introduction), proving actually more:

Theorem 2. There exists a polyhedron P with dimP = 7 such that for
every triangulation T of P , there is some retract of P which is not homotopy
equivalent to any T -retract of P .

P r o o f. Suppose that there exists a polyhedron K which homotopy dom-
inates infinitely many m-dimensional polyhedra of different homotopy types.
Then for every triangulation T of the polyhedron P = K × Q2m+1, where
Q2m+1 denotes a (2m+ 1)-dimensional cube, there exists some retract of P
which is not homotopy equivalent to any T -retract of P .

For the proof, observe that every polyhedron L ≤ K with dimL = m is
homeomorphic to a retract of P . Indeed, let u : L → K be a map converse
to the domination d : K → L, i.e. du ' idL. It is well known that every
m-dimensional compactum can be embedded in Q2m+1, so let h : L →
Q2m+1 be a homeomorphism onto h(L). Then the map w : L → P defined
by w(l) = (u(l), h(l)) is also a homeomorphism and w(L) is a retract of P .

We have shown in Theorem 1 that the polyhedron K = K1 ∨
∨

6 S
2,

where K1 is the polyhedron associated with the presentation

P1 = 〈r, s, t | s2 = t3, [r2, s3] = 1, [r2, t4] = 1〉,
dominates infinitely many 2-dimensional polyhedra of different homotopy
types. Thus the polyhedron P = K × Q5 satisfies the requirements of the
theorem.
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R e m a r k 3. It should be noted that in [BO] it was established that for
every compactum Y ∈ ANR with dimY = n, the compactum Z = Y×Q2n+1

is shape regular , i.e. every compactum X with Sh(X) ≤ Sh(Z) has the shape
of some fundamental retract of Z ([BO], Remark on p. 69).

For 1-connected polyhedra the Borsuk problem remains unsolved. It is
only known that polyhedra with some special properties of homotopy or ho-
mology groups cannot dominate infinitely many different shapes (see [DKN]
and [K]). Since every 1-connected polyhedron dominates only polyhedra (see
[Wa]), let us formulate:

Problem 1. Is it true that for every 1-connected polyhedron P there ex-
ists a triangulation T of P such that each retract of P is homotopy equivalent
to some T -retract of P?

One may also state:

Problem 2. Is it true that for every polyhedron P with dimP ≤ 6
there exists a triangulation T of P such that each retract of P is homotopy
equivalent to some T -retract of P?

3. The connections with the Borsuk problem on shape factors
of FANR’s. Recall that the shapes Sh(X) and Sh(Y ) are said to be factors
of the shape Sh(X ×Y ) (see [B1], p. 205). The following question of Borsuk
from 1975 remains unanswered [B3]:

Are there only a finite number of different factors of Sh(X) for every
X ∈ FANR?

For X ∈ ANR this problem was posed earlier, in 1971 [B2]. By the well-
known result of J. West (1975, [We]), it is equivalent to the same question
for polyhedra.

Let us observe that there is a connection between the Borsuk problem
on shape factors of polyhedra and the two main problems considered in
this paper. In fact, since for every compactum X shape dominated by a
polyhedron, the product X ×S1 has the shape of a polyhedron [M], we get:

Corollary 3. Let P be a polyhedron with dimP = n and C(P ) = ∞.
Then one of the following conditions is satisfied :

(i) There exists a polyhedron L (with Sh(L) ≤ Sh(P×S1)) and infinitely
many compacta Xi of different shapes such that Sh(Xi)× Sh(S1) = Sh(L).

(ii) P × S1 homotopy dominates infinitely many polyhedra of different
homotopy types.

The proof of Theorem 2 shows that the condition (ii) of Corollary 3 leads
to a counterexample to the question on T -retracts. Indeed, by the known
result of Wall (Theorem F of [Wa], p. 66), every polyhedron dominated by
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an n-dimensional polyhedron is homotopy equivalent to one of dimension
max(n, 3). Thus, for the polyhedron P = P × S1 ×Q2n+3, where Q2n+3 is
a (2n+ 3)-dimensional cube, there is a retract of P which is not homotopy
equivalent to any T -retract of P . This gives our claim.

References

[BDu] P. H. B e r r i d g e and M. J. D u n w o o d y, Non-free projective modules for
torsion-free groups, J. London Math. Soc. (2) 19 (1979), 433–436.

[B] K. B o r s u k, Some problems in the theory of shape of compacta, Russian Math.
Surveys 34 (6) (1979), 24–26.

[B1] —, Theory of Shape, Monograf. Mat. 59, PWN–Polish Scientific Publ., War-
szawa, 1975.

[B2] —, Theory of Shape, Lecture Notes Ser. 28, Aarhus Univ., 1971.
[B3] —, On several problems of theory of shape, in: Studies in Topology, Academic

Press, 1975, 67–79.
[BO] K. B o r s u k and J. O l ę d z k i, Remark on the shape domination, Bull. Acad.

Polon. Sci. 28 (1980), 67–70.
[Du] M. D u n w o o d y, The homotopy type of a two-dimensional complex , Bull. Lon-

don Math. Soc. 8 (1976), 282–285.
[DKN] J. D y d a k, A. K a d l o f and S. N o w a k, Open problems in shape theory, manu-

script, 1981.
[Dy] M. N. D y e r, Trees of homotopy types of (π,m)-complexes, in: Homological

Group Theory, London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press,
1979, 251–254.

[FF] A. G. F o m e n k o, D. B. F u k s and V. L. G u t e n m a c h e r, Homotopic Topol-
ogy , Akadémiai Kiadó, Budapest, 1986.
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