An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

by

S. N. Mukhopadhyay and S. Mitra (Burdwan)

Abstract. Let f be a measurable function such that $\Delta_k(x, h; f) = O(|h|^{\lambda})$ at each point x of a set E, where k is a positive integer, $\lambda > 0$ and $\Delta_k(x, h; f)$ is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if $\lambda = k$ and if E is measurable then the Peano derivative $f_{(k)}(x)$ exists a.e. on E. Here we prove that if $\lambda > k - 1$ then the Peano derivative $f_{(\lambda)}(x)$ exists a.e. on E and that the result is false if $\lambda = k - 1$; it is further proved that if λ is any positive integer and if the approximate Peano derivative $f_{(\lambda), a}$ exists on E then $f_{(\lambda)}(x)$ exists a.e. on E.

1. Introduction. Let f be a real-valued function defined in some neighbourhood of x. Then f is said to have Peano derivative (resp. approximate Peano derivative) at x of order k if there exist real numbers α_r, $1 \leq r \leq k$, depending on x and f only such that

$$f(x + h) = f(x) + \sum_{r=1}^{k} \frac{h^r}{r!} \alpha_r + \frac{h^k}{k!} \omega_k(x, h; f),$$

where

$$\lim_{h \to 0} \omega_k(x, h; f) = 0 \quad \text{(resp. } \lim_{h \to 0} \omega_k(x, h; f; a) = 0).$$

The number $\omega_k(x, h; f)$ is called the Peano derivative (resp. approximate Peano derivative) of f at x of order k and is denoted by $f_{(k)}(x)$ (resp. $f_{(k), a}(x)$). For convenience we shall write $\omega_k(x, h; f) = f_{(0)}(x) = f_{(0), a}(x)$.

Suppose that f has Peano derivative (resp. approximate Peano derivative) at x of order $k - 1$. For $h \neq 0$ we write

$$\omega_k(x, h; f) = \omega_k(x, h) = \frac{k!}{h^k} \left[f(x + h) - \sum_{r=0}^{k-1} \frac{h^r}{r!} \alpha_r \right].$$

1991 Mathematics Subject Classification: Primary 26A24.

The work of the second author was supported by a CSIR grant of India.
The upper and lower Peano derivatives (resp. approximate Peano derivatives) of \(f \) at \(x \) of order \(k \) are defined by

\[
\begin{align*}
\tilde{f}^{(k)}(x) &= \limsup_{h \to 0} \omega_k(x, h) \quad \text{(resp. } \tilde{f}^{(k),a}(x) = \limsup_{h \to 0} \text{ap } \omega_k(x, h)),) \\
\tilde{f}^{(k)}(x) &= \liminf_{h \to 0} \omega_k(x, h) \quad \text{(resp. } \tilde{f}^{(k),a}(x) = \liminf_{h \to 0} \text{ap } \omega_k(x, h)).)
\end{align*}
\]

The symmetric difference of \(f \) at \(x \) of order \(k \), where \(k \) is a positive integer, is defined by

\[
\Delta_k(x, h) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} f(x + ih - \frac{k}{2}h).
\]

Marcinkiewicz and Zygmund proved in a deep theorem (Theorem 1 of [5]) that if \(f \) is measurable and if for a positive integer \(k \),

\[
\Delta_k(x, h; f) = O(|h|^k) \quad \text{as } h \to 0,
\]

for \(x \) in a measurable set \(E \) then \(\tilde{f}^{(k)} \) exists a.e. on \(E \). For \(k = 2 \) this is proved in [9, II, p. 78, Theorem 4.30]. For general \(k \) the proof is very long and involved (it is worth mentioning that the proof offered by Marcinkiewicz and Zygmund has a lacuna filled by Fejzic and Weil [3]).

The purpose of the present paper is to extend this result. In fact we prove in Theorem 3.1 that if \(f \) is measurable and if for a positive integer \(k \),

\[
\Delta_k(x, h; f) = O(|h|^\lambda) \quad \text{as } h \to 0
\]

for \(x \) in a set \(E \) (not necessarily uniformly), where \(\lambda > k - 1 \), then \(f^{(\lambda)} \) exists a.e. on \(E \). For \(\lambda = k \) this gives the result of Marcinkiewicz and Zygmund cited above. Also we show in Theorem 3.2 that this result is not true for \(\lambda = k - 1 \). Thirdly, in Theorem 3.4 we show that if we further assume that the approximate Peano derivative \(f^{(k-1),a} \) exists on \(E \) then the above result is true for \(\lambda = k - 1 \). In fact, we prove in Theorem 3.4 that if \(f \) is measurable and if

\[
\Delta_k(x, h; f) = O(|h|^p) \quad \text{as } h \to 0
\]

for every \(x \) in a set \(E \), where \(k \) and \(p \) are positive integers, and if \(f^{(p),a} \) exists finitely on \(E \) then \(f^{(p)} \) exists a.e. on \(E \).

We consider the difference

\[
\begin{align*}
\tilde{T}_1(x, h) &= \tilde{T}_1(x, h; f) = f(x + h) - f(x), \\
\tilde{T}_n(x, h) &= \tilde{T}_n(x, h; f) \\
&= \tilde{T}_{n-1}(x, 2h; f) - 2^{n-1} \tilde{T}_{n-1}(x, h; f), \quad n \geq 2.
\end{align*}
\]

It is known [5] that there are constants \(a_j, 0 \leq j \leq k \), depending on \(j \).
and k only (with $a_k = 1$) such that
\begin{equation}
(1.2) \quad \tilde{\Delta}_k(x, h) = \tilde{\Delta}_k(x, h; f) = a_0 f(x) + \sum_{j=1}^{k} a_j f(x + 2^{j-1}h), \quad k \geq 1,
\end{equation}

the coefficients a_j satisfying
\[
\sum_{j=0}^{k} a_j = 0, \quad \sum_{j=1}^{k} 2^{js} a_j = 0, \quad s = 1, \ldots, k - 1.
\]

Throughout the paper \mathbb{R}, \mathbb{N}, μ, μ^* will denote the set of reals, the set of positive integers, Lebesgue measure and Lebesgue outer measure respectively.

Theorem MZ1. Let $f : \mathbb{R} \to \mathbb{R}$ be measurable and let $f_{(k-1)}(x)$ exist for each x in a measurable set $E \subset \mathbb{R}$. If $\omega_k(x, h) = O(1)$ as $h \to 0$ for $x \in E$
then $f_{(k)}$ exists a.e. on E.

The above theorem was proved by Denjoy [2] for continuous functions. The theorem in its present form is in Lemma 7 of [5] the proof of which is long and involves the theory of Fourier series and analytic functions. Later a real-variable proof was given by Marcinkiewicz [4] (see also [9, II, p. 76, Theorem 4.24]). A simple and completely different proof is given in [1, p. 54, Corollaries 20 and 21]; see also [6].

Theorem MZ2. If $f_{(k)}(x)$ exists then there is a number λ_k depending on k only such that
\[
\lambda_k \lim_{u \to 0} \frac{\tilde{\Delta}_k(x, u; f)}{u^k} = f_{(k)}(x).
\]

Theorem MZ3. There are constants $C_0, C_1, \ldots, C_{2^{k-1}-k}$ such that
\[
\tilde{\Delta}_k(x, h) = \sum_{i=0}^{2^{k-1}-k} C_i \Delta_k(x + \frac{1}{2}kh + ih, h).
\]

Theorems MZ2 and MZ3 are also due to Marcinkiewicz and Zygmund. See Art. 9 and Art. 12 respectively of [5] for the proof.

We need the following definition.

Definition. A function f defined in some neighbourhood of a point x_0 is said to be smooth at x_0 if
\begin{equation}
(1.3) \quad \Delta_2(x_0, h; f) = o(h) \quad \text{as } h \to 0,
\end{equation}

and f is said to be uniformly smooth on a set E if (1.3) holds uniformly on E.
2. Auxiliary results

Lemma 2.1. Let 0 be a point of outer density of E, let $\alpha, \beta \in \mathbb{R}$ with $\beta \neq 0$ and let $\varepsilon > 0$. For each $u > 0$ set

$$B_u = \{ v \in [u, 2u] : \alpha u + \beta v \in E \}.$$

Then there is a $\delta > 0$ such that if $0 < u < \delta$ then $\mu^*(B_u) > u(1 - \varepsilon)$. This is Lemma 1 of [3].

Theorem 2.2. Let $f : \mathbb{R} \to \mathbb{R}$ be measurable and let $f_{(k-1)}$ exist on a set E, $k \in \mathbb{N}$. If

$$\omega_k(x, h) = O(1) \quad \text{as } h \to 0 \quad \text{for } x \in E,$$

then $f_{(k)}$ exists finitely a.e. on E.

Proof. Let G be the set of all x such that $f_{(k-1)}$ exists. Then G is measurable and $\tilde{f}_{(k)}$ and $\check{f}_{(k)}$ are measurable on G (see [6]). Hence the set

$$H = \{ x \in G : -\infty < \check{f}_{(k)}(x) \leq \tilde{f}_{(k)}(x) < \infty \}$$

is measurable. So by Theorem MZ1, $f_{(k)}$ exists finitely a.e. on H. Since $E \subset H$, the result follows.

Lemma 2.3. Let $k \in \mathbb{N}$ and let $f : \mathbb{R} \to \mathbb{R}$ be measurable. Let

$$\Delta_k(x,u; f) = O(1) \quad \text{as } u \to 0$$

for each x in a set $E \subset \mathbb{R}$. Then f is bounded in some neighbourhood of almost every point of E.

Proof. The proof is given in [3, Theorem 2]. We give a proof for completeness.

For each $m \in \mathbb{N}$ let

$$E_m = \{ x \in E : |\Delta_k(x,u)| < m \text{ for } 0 < |u| < 1/m \},$$

$$F_m = \{ x \in E : |f(x)| < m \}.$$

Since $E = \bigcup_m (E_m \cap F_m)$, it suffices to prove that f is bounded on some neighbourhood of every point of outer density of $E_m \cap F_m$. Let x_0 be such a point; suppose $x_0 = 0$. By Lemma 2.1 there is δ with $0 < \delta < 1/m$ such that if $0 < u < \delta$ then

$$\mu^*(B) > u(1 - 1/(4k)) \quad \text{and} \quad \mu^*(C_r) > u(1 - 1/(4k)),$$

where

$$B = [u, 2u] \cap E_m \cap F_m,$$

$$C_r = \{ v \in [u, 2u] : v + (u - v)/2^{k-r-1} \in F_m \}, \quad 0 \leq r \leq k - 2.$$

Fix $0 < u < \delta$. Let

$$D_r = \{ v \in [u, 2u] : |f(v + (u - v)/2^{k-r-1})| < m \}.$$
Then D_r is measurable and $C_r \subset D_r$ for $0 \leq r \leq k - 2$. Now by the measurability of D_r,
\[
\mu^*(B \cap D_r) \geq (1 - 2/(4k))u \quad \text{for } 0 \leq r \leq k - 2,
\]
and hence applying this argument repeatedly,
\[
\mu^*(B \cap \bigcap_r D_r) \geq (1 - k/(4k))u > 0.
\]
Choose $v \in B \cap \bigcap_r D_r$. Since $v \in E_m$ and $|(u - v)/2^{k-1}| < u < \delta < 1/m$,
\[
|\tilde{\Delta}_k(v, (u - v)/2^{k-1})| < m, \quad |f(v)| < m, \quad |f(v + (u - v)/2^{k-r-1})| < m \quad \text{for } 0 \leq r \leq k - 2.
\]
Hence from (1.2),
\[
|f(u)| \leq |\tilde{\Delta}_k(v, (u - v)/2^{k-1})| + |a_0f(v)|
+ \sum_{j=1}^{k-1} |a_jf(v + 2^{j-1}(u - v)/2^{k-1})|
\leq m\left[1 + \sum_{j=0}^{k-1} |a_j|\right].
\]

This completes the proof.

Lemma 2.4. Let $k \in \mathbb{N}$, $\lambda \in \mathbb{R}$ and $\lambda > k - 1$. Let $f : \mathbb{R} \to \mathbb{R}$ be measurable. Let $m \in \mathbb{N}$ and let
\[
E = E_m = \{x : |\Delta_k(x, h)| < m|h|^\lambda \text{ for } 0 < |h| < 1/m\}.
\]
Then
\[
\tilde{\Delta}_k(x, h) = O(|h|^\lambda) \quad \text{as } h \to 0 \quad \text{a.e. on } E_m.
\]
If $k \geq 2$ then
\[
\tilde{\Delta}_i(x, h) = O(h^i) \quad \text{as } h \to 0 \quad \text{a.e. on } E_m, \quad 1 \leq i \leq k - 1.
\]

Proof. Let $x_0 \in E_m$ be a point of outer density of E_m. We may suppose that $x_0 = 0$. Let $0 < \varepsilon < 1/4^k$. Then by Lemma 2.1 there is δ with $0 < \delta < 1$ such that if $0 < u < \delta$ then
\[
(2.1) \quad \mu^*(B_{ij}) > (1 - \varepsilon)u \quad \text{and} \quad \mu^*(C_l) > (1 - \varepsilon)u,
\]
where
\[
B_{ij} = \{v \in [u, 2u] : (k/2 + j)(u + i(v - u)/k) \in E\},
\]
\[
1 \leq i \leq k, \quad 0 \leq j \leq 2^{k-1} - k,
\]
\[
C_l = \{v \in [u, 2u] : 2^l(u + v)/2 \in E\}, \quad 0 \leq l \leq k - 1.
\]
Fix $u \in (0, \min[\delta/(2m), 1/(m \cdot 2^k)])$. Set

$$S_{ij} = \{ v \in [u, 2u] : |\Delta_k((k/2 + j)(u + i(v - u)/k), u + i(v - u)/k)| < m(2u)^\lambda \},$$

$$T_l = \{ v \in [u, 2u] : |\Delta_k(2^l(u + v)/2, 2^l(v - u)/k)| < m(2^k u)^\lambda \}.$$

Since f is measurable, the sets S_{ij}, T_l are all measurable. Also $B_{ij} \subset S_{ij}$ and $C_l \subset T_l$. Therefore from (2.1),

$$\mu(S_{ij}) > (1 - \varepsilon)u \quad \text{and} \quad \mu(T_l) > (1 - \varepsilon)u.$$

Since the complement of $\bigcap_i \bigcap_j \bigcap_l (S_{ij} \cap T_l)$ with respect to $[u, 2u]$ has measure $\leq 4^k \varepsilon u$, we have

$$\mu\left(\bigcap_i \bigcap_j \bigcap_l (S_{ij} \cap T_l)\right) \geq (1 - 4^k \varepsilon)u > 0.$$

Let $v \in \bigcap_i \bigcap_j \bigcap_l (S_{ij} \cap T_l)$. Then since $v \in T_l$,

$$|\Delta_k(2^l(u + v)/2, 2^l(v - u)/k)| < m(2^k u)^\lambda, \quad 0 \leq l \leq k - 1,$$

and so

$$\left| \sum_{i=0}^k (-1)^{k-i} \frac{k!}{i!} f(2^l u + 2^l i(v - u)/k) \right| < m(2^k u)^\lambda.$$

Multiplying by $|a_{l+1}|$ and adding over $l = 0, 1, \ldots, k - 1$ we have

$$\left| \sum_{i=0}^k (-1)^{k-i} \frac{k!}{i!} \sum_{l=0}^{k-1} a_{l+1} f(2^l u + 2^l i(v - u)/k) \right| < m_1 u^\lambda,$$

where

$$m_1 = m \sum_{l=0}^{k-1} |a_{l+1}| \cdot 2^{k^\lambda}$$

and so by (1.2),

$$\left| \sum_{i=0}^k (-1)^{k-i} \frac{k!}{i!} \tilde{\Delta}_k(0, u + i(v - u)/k) \right| < m_1 u^\lambda.$$

Also since $v \in S_{ij}$ for all $1 \leq i \leq k$ and $0 \leq j \leq 2^{k-1} - k$,

$$|\Delta_k((k/2 + j)(u + i(v - u)/k), u + i(v - u)/k)| < m(2u)^\lambda$$

for $1 \leq i \leq k, 0 \leq j \leq 2^{k-1} - k$.

Hence from Theorem MZ3,
(2.3) \(\left| \tilde{\Delta}_k(0, u + i(v - u)/k) \right| \)
\[
\leq \sum_{j=0}^{2^{k-1}-1} |C_j| \cdot |\Delta_k((k/2 + j)(u + i(v - u)/k), u + i(v - u)/k)|
\]
\[
\leq m_2 u^\lambda \quad \text{for } 1 \leq i \leq k,
\]
where
\[
m_2 = \sum_{j=0}^{2^{k-1}-1} |C_j| \cdot 2^\lambda.
\]

From (2.2) and (2.3),
\[
\left| \tilde{\Delta}_k(0, u) \right| < M u^\lambda,
\]
where
\[
M = m_1 + m_2 \sum_{i=1}^{k} \binom{k}{i}.
\]
Thus the lemma is proved when \(u > 0 \). The proof is similar when \(u \) is negative. This completes the proof of the first part.

By the first part and by Lemma 2.3, \(f \) is bounded in some neighbourhood of almost all points of \(E \). Let \(S \) be the set of all points \(x \in E \) such that \(f \) is bounded in some neighbourhood of \(x \) and

(2.4) \[\tilde{\Delta}_k(x, h) = O(|h|^\lambda) \quad \text{as } h \to 0. \]

Then \(\mu^*(S) = \mu^*(E) \). We shall show that for each \(x \in S \),

(2.5) \[\tilde{\Delta}_i(x, h) = O(h^i) \quad \text{as } h \to 0, \quad i = 1, \ldots, k - 1, \]
and this will complete the proof.

Let \(x \in S \). We may suppose that \(x = 0 \). Then by (2.4) there are \(M > 0 \) and \(\delta > 0 \) such that \(f \) is bounded in \([-\delta, \delta]\) and if \(0 < |u| \leq \delta \) then using (1.1),

\[
\left| \tilde{\Delta}_{k-1}(0, u) - 2^{k-1} \tilde{\Delta}_{k-1}(0, u/2) \right| < M |u|^\lambda.
\]

Replacing \(u \) successively by \(u/2, u/2^2, \ldots, u/2^{n-1} \), we have

\[
\left| \tilde{\Delta}_{k-1}(0, u/2) - 2^{k-1-1} \tilde{\Delta}_{k-1}(0, u/2^2) \right| < M |u/2|^\lambda,
\]

\[
\vdots
\]

\[
\left| \tilde{\Delta}_{k-1}(0, u/2^{n-1}) - 2^{k-1-1} \tilde{\Delta}_{k-1}(0, u/2^n) \right| < M |u/2^{n-1}|^\lambda.
\]

Multiplying these inequalities by \(1, 2^{k-1}, 2^{2(k-1)}, \ldots, 2^{(n-1)(k-1)} \) respectively and adding we get

\[
\left| \tilde{\Delta}_{k-1}(0, u) - 2^{n(k-1)} \tilde{\Delta}_{k-1}(0, u/2^n) \right| < M |u|^\lambda \sum_{i=0}^{n-1} (1/2^{\lambda(k-1)}).n
\]

Hence
\[|2^{n(k-1)} \tilde{\Delta}_{k-1}(0, u/2^n)/u^{k-1}| \]
\[\leq M|u|^\lambda^{k+1} + |\tilde{\Delta}_{k-1}(0, u)/u^{k-1}| \quad \text{if } 0 < |u| \leq \delta. \]

So by (1.2) and (2.6) there is a constant M_2 such that
\[|2^{n(k-1)} \tilde{\Delta}_{k-1}(0, u/2^n)/u^{k-1}| \leq M_2 \quad \text{for } \delta/2^k \leq |u| \leq \delta/2^{k-1}. \]

Now for each ω satisfying $0 < |\omega| \leq \delta/2^k$ there is a positive integer n such that $2^n|\omega| \in \left[\delta/2^k, \delta/2^{k-1}\right]$ and hence putting $2^n\omega = u$ we get, from (2.7),
\[|\tilde{\Delta}_{k-1}(0, \omega)/\omega^{k-1}| \leq M_2. \]

Thus
\[\tilde{\Delta}_{k-1}(0, u) = O(u^{k-1}), \]
which proves (2.5) for $i = k - 1$. We suppose that
\[\tilde{\Delta}_j(0, u) = O(u^j) \quad \text{for } 1 < j \leq k - 1. \]

Then there is $L > 0$ such that for small $|u|$ we have as above
\[|\tilde{\Delta}_j(0, u) - 2^{j-1} \Delta_j(0, u/2)| < L|u|^j, \]
\[|\tilde{\Delta}_j(0, u/2) - 2^{j-1} \tilde{\Delta}_j(0, u/2^2)| < L|u/2|^j, \]
\[\vdots \]
\[|\tilde{\Delta}_j(0, u/2^{n-j}) - 2^{j-1} \tilde{\Delta}_j(0, u/2^n)| < L|u/2^{n-1}|^j. \]

Multiplying these inequalities by $1, 2^{j-1}, 2^{2(j-1)}, \ldots, 2^{(n-1)(j-1)}$ respectively and adding we get
\[|\tilde{\Delta}_j(0, u) - 2^{n(j-1)} \tilde{\Delta}_j(0, u/2^n)| < 2L|u|^j. \]

Hence
\[|2^{n(j-1)} \tilde{\Delta}_j(0, u/2^n)/u^{j-1}| < 2L|u| + |\tilde{\Delta}_j(0, u)/u^{j-1}|. \]

Now just as (2.8) is deduced from (2.6) the following can be deduced from (2.10):
\[\tilde{\Delta}_j(0, u) = O(u^{j-1}). \]

Thus if (2.9) holds then (2.11) holds. Since (2.8) holds the proof is complete by induction.

Lemma 2.5. Under the hypothesis of Lemma 2.4, $f(\lfloor \lambda \rfloor)$ exists and is finite a.e. on E, $\lfloor \lambda \rfloor$ denoting the greatest integer not exceeding λ.
Proof. First we consider the case \(|\lambda| = k - 1\). If \(k = 1\) then \(|\lambda| = 0\) and so the result is trivially true. Suppose \(k \geq 2\). Then by Lemma 2.4,

\[
\Delta_i(x, u) = O(u^i) \quad \text{as } u \to 0 \text{ for } 1 \leq i \leq k - 1
\]

at almost all points of \(E\). So taking \(i = 1\), by the Denjoy–Young–Saks Theorem [7, p. 271], \(f'\) exists and is finite a.e. on \(E\). If \(k = 2\) then \(|\lambda| = 1\) and so the result follows. Therefore we suppose \(k \geq 3\). Then as above \(f'\) exists and is finite a.e. on \(E\). Suppose that \(f_{(r)}(x)\) exists and is finite a.e. on \(E\) for a fixed \(r\), \(1 \leq r < k - 1\). Let \(S \subset E\) be the set of points \(x\) such that \(f_{(r)}(x)\) exists and (2.12) holds. Then \(\mu^*(S) = \mu^*(E)\). Let \(x \in S\) be fixed. We may suppose that

\[
f_{(i)}(x) = 0 \quad \text{for } i = 0, 1, \ldots, r.
\]

Then from Theorem MZ2,

\[
\lim_{u \to 0} \Delta_i(x, u)/u^i = 0 \quad \text{for } i = 1, \ldots, r.
\]

Since \(\Delta_{r+1}(x, u) = O(u^{r+1})\), there are \(M > 0\) and \(\delta > 0\) such that

\[
|\Delta_r(x, u) - 2^r \Delta_r(x, u)| < M|u|^{r+1} \quad \text{for } 0 < |u| < \delta.
\]

Replacing \(u\) by \(u/2, u/2^2, \ldots, u/2^n\) successively and then multiplying the terms so obtained by \(2^r, 2^{2r}, \ldots, 2^{nr}\) respectively and then adding them with (2.14) we get, as in Lemma 2.4,

\[
|\Delta_r(x, 2u) - 2^{r(n+1)} \Delta_r(x, u/2^n)| < 2M|u|^{r+1}.
\]

Dividing by \(|u|^r\) and letting \(n \to \infty\) gives, by (2.13),

\[
|\Delta_r(x, 2u)| \leq 2M|u|^{r+1} \quad \text{for } |u| < \delta,
\]

that is, \(\Delta_r(x, u) = O(u^{r+1})\) as \(u \to 0\). Repeating these arguments we ultimately get \(\Delta_1(x, u) = O(u^{r+1})\) as \(u \to 0\), that is,

\[
f(x + u) = O(u^{r+1}) \quad \text{as } u \to 0.
\]

Since \(x \in S\) is arbitrary, by Theorem 2.2, \(f_{(r+1)}(x)\) exists a.e. on \(S\), that is, a.e. on \(E\). So by induction \(f_{(k-1)}(x)\) exists finitely a.e. on \(E\). Thus the result is true in this case.

To complete the proof we suppose that the result is true for \(|\lambda| = k - 1 + r\), \(r \geq 0\). Let \(|\lambda| = k + r\). Then \(\lambda = k + r + \alpha\), where \(0 \leq \alpha < 1\). Since

\[
|\Delta_k(x, u)| < m|u|^\lambda \quad \text{for } 0 < |u| < 1/m, \ x \in E,
\]

we have

\[
|\Delta_k(x, u)| < m|u|^{k-1+r+\alpha} \quad \text{for } 0 < |u| < 1/m, \ x \in E.
\]

Therefore, since the result is true for \(|\lambda| = k - 1 + r\), we conclude that \(f_{(k-1+r)}(x)\) exists and is finite a.e. on \(E\). Since \(|\Delta_k(x, u)| < m|u|^\lambda\) for \(0 < |u| < 1/m\)
and \(x \in E \) and since \(|\lambda| = k + r \),

\[
(2.15) \quad |\Delta_k(x, u)| < m|u|^{k+r} \quad \text{for } 0 < |u| < 1/m, \ x \in E.
\]

Therefore proceeding as in Lemma 2.4 we conclude that

\[
(2.16) \quad \tilde{\Delta}_k(x, u) = O(u^{k+r}) \quad \text{as } u \to 0
\]

at almost all points of \(E \). Let \(S \) be the set of points \(x \) of \(E \) such that \(f_{(k-1+r)}(x) \) exists and (2.16) holds. Then \(\mu^*(S) = \mu^*(E) \). Let \(x \in S \); we may suppose that \(f_i(x) = 0 \) for \(i = 0, 1, \ldots, k-1 \). Then from Theorem \(MZ2 \),

\[
(2.17) \quad \lim_{u \to 0} \tilde{\Delta}_i(x, u)/u^i = 0 \quad \text{for } i = 1, \ldots, k-1.
\]

By (2.16) there are \(M > 0 \) and \(\delta > 0 \) such that

\[
(2.18) \quad |\tilde{\Delta}_{k-1}(x, 2u) - 2^{k-1} \tilde{\Delta}_{k-1}(x, u)| < M|u|^{k+r} \quad \text{for } 0 < |u| < \delta.
\]

Replacing \(u \) by \(u/2, u/2^2, \ldots, u/2^n \) successively and then multiplying the inequalities so obtained by \(2^{k-1}, 2^{2(k-1)}, \ldots, 2^{n(k-1)} \) respectively and then adding them with (2.18) we get

\[
|\tilde{\Delta}_{k-1}(x, 2u) - 2^{(n+1)(k-1)} \tilde{\Delta}_{k-1}(x, u/2^n)| < 2M|u|^{k+r}.
\]

Dividing by \(|u|^{k-1} \) and letting \(n \to \infty \) we get from this, and from (2.17),

\[
|\tilde{\Delta}_{k-1}(x, 2u)| \leq 2M|u|^{k+r},
\]

that is, \(\tilde{\Delta}_{k-1}(x, u) = O(u^{k+r}) \). Repeating these arguments we get \(\tilde{\Delta}_1(x, u) = O(u^{k+r}) \), that is, \(f(x + u) = O(u^{k+r}) \). Since \(x \in S \) is arbitrary, by Theorem 2.2, \(f_{(k+r)} \) exists a.e. on \(S \), that is, a.e. on \(E \). This shows that the result is true for \(|\lambda| = k+r \). This completes the proof of the lemma by induction.

3. Main results

Theorem 3.1. Let \(k \in \mathbb{N} \) and \(\lambda \in \mathbb{R} \) be such that \(\lambda > k - 1 \). Let \(f: \mathbb{R} \to \mathbb{R} \) be measurable. If

\[
(3.1) \quad \Delta_k(x, h; f) = O(|h|^\lambda) \quad \text{as } h \to 0
\]

for each point \(x \) in a set \(E \subset \mathbb{R} \) then \(f_{(|\lambda|)} \) exists and is finite a.e. on \(E \).

Proof. For each positive integer \(m \) let

\[
E_m = \{ x : |\Delta_k(x, u)| < m|u|^\lambda \text{ for } 0 < |u| < 1/m \}.
\]

Then \(\{E_m\} \) is a non-decreasing sequence and by (3.1), \(E \subset \bigcup_{m=1}^\infty E_m \). By Lemma 2.5, \(f_{(|\lambda|)} \) exists and is finite a.e. on \(E_m \) for each \(m \). This completes the proof.

The following theorem shows that Theorem 3.1 is not true for \(\lambda = k - 1 \), \(k \geq 2 \).
Theorem 3.2. For each integer $k \geq 2$ there exists a function F such that

$$\Delta_k(x, h; F) = o(h^{k-1})$$

uniformly for all x, $F^{(k-2)}$ exists and is continuous for all x but $F^{(k-1)}$ can exist at most on a set of measure zero.

To prove the theorem we need the following lemma.

Lemma 3.3. Let $k \geq 2$ be an integer, f be locally integrable and uniformly smooth for all x and F be the $(k-2)$th integral of f. Then

$$\Delta_k(x, 2h; F) = o(h^{k-1})$$

uniformly for all x.

Proof. The case of $k = 2$ is trivial. We assume that $k > 2$ and k is even. The case of k odd is similar. Let $k = 2m$. Since f is uniformly smooth for all x, for every $\varepsilon > 0$ there exists $\delta > 0$, independent of x, such that

$$|(f(x+h) + f(x-h) - 2f(x))/h| < \varepsilon$$

for $0 < h < \delta$ and for all x. So

(3.2) \[-\varepsilon t < f(x+t) + f(x-t) - 2f(x) < \varepsilon t \quad \text{for} \quad 0 < t < h < \delta.\]

Integrating the inequality (3.2) repeatedly $2m-2$ times over $[0, h]$ we get

$$-\varepsilon h^{2m-1}/(2m-1)! \quad < F(x+h) + F(x-h) - 2 \sum_{i=0}^{m-2} \frac{h^{2i}}{(2i)!} F^{(2i)}(x) - 2 \frac{h^{2m-2}}{(2m-2)!} f(x)$$

$$< \varepsilon h^{2m-1}/(2m-1)!.\]

Hence

(3.3) \[\frac{[F(x+h) + F(x-h)]}{2} - \sum_{i=0}^{m-2} \frac{h^{2i}}{(2i)!} F^{(2i)}(x) - \frac{h^{2m-2}}{(2m-2)!} f(x) = o(h^{2m-1}),\]

uniformly for all x. Now using the relations

(3.4) \[\sum_{i=0}^{p} (-1)^{p-i} \binom{p}{i} i^q = \begin{cases} 0 & \text{if } q = 0, 1, \ldots, p-1, \\ p! & \text{if } q = p, \end{cases}\]

from (3.3) we get
\[\Delta_{2m}(x, 2h; F) \]
\[= \sum_{j=0}^{2m} (-1)^{2m-j} \binom{2m}{j} F(x + 2jh - 2mh) \]
\[= \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} F(x - 2jh + 2mh) \]
\[= \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} \left[\frac{1}{2} [F(x + 2(m - j)h) + F(x - 2(m - j)h)] \right] \]
\[= \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} \left[\sum_{i=0}^{m-2} \frac{[2(m - j)h]^{2i}}{(2i)!} F^{(2i)}(x) + \frac{[2(m - j)h]^{2m-2}}{(2m-2)!} f(x) \right] \]
\[+ o(h^{2m-1}) \]
\[= \sum_{i=0}^{m-2} \frac{h^{2i}}{(2i)!} F^{(2i)}(x) \left[\sum_{j=0}^{2m} (-1)^j \binom{2m}{j} (2m - 2j)^{2i} \right] \]
\[+ \left[\frac{(2h)^{2m-2}}{(2m-2)!} f(x) \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} (m - j)^{2m-2} \right] + o(h^{2m-1}) \]
\[= o(h^{2m-1}) \]

uniformly for all \(x \). This completes the proof.

Proof of Theorem 3.2. Let
\[f(x) = \sum_{n=1}^{\infty} n^{-1/2} b^{-n} \cos(b^n x), \quad b > 1 \text{ an integer}. \]

Then \(f \) is continuous and uniformly smooth [9, I, p. 47, Theorem 4.10]. For \(k = 2 \), let \(F = f \) and for \(k > 2 \) let \(F \) be the \((k - 2)\)th integral of \(f \). We first show that
\[\lim_{h \to 0} \Delta_{k-1}(x, h; F)/h^{k-1} \]
can exist finitely at most on a set of measure zero. Let \(k = 2 \). Then
\[\Delta_1(x, 2h; f)/(2h) = [f(x + h) - f(x - h)]/(2h) \]
\[= - \sum_{n=1}^{\infty} n^{-1/2} \sin(b^n x)[\sin(b^n h)/(b^n h)]. \]

If
\[\lim_{h \to 0} \Delta_1(x, 2h; f)/(2h) \]
exists finitely on a set of positive measure then from (3.6) the series

\[(3.8) \quad - \sum_{n=1}^{\infty} n^{-1/2} \sin(b^n x)\]

is Lebesgue summable on a set of positive measure. Since (3.8) is a lacunary series, by [9, I, p. 203, Theorem 6.4], \(\sum_{n=1}^{\infty} 1/n\) is convergent, which is a contradiction. So (3.7) exists finitely at most on a set of measure zero.

Next suppose \(k > 2\). We prove that (3.5) can exist finitely at most on a set of measure zero. We suppose that \(k\) is even. Let \(k = 2m\). Now

\[(3.9) \quad \frac{\Delta_{2m-1}(x, 2h; F)}{(2h)^{2m-1}} = - \sum_{n=1}^{\infty} n^{-1/2} \sin(b^n x)(\sin(b^n h)/(b^n h))^{2m-1}.\]

If the limit of the left hand side of (3.9) exists on a set of positive measure as \(h \to 0\) then the series (3.8) is \((R, 2m-1)\) summable and so as in the case of \(k = 2\), \(\sum_{n=1}^{\infty} 1/n\) would be convergent, which is a contradiction. Thus the limit of the left hand side of (3.9) as \(h \to 0\) can exist at most on a set of measure zero. If \(k\) is odd then it can be similarly proved that (3.5) can exist finitely at most on a set of measure zero.

Now from Lemma 3.3 and the construction of the function \(F\) we see that

\[\Delta_k(x, h; F) = o(h^{k-1})\]

uniformly for all \(x\). Also it is clear that \(F^{(k-2)}\) exists and is continuous for all \(x\). To complete the proof we show that \(F_{(k-1)}\) can exist at most on a set of measure zero.

Let, if possible, \(F_{(k-1)}\) exist finitely on a set \(E\) of positive measure. Then for \(x \in E\),

\[F(x + h) = \sum_{j=0}^{k-1} \frac{h^j}{j!} F_{(j)}(x) + o(h^{k-1})\]

and so for \(x \in E\), by (3.4),

\[
\Delta_{k-1}(x, 2h; F) \\
= \sum_{i=0}^{k-1} (-1)^{k-1-i} \binom{k-1}{i} F(x + 2ih - (k - 1)h) \\
= \sum_{i=0}^{k-1} (-1)^{k-1-i} \binom{k-1}{i} \left[\sum_{j=0}^{k-1} \frac{(2i - k + 1)^j h^j}{j!} F_{(j)}(x) + o(h^{k-1}) \right]
\]
\[
= \sum_{j=0}^{k-1} \frac{h^j}{j!} F(j)(x) \sum_{i=0}^{k-1} (-1)^{k-1-i} \binom{k-1}{i} (2i - k + 1)^j + o(h^{k-1})
\]

\[
= (2h)^{k-1} F_{k-1}(x) + o(h^{k-1}),
\]

and so for all \(x \in E\),

\[
\lim_{h \to 0} \Delta_{k-1}(x, 2h; F)/(2h)^{k-1} = F_{k-1}(x),
\]

which contradicts the fact that (3.5) can exist at most on a set of measure zero and thus the proof is complete.

Theorem 3.2 shows that in Theorem 3.1 the condition \(\lambda > k - 1\) is necessary. However, the following theorem shows that this condition can be relaxed if the existence of \(f(\lambda)\), \(a\) is assumed.

Theorem 3.4. Let \(k \in \mathbb{N}\), \(p \in \mathbb{N}\), \(p \leq k - 1\) and let \(f : \mathbb{R} \to \mathbb{R}\) be measurable. Let

\[
\Delta_k(x, u) = O(u^p) \quad \text{as } u \to 0,
\]

for each point \(x\) in a set \(E\). If \(f(p,a)\) exists finitely on \(E\) then \(f(p)\) exists a.e. on \(E\).

We need the following lemma.

Lemma 3.5. Let \(k \in \mathbb{N}\), \(p \in \mathbb{N}\) and let \(f : \mathbb{R} \to \mathbb{R}\) be measurable. Let \(E = E_m = \{x : f(p,a)(x) \text{ exists finitely and} \right.\)

\[
|\Delta_k(x, u)| < m|u|^p \quad \text{for } 0 < |u| < 1/m\}.
\]

Then \(f(p)\) exists a.e. on \(E\).

Proof. Let \(x_0 \in E\) be a point of outer density of \(E\). We suppose

\[
x_0 = 0 = f(x_0) = f(1,a)(x_0) = \ldots = f(p,a)(x_0).
\]

Let \(0 < \varepsilon < 1\). Let

\[
G = \{x : |f(x)| \leq \varepsilon|x|^p/p!\}.
\]

Then \(G\) is measurable and \(0 \in G\) is a point of density of \(G\). Set \(H = E \cap G\). Then \(0\) is a point of outer density of \(H\). Let \(0 < \eta < \varepsilon/(2k)\). Then by Lemma 2.1 there is \(\delta > 0\) such that if \(0 < u < \delta\) then

\[
\mu^*(B) > (1 - \eta)u, \quad \mu^*(C_j) > (1 - \eta)u,
\]

where

\[
B = \{v \in [u, 2u] : (u + v)/2 \in H\},
\]

\[
C_j = \{v \in [u, 2u] : v + j(u - v)/k \in H\}, \quad 0 \leq j \leq k - 1.
\]
Fix $u \in (0, \min(\delta, 1/m))$. Let
\[S = \{ v \in [u, 2u] : |\Delta_k((u + v)/2, (u - v)/k)| < m((u - v)/k)^p \}, \]
\[T_j = \{ v \in [u, 2u] : |f(v + j(u - v)/k)| \leq \varepsilon |v + j(u - v)/k|^p/p! \}, \]
\[0 \leq j \leq k - 1. \]
Since f is measurable, S and T_j are measurable. Also $B \subset S$, $C_j \subset T_j$ and hence
\[\mu(S) > (1 - \eta)u, \quad \mu(T_j) > (1 - \eta)u. \]
Therefore
\[\mu\left(\bigcap_j (S \cap T_j) \right) > (1 - 2k\eta)u > (1 - \varepsilon)u. \]
Hence
\[\left(\bigcap_j (S \cap T_j) \right) \cap (u, u + \varepsilon u) \neq \emptyset. \]
Choose $v \in \left(\bigcap_j (S \cap T_j) \right) \cap (u, u + \varepsilon u)$. Then $0 < v - u < \varepsilon u < u < 1/m$ and so
\[|\Delta_k((u + v)/2, (u - v)/k)| < m((u - v)/k)^p < m(\varepsilon u)^p, \]
which gives
\[\left| \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} f((u + v)/2 + (j - k/2)(u - v)/k) \right| < m(\varepsilon u)^p. \]
Hence
\[|f(u)| < m(\varepsilon u)^p + \sum_{j=0}^{k-1} \binom{k}{j} |f(v + j(u - v)/k)|. \]
Since $v \in T_j$ for $0 \leq j \leq k - 1$,
\[|f(u)| < m(\varepsilon u)^p + \sum_{j=0}^{k-1} \binom{k}{j} \varepsilon |v + j(u - v)/k|^p/p! \]
\[\leq m(\varepsilon u)^p + (\varepsilon/p!) \sum_{j=0}^{k-1} \binom{k}{j} (3u)^p \]
\[\leq \varepsilon \left[m + (3p)! \sum_{j=0}^{k-1} \binom{k}{j} \right] u^p. \]
This shows that $f(u)/u^p \to 0$ as $u \to 0^+$. It can be similarly shown that $f(u)/u^p \to 0$ as $u \to 0^-$. This completes the proof of the lemma.
Proof of Theorem 3.4. For each positive integer \(m \), let
\[
E_m = \{ x : f(p)_a(x) \text{ exists finitely and } |\Delta_k(x,u)| < m|u|^p \text{ for } 0 < |u| < 1/m \}.
\]
Then \(\{E_m\} \) is a non-decreasing sequence and \(E \subset \bigcup_m E_m \). By Lemma 3.5, \(f(p)_a \) exists a.e. on \(E_m \) and so the result follows.

Corollary 3.6. Let \(p \in \mathbb{N} \), let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be measurable and let \(f(x) = 0 \) for \(x \in E \subset \mathbb{R} \). If
\[
f(x + u) - f(x - u) = O(u^p)
\]
or
\[
f(x + u) + f(x - u) = O(u^p)
\]
for \(x \in E \), then \(f(p)_a \) exists a.e. on \(E \).

Proof. Let
\[
E_1 = \{ x \in E : f(x + u) - f(x - u) = O(u^p) \},
\]
\[
E_2 = \{ x \in E : f(x + u) + f(x - u) = O(u^p) \}.
\]
Then \(E = E_1 \cup E_2 \). Let \(D_i \) be the set of all points of \(E_i \) which are also points of outer density of \(E_i \), \(i = 1, 2 \). Then \(f(p)_a(x) = 0 \) for \(x \in D_1 \cup D_2 \). Also
\[
\Delta_1(x,u) = O(u^p) \quad \text{as } u \rightarrow 0 \quad \text{for } x \in D_1,
\]
\[
\Delta_2(x,u) = O(u^p) \quad \text{as } u \rightarrow 0 \quad \text{for } x \in D_2.
\]
Hence if \(p = 1 \) then by Theorem 3.1, \(f' \) exists finitely a.e. on \(D_1 \) and by
Theorem 3.4, \(f' \) exists finitely a.e. on \(D_2 \) and hence \(f' \) exists a.e. on \(E \). If \(p \geq 2 \) then by Theorem 3.1, \(f(p)_a \) exists finitely a.e. on \(D_1 \) and on \(D_2 \) and hence \(f(p)_a \) exists finitely a.e. on \(E \).

The above corollary is a generalization of Lemma 11 of [8, p. 268], since
we are not assuming the measurability of \(E \).

Theorem 3.4 can further be extended to

Theorem 3.7. Let \(k \in \mathbb{N} \), \(p \in \mathbb{N} \), \(p \leq k - 1 \) and let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be measurable. Let
\[
\Delta_k(x,u) = O(u^p) \quad \text{as } u \rightarrow 0
\]
for each point \(x \) in a set \(E \). If \(f(p-1)_a \) exists and
\[
-\infty < \underline{f}(p)_a \leq \overline{f}(p)_a < \infty \quad \text{on } E
\]
then \(f(p-1)_a \) exists and
\[
-\infty < \underline{f}(p) \leq \overline{f}(p) < \infty \quad \text{a.e. on } E.
\]

Proof. The first part follows from Theorem 3.4. The proof of the second
part is similar to that of Theorem 3.4. We give a sketch. The corresponding
sets in Lemma 3.5 are in this case given by

\[E_m = \{ x : f_{(p-1),a}(x) \text{ exists finitely, } |\Delta_k(x,u)| < m|u|^p \] for \(0 < |u| < 1/m \) and \(-m < f_{(p),a}(x) \leq f_{(p),a}(x) < m\)

with the assumption that

\[x_0 = 0 = f(x_0) = f_{(1),a}(x_0) = \ldots = f_{(p-1),a}(x_0), \]

\[G_m = \{ x : |f(x)| \leq m|x|^p/p! \}, \]

\[T_j = \{ v \in [u,2u] : |f(v + j(u-v)/k)| \leq m|v + j(u-v)/k|^p/p! \}, \]

\(0 \leq j \leq k - 1, \)

and the final step is

\[|f(u)| \leq \left[\varepsilon m + m(3^p/p!) \sum_{j=0}^{k-1} \binom{k}{j} \right] u^p \]

showing that \(|f(u)| = O(u^p) \) as \(u \to 0^+ \) and similarly \(|f(u)| = O(|u|^p) \) as \(u \to 0^- \).

Corollary 3.8. Under the hypothesis of Theorem 3.7, if \(f_{(p-1),a} \) exists and

\[-\infty < f_{(p),a}(x) \leq f_{(p),a}(x) < \infty \quad \text{on } E \]

then \(f_{(p)} \) exists a.e. on \(E \).

The proof follows from Theorems 3.7 and 2.2.

References

Department of Mathematics
The University of Burdwan
Burdwan, 713104, India

Received 16 February 1995