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On the homotopy category of Moore spaces and the
cohomology of the category of abelian groups

by

Hans-Joachim B a u e s (Bonn) and Manfred H a r t l (Valenciennes)

Abstract. The homotopy category of Moore spaces in degree 2 represents a nontrivial
cohomology class in the cohomology of the category of abelian groups. We describe various
properties of this class. We use James–Hopf invariants to obtain explicitly the image
category under the functor chain complex of the loop space.

An abelian group A determines the Moore space M(A) = M(A, 2) which
up to homotopy equivalence is the unique simply connected CW-space X
with homology groups H2X = A and HiX = 0 for i > 2. Since M(A) can
be chosen to be a suspension, the set of homotopy classes [M(A),M(B)] is
a group which is part of a classical central extension of groups

(1) Ext(A,ΓB) ½ [M(A),M(B)] ³ Hom(A,B)

due to Barratt. It is known that (1) in general is not split, for example
[M(Z/2),M(Z/2)] = Z/4. We are not interested here in this additive struc-
ture of the sets [M(A),M(B)] but in the multiplicative structure given by
the composition of maps, in particular in the extension of groups

(2) Ext(A,ΓA) ½ E(M(A)) ³ Aut(A),

where E(M(A)) is the group of homotopy equivalences of the space M(A).
The extension (2) determines the cohomology class

(3) {E(M(A))} ∈ H2(Aut(A),Ext(A,ΓA)).

Though the group E(M(A)) is defined in an “easy” range of homotopy
theory the cohomology class (3) is not yet computed for all abelian groups A.

In this paper we prove a nice algebraic formula for the class (3) if A
is a product of cyclic groups and we show that {E(M(A))} is trivial if
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266 H.-J. Baues and M. Hartl

Ext(A,ΓA) has no 2-torsion; see (3.6) and (5.2). Moreover, we compute
for all abelian groups A the image of the class (3) under the surjection of
coefficients

(4) Ext(A,ΓA) ³ Ext(A,H(ΓA)).

Here H(ΓA) is the image of H : ΓA → A ⊗ A; see (4.2). We do such
computations not in the cohomology of groups but more distinctly in the
cohomology of categories. In fact, the homotopy category M2 of Moore
spaces M(A) leads to a topological “characteristic class” in the cohomology
of the category Ab of abelian groups; see (2.2). It is the computation of such
topologically defined cohomology classes which motivated the results in this
paper. For example the topological James–Hopf invariant on the category
M2 or the “chains on the loop space” functor C∗Ω on M2 have interesting
interpretations on the level of the cohomology of the category Ab; see (4.11).
As an application we describe algebraically the image category (C∗Ω)(M2)
in the homotopy category of chain algebras showing fundamental differences
between the homotopy category of spaces and chain algebras respectively;
see (4.12). This implies that the image of the group E(M(A)) under the
functor C∗Ω is part of an extension

(5) Ext(A,H(ΓA)) ½ (C∗Ω)E(M(A)) ³ Aut(A),

which we compute explicitly in terms of A for all abelian groups A.

1. Linear extensions and cohomology of categories. An extension
of a group G by a G-module A is a short exact sequence of groups

0→ A→
i
E→

p
G→ 0,

where i is compatible with the action of G. Two such extensions E and E′

are equivalent if there is an isomorphism ε : E ∼= E′ of groups with p′ε = p
and εi = i′. It is well known that the equivalence classes of extensions are
classified by the cohomology H2(G,A).

We now recall from [2] the basic notation of the cohomology of categories.
We describe linear extensions of a small category C by a “natural system”
D. The equivalence classes of such extensions are classified by the coho-
mology H2(C, D). A natural system D on a category C is the appropriate
generalization of a G-module.

(1.1) Definition. Let C be a category. The category of factorizations
in C, denoted by FC, is given as follows. Objects are morphisms f, g, . . . in
C and morphisms f → g are pairs (α, β) for which
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oo
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OO

commutes in C. Here αfβ is a factorization of g. Composition is defined
by (α′, β′)(α, β) = (α′α, ββ′). We clearly have (α, β) = (α, 1)(1, β) =
(1, β)(α, 1). A natural system (of abelian groups) on C is a functor D :
FC → Ab. The functor D carries the object f to Df = D(f) and carries
the morphism (α, β) : f → g to the induced homomorphism

D(α, β) = α∗β∗ : Df → Dαfβ = Dg.

Here we set D(α, 1) = α∗, D(1, β) = β∗.
We have a canonical forgetful functor π : FC → Cop ×C so that each

bifunctor D : Cop×C→ Ab yields a natural system Dπ, also denoted by D.
Such a bifunctor is also called a C-bimodule. In this case Df = D(B,A)
depends only on the objects A,B for all f ∈ C(B,A). Two functors F, G :
Ab→ Ab yield the Ab-bimodule

Hom(F,G) : Abop ×Ab→ Ab

which carries (A,B) to the group of homomorphisms Hom(FA,GB). If F
is the identity functor we write Hom(−, G). Similarly we define the Ab-
bimodule Ext(F,G).

For a group G and a G-module A the corresponding natural system D
on the group G, considered as a category, is given by Dg = A for g ∈ G and
g∗a = g ·a for a ∈ A, g∗a = a. If we restrict the following notion of a “linear
extension” to the case C = G and D = A we obtain the notion of a group
extension above.

(1.2) Definition. Let D be a natural system on C. We say that

D
+½ E

p
³ C

is a linear extension of the category C by D if (a), (b) and (c) below hold.

(a) E and C have the same objects and p is a full functor which is the
identity on objects.

(b) For each f : A→ B in C, the abelian group Df acts transitively and
effectively on the subset p−1(f) of morphisms in E. We write f0 +α for the
action of α ∈ Df on f0 ∈ p−1(f).

(c) The action satisfies the linear distributivity law :

(f0 + α)(g0 + β) = f0g0 + f∗β + g∗α.

Two linear extensions E and E′ are equivalent if there is an isomorphism
of categories ε : E ∼= E′ with p′ε = p and with ε(f0 + α) = ε(f0) + α
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for f0 ∈ Mor(E), α ∈ Dpf0 . The extension E is split if there is a functor
s : C → E with ps = 1. Let M(C, D) be the set of equivalence classes of
linear extensions of C by D. Then there is a canonical bijection

(1.3) ψ : M(C, D) ∼= H2(C, D)

which maps the split extension to the zero element (see [2] and IV, §6 in [4]).
Here Hn(C, D) denotes the cohomology of C with coefficients in D which is
defined below. We obtain a representing cocycle ∆t of the cohomology class
{E} = ψ(E) ∈ H2(C, D) as follows. Let t be a “splitting” function for p
which associates with each morphism f : A→ B in C a morphism f0 = t(f)
in E with pf0 = f . Then t yields a cocycle ∆t by the formula

(1.4) t(gf) = t(g)t(f) +∆t(g, f)

with ∆t(g, f) ∈ D(gf). The cohomology class {E} = {∆t} is trivial if and
only if E is a split extension.

(1.5) Definition. Let C be a small category and let Nn(C) be the set
of sequences (λ1, . . . , λn) of n composable morphisms in C (which are the
n-simplices of the nerve of C). For n = 0 let N0(C) = Ob (C) be the set of
objects in C. The cochain group Fn = Fn(C, D) is the abelian group of all
functions

(1) c : Nn(C)→
( ⋃

g∈Mor(C)

Dg

)
= D

with c(λ1, . . . , λn) ∈ Dλ1◦...◦λn . Addition in Fn is given by adding pointwise
in the abelian groups Dg. The coboundary ∂ : Fn−1 → Fn is defined by the
formula

(∂c)(λ1, . . . , λn) = (λ1)∗c(λ2, . . . , λn)(2)

+
n−1∑

i=1

(−1)ic(λ1, . . . , λiλi+1, . . . , λn)

+ (−1)n(λn)∗c(λ1, . . . , λn−1).

For n = 1 we have (∂c)(λ) = λ∗c(A) − λ∗c(B) for λ : A → B ∈ N1(C).
One can check that ∂c ∈ Fn for c ∈ Fn−1 and that ∂∂ = 0. Hence the
cohomology groups

(3) Hn(C, D) = Hn(F ∗(C, D), ∂)

are defined for n ≥ 0. These groups are discussed in [9] and [2]. By change
of the universe cohomology groups Hn(C, D) can also be defined if C is not
a small category. A functor φ : C′ → C induces the homomorphism

(4) φ∗ : Hn(C, D)→ Hn(C′, φ∗D),
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where φ∗D is the natural system given by (φ∗D)f = Dφ(f). On cochains the
map φ∗ is given by the formula

(φ∗f)(λ′1, . . . , λ
′
n) = f(φλ′1, . . . , φλ

′
n),

where (λ′1, . . . , λ
′
n) ∈ Nn(C′). If φ is an equivalence of categories then φ∗

is an isomorphism. A natural transformation τ : D → D′ between natural
systems induces a homomorphism

(5) τ∗ : Hn(C, D)→ Hn(C, D′)

by (τ∗f)(λ1, . . . , λn) = τλf(λ1, . . . , λn) where τλ : Dλ → D′λ with λ =
λ1 ◦ . . . ◦ λn is given by the transformation τ . Now let

D′′
l½D

τ³D′

be a short exact sequence of natural systems on C. Then we obtain as usual
the natural long exact sequence

(1.6) →Hn(C, D′) l∗→Hn(C, D) τ∗→Hn(C, D′′)
β→Hn+1(C, D′)→,

where β is the Bockstein homomorphism. For a cocycle c′′ representing a
class {c′′} in Hn(C, D′′) we obtain β{c′′} by choosing a cochain c as in
(1.5)(1) with τc = c′′. This is possible since τ is surjective. Then ι−1δc is a
cocycle which represents β{c′′}.

(1.7) R e m a r k. The cohomology (1.5) generalizes the cohomology of a
group. In fact, let G be a group and let G be the corresponding category
with a single object and with morphisms given by the elements in G. A
G-module A yields a natural system D. Then the classical definition of the
cohomology Hn(G,A) coincides with the definition of

Hn(G, D) = Hn(G,A)

given by (1.5). Further results and applications of the cohomology of cate-
gories can be found in [2], [3], [8], [9], [13], [14].

2. The homotopy category M2 of Moore spaces in degree 2.
Let A be an abelian group. A Moore space M(A,n), n ≥ 2, is a simply
connected CW-space X with (reduced) homology groups HnX = A and
HiX = 0 for i 6= n. An Eilenberg–MacLane space K(A,n) is a CW-space Y
with homotopy groups πnY = A and πiY = 0 for i 6= n. Such spaces exist
and their homotopy type is well defined by (A,n). The homotopy category of
Eilenberg–MacLane spaces K(A,n), A ∈ Ab, is isomorphic via the functor
πn to the category Ab of abelian groups. The corresponding result, however,
does not hold for the homotopy category Mn of Moore spaces M(A,n),
A ∈ Ab. This creates the problem to find a suitable algebraic model of the
category Mn. For n ≥ 3 such a model category of Mn is known (see (V.3a.8)
in [2] and (I, §6) in [4]). The category M2 is not completely understood. We
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shall use the cohomology of the category Ab to describe various properties
of the category M2.

Let Γ : Ab→ Ab be J. H. C. Whitehead’s quadratic functor [15] with

(2.1) Γ (A) = π3M(A, 2) = H4K(A, 2).

Then we obtain the Ab-bimodule

Ext(−, Γ ) : Abop ×Ab→ Ab

which carries (A,B) to the group Ext(A,Γ (B)).

(2.2) Proposition. The category M2 is part of a nonsplit linear exten-
sion

Ext(−, Γ )
+½ M2 H2³ Ab

and hence M2, up to equivalence, is characterized by a cohomology class

{M2} ∈ H2(Ab,Ext(−, Γ )).

Since the extension is nonsplit we have {M2} 6= 0.

P r o o f. For a free abelian group A0 with basis Z let

MA0 =
∨

Z

S1

be a one-point union of 1-dimensional spheres S1 such that H1MA0 = A0.
For an abelian group A we choose a short exact sequence

0→ A1
dA→A0 → A→ 0,

where A0, A1 are free abelian. Let d′A : MA1 →MA0 be a map which induces
dA in homology and let MA be the mapping cone of d′A. Then

M(A, 2) = ΣMA

is the suspension of MA. The homotopy type of MA, however, depends on
the choice of d′A and is not determined by A. Using the cofiber sequence for
d′A we obtain the well known exact sequence of groups [11]

0→ Ext(A, π3X) ∆→[M(A, 2), X]
µ→Hom(A, π2X)→ 0,

where [Y,X] denotes the set of homotopy classes of pointed maps Y → X.
We now set X = M(B, 2). Then µ is given by the homology functor. We
define the action of α ∈ Ext(A,ΓB) on ξ ∈ [M(A, 2),M(B, 2)] by ξ + α =
ξ +∆(α) where we use the group structure in [ΣMA,M(B, 2)]. This action
satisfies the linear distributivity law so that we obtain the linear extension
in (2.2). Compare also (V, §3a) in [2] where we show {M2} 6= 0.

(2.3) R e m a r k. A Pontryagin map τA for an abelian group A is a map

τA : K(A, 2)→ K(Γ (A), 4)
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which induces the identity of Γ (A),

Γ (A) = H4K(A, 2)→ H4K(Γ (A), 4) = Γ (A).

Such Pontryagin maps exist and are well defined up to homotopy. The map
τA induces the Pontryagin square which is the cohomology operation [15]

H2(X,A) = [X,K(A, 2)]
(τA)∗−→ [X,K(Γ (A), 2)] = H4(X,Γ (A)).

The fiber of τA is the 3-type of M(A, 2). Therefore one gets isomorphisms
of categories [7]

M2 = P(X ) = Hopair(X ),

where X is the class of all Pontryagin maps τA, A ∈ Ab. Here P(X ) is the
homotopy category of fibers P (τA), τA ∈ X , and Hopair(X ) is the category
of homotopy pairs [10] between Pontryagin maps. We have seen in [9] that
via these isomorphisms the class {M2} is the image of the universal Toda
bracket 〈K〉Ω ∈ H3(K, DΩ) where K is the full subcategory of the homotopy
category consisting of K(A, 2) and K(Γ (A), 4), A ∈ Ab. Hence we get by
(2.2):

(2.4) Corollary. 〈K〉Ω 6= 0.

3. On the cohomology class {M2}. The quadratic functor Γ can also
be defined by the universal quadratic map γ : A → Γ (A). We have the
natural exact sequence in Ab

(3.1) Γ (A) H→A⊗A q→Λ2A→ 0,

where H is defined by Hγ(a) = a ⊗ a, a ∈ A ∈ Ab, and where Λ2A =
A⊗A/{a⊗a ∼ 0} is the exterior square with quotient map q. We also need
the natural homomorphism

(3.2) [1, 1] = P : A⊗A→ Γ (A)

with P (a⊗ b) = γ(a+ b)− γ(a)− γ(b) = [a, b]. One readily checks that PH
is multiplication by 2 on Γ (A) and that HP (a ⊗ b) = a ⊗ b + b ⊗ a. For
A ∈ Ab using P and H and q above we obtain the following natural short
exact sequences of Z/2-vector spaces:

(3.3)
S1(A) : Λ2(A)⊗ Z/2 P½Γ (A)⊗ Z/2 σ³A⊗ Z/2,
S2(A) : Γ (A)⊗ Z/2 H½⊗2(A)⊗ Z/2 q

³Λ2(A)⊗ Z/2.
Here σ carries γ(a)⊗1 to a⊗1, a ∈ A. If we apply the functor Hom(−, Γ (B)⊗
Z/2) to the exact sequence Si(A), i = 1, 2, we get the corresponding exact
sequence of Ab-bimodules denoted by Hom(Si(−), Γ (−)⊗ Z/2). The asso-
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ciated Bockstein homomorphisms βi yield thus homomorphisms

(3.4)

H0(Ab,Hom(Γ (−)⊗ Z/2, Γ (−)⊗ Z/2))

↓β2

H1(Ab,Hom(Λ2(−)⊗ Z/2, Γ (−)⊗ Z/2))

↓β1

H2(Ab,Hom(−⊗ Z/2, Γ (−)⊗ Z/2))

Moreover, we use the natural homomorphism

χ : Hom(A⊗ Z/2, Γ (B)⊗ Z/2)
g
= Ext(A⊗ Z/2, ΓB)

p∗→Ext(A,ΓB),

where g is the natural isomorphism and where p : A → A ⊗ Z/2 is the
projection. Let

1Γ ∈ H0(Ab,Hom(Γ (−)⊗ Z/2, Γ (−)⊗ Z/2))

be the canonical class which carries the abelian group A to the identity of
Γ (A)⊗ Z/2. Then one gets the element

χ∗β1β2(1Γ ) ∈ H2(Ab,Ext(−, Γ ))

determined by 1Γ and the homomorphisms above.

(3.5) Conjecture. {M2} = χ∗β1β2(1Γ ).

We shall prove various results which support this conjecture.

(3.6) Theorem. Let A be the full subcategory of Ab consisting of direct
sums of cyclic groups and let iA : A → Ab be the inclusion functor. Then
we have

i∗A{M2} = i∗Aχ∗β1β2(1γ) ∈ H2(A,Ext(−, Γ )).
P r o o f. We write C = (Z/a)α = α(Z/a) if C is a cyclic group isomorphic

to Z/a with generator α, a ≥ 0. A direct sum of cyclic groups

A =
⊕

i

(Z/ai)αi

is indexed by an ordered set if the set of generators {αi, <} is a well ordered
set. The generator αi also denotes the inclusion αi : Z/ai ⊂ A and the
corresponding inclusion

(3.7) αi : ΣPai ⊂
∨

i

ΣPai = M(A, 2).

Here Pn = S1 ∪n e2 is the pseudo-projective plane for n > 0 and P0 = S1

so that ΣPn = M(Z/n, 2). Let αi : A→ Z/ai be the canonical retraction of
αi with αiαi = 1 and αjαi = 0 for j 6= i. Let

(3.8) ϕ : A =
⊕

i

αi(Z/ai)→ B =
⊕

j

βj(Z/bj)
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be a homomorphism. The coordinates ϕji ∈ Z, ϕji : Z/ai → Z/bj , 1 7→
ϕji1, are given by the formula

ϕαi =
∑

βj ϕji.

Let B2 be the splitting function

[ΣPn, ΣPm] ³←
B2

Hom(Z/n,Z/m)

obtained in (III, Appendix D) of [3]. We define the map sϕ ∈ [M(A, 2),
M(B, 2)] by the ordered sum

(sϕ)αi =
∑<

j

βjB2(ϕji),

where we use the ordering < of the generators in B. Hence we obtain a
splitting function s:

(3.9) [M(A, 2),M(B, 2)]
H2→←
s

Hom(A,B)

with H2s(ϕ) = ϕ. Each element ϕ ∈ [M(A, 2),M(B, 2)] is of the form ϕ =
s(ϕ) + ξ, where ξ ∈ Ext(A,ΓB). This way we can characterize all elements
in [M(A, 2),M(B, 2)] provided A and B are ordered direct sums of cyclic
groups. We use s in (3.9) for the definition of the cocycle ∆s representing
i∗{M2} in (3.6), that is, by (1.4),

s(ψϕ) = s(ψ)s(ϕ) +∆s(ψ,ϕ).

Below we compute ∆s. To this end we have to introduce the following
groups.

(3.10) Definition. Let A be an abelian group. We have the natural
homomorphism between Z/2-vector spaces

(1) H : Γ (A)⊗ Z/2 = Γ (A⊗ Z/2)⊗ Z/2→ ⊗2(A⊗ Z/2)

with H(γ(a)⊗ 1) = (a⊗ 1)⊗ (a⊗ 1). This homomorphism is injective and
hence admits a retraction homomorphism

(2) r : ⊗2(A⊗ Z/2)→ Γ (A)⊗ Z/2
with rH = id. For example, given a basis E of the Z/2-vector space A⊗Z/2
and a well ordering < on E we can define a retraction r< on the basis
elements by the formula (b, b′ ∈ E)

(3) r<(b⊗ b′) =

{
γ(b)⊗ 1 for b = b′,
[b, b′]⊗ 1 for b > b′,
0 for b < b′.

Now let q ≥ 1 and let

(4) jA : Hom(Z/q,A) = A ∗ Z/q ⊂ A p
³A⊗ Z/2
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be given by the projection p with p(x) = x⊗ 1. Also let

(5) pA : Γ (A)⊗ Z/2 p
½Γ (A)⊗ Z/2⊗ Z/q

= Ext(Z/2⊗ Z/q, Γ (A))
p∗→Ext(Z/q, Γ (A))

be defined by the indicated projections p. Then we obtain the homomor-
phism

(6)
∆A : Hom(Z/q,A)⊗Hom(Z/q,A)→ Ext(Z/q, ΓA),

∆A = pAr(jA ⊗ jA),

which depends on the choice of the retraction r in (2). Clearly ∆A is not
natural in A since r cannot be chosen to be natural. However, one can easily
check that ∆A is natural for homomorphisms ϕ : Z/q → Z/t between cyclic
groups, that is,

(7) ∆A(ϕ∗ ⊗ ϕ∗) = ϕ∗∆A.

We now define a group

(8) G(q, A) = Hom(Z/q,A)× Ext(Z/q, Γ (A)),

where the group law on the right-hand side is given by the cocycle ∆A,
that is,

(9) (a, b) + (a′, b′) = (a+ a′, b+ b′ +∆A(a⊗ a′)).
For any abelian group A, by (XII.1.6) of [4] there is an isomorphism

(3.11) % : G(q,A) ∼= [ΣPq,M(A, 2)]

which is natural in Z/q, q > 1, and which is compatible with ∆ and µ in
the proof of (2.2). If A is a direct sum of cyclic groups as above, we obtain
maps

αi : ΣPai →M(A, 2)

defined by αi = %(αi, 0), where αi ∈ Hom(Z/ai, A) is the inclusion. These
maps yield the homotopy equivalence

∨

i

ΣPai 'M(A, 2)

which we use as an identification. Hence we may assume that % in (3.11)
satisfies

(∗) %(αi, 0) = αi,

where αi is the inclusion in (3.7). We need the following function∇A, defined
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for an ordered direct sum A of cyclic groups,

(3.12)
∇A : Hom(Z/q,A)→ Ext(Z/q, ΓA),

∇A(x) =
∑

i<j

∆A(αixi ⊗ αjxj).

Here xi ∈ Hom(Z/q,Z/ai) is the coordinate of x =
∑
i αixi. We observe

that ∇A = 0 is trivial if we define ∆A by r< in (3.10), where the ordered
basis E in A ⊗ Z/2 is given by the ordered set of generators in A. Clearly
2∇A(x) = 0 since 2∆A = 0. The function ∇A has the following crucial
property:

(3.13) Lemma. In the group G(q,A) we have the formula
∑<

i

x∗i (αi, 0) = (x,∇A(x)),

where the left-hand side is the ordered sum of the elements x∗i (αi, 0) =
(αixi, 0) in the group G(q, A).

The lemma is an immediate consequence of the group law (3.10)(9).

For ϕ ∈ Hom(A,B) in (3.8) and q ≥ 1 we define the function

(3.14) ∇(ϕ) : Hom(Z/q,A)→ Ext(Z/q, Γ (B))

via the following commutative diagram, in which π2(Z/q,M(A, 2)) =
[M(Z/q, 2),M(A, 2)]:

π2(Z/q,M(A, 2)) π2(Z/q,M(B, 2))

G(q, A) G(q,B)

Hom(Z/q,A)× Ext(Z/q, ΓA) Hom(Z/q,B)× Ext(Z/q, ΓB)

�����

�����

(sϕ)∗ //
�����

�����

�����

�����

(sϕ)] //
�����

�����

Here the isomorphisms are given as in (3.11). The homomorphism (sϕ)],
induced by sϕ in (3.9), determines ∇(ϕ) by the formula

(sϕ)](x, α) = (ϕ∗x, Γ (ϕ)∗α+∇(ϕ)(x))

for x ∈ Hom(Z/q,A) and α ∈ Ext(Z/q, ΓA). The function ∇(ϕ) is not a
homomorphism.

(3.15) Lemma. For x ∈ Hom(Z/q,A) we have

∇(ϕ)(x) = Γ (ϕ)∗∇A(x) +
∑

i

∇B(ϕαixi) +
∑

i<t

∆B(ϕαixi ⊗ ϕαtxt).

Since all summands are 2-torsion we have ∇(ϕ) = 0 if q is odd.
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P r o o f. For (αi, 0) ∈ G(ai, A) one has the formula

(sϕ)](αi, 0) =
∑<

j

(βjϕji, 0),

as follows from property (3.11)(∗) of the isomorphism χ. Hence by (3.13) we
get the following equations:

(sϕ)](x, 0) + (0, Γ (ϕ)∗∇A(x))

= (sϕ)](x,∇A(x)) = (sϕ)]
(∑<

i

x∗i (αi, 0)
)

=
∑<

i

x∗i (sϕ)](αi, 0)

=
∑<

i

(∑<

j

(βjϕjixi, 0)
)

=
∑<

i

(ϕαixi,∇B(ϕαixi)).

Here we have in G(q,B) the equation
∑<

i

(ϕαixi, 0) =
(
ϕx,

∑

i<t

∆B(ϕαixi ⊗ ϕαtxt)
)
.

This yields the result in (3.15).

We now describe a cocycle δ in the class β1β2(1Γ ). For this let A, B, C
be ordered direct sums of cyclic groups and consider homomorphisms

(3.16) ψϕ : A
ϕ→B

ψ→C.

Let rA = r< be the retraction of H in (3.10)(3):

Γ (A)⊗ Z/2
H→←
rA
⊗2(A)⊗ Z/2 (see S2(A) in (3.3)).

Moreover, let sA be a splitting of σ:

Γ (A)⊗ Z/2
σ→←
sA
A⊗ Z/2 (see S1(A) in (3.3))

defined by

sA

(∑

i

xiαi ⊗ 1
)

=
∑

i

xiγ(αi)⊗ 1.

Here the αi are the generators of A as in (3.7). We now obtain derivations
D1, D2 by setting

D2(ψ)q = −ψ∗rB + ψ∗rC , P D1(ϕ) = −ϕ∗sA + ϕ∗sB .

For this we use the exact sequences Si(A) in (3.3). We define a 2-cocycle δ
which carries (ψ,ϕ) to the composition

δ(ψ,ϕ) : A⊗ Z/2 D1(ϕ)−−−→Λ2(B)⊗ Z/2 D2(ψ)−−−→Γ (C)⊗ Z/2
and we observe
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(3.17) Lemma. We have

β1β2(1Γ ) = {δ},
where β1, β2 are the Bockstein homomorphisms in (3.4).

We leave the proof of the lemma as an exercise. The lemma yields a
cocycle representing the right-hand side in (3.6).

Next we determine the cocycle ∆s in (3.9). For this we use the injection

g : Ext(A,ΓC) ⊂×
q>1

Hom(Hom(Z/q,A),Ext(Z/q, ΓC)).

The element g∆s(ψ,ϕ) is given by the Z/q-natural homomorphism

(g∆s(ψ,ϕ))q : Hom(Z/q,A)→ Ext(Z/q, ΓC)

which satisfies

(g∆s(ψ,ϕ))q(x) = Γ (ψ)∗∇(ϕ)(x) +∇(ψ)(ϕx)−∇(ψϕ)(x).

This equation is an easy consequence of (3.14). As in the remark following
(3.12) we may assume that ∇A = ∇B = ∇C = 0 are trivial. Moreover, we
may assume that q is even since (g∆s(ψ,ϕ))q is trivial if q is odd. We define
a function

%A : A⊗ Z/2→ Λ2(A⊗ Z/2),

%A

(∑

i

xiαi ⊗ 1
)

=
∑

i<t

(xiαi ⊗ 1) ∧ (xtαt ⊗ 1).

(3.18) Lemma. ∇(ϕ)(x) = χqD2(ϕ)%A(x⊗ Z/2).

Here we have x ∈ Hom(Z/q,A) and

x⊗ Z/2 ∈ Hom(Z/q ⊗ Z/2, A⊗ Z/2) = A⊗ Z/2
since q is even. Moreover, χq in Lemma (3.18) is the composition

χq : Γ (B)⊗ Z/2 = Ext(Z/2, ΓB)→ Ext(Z/q, ΓB)

induced by Z/q → Z/q ⊗ Z/2 = Z/2. Lemma (3.18) is a consequence of
the formula in (3.15) and the definition of rA = r< in (3.10)(3). We apply
Lemma (3.18) to the formula for (g∆s(ψ,ϕ))q above and for x = x ⊗ Z/2
we get

(3.19) Lemma. (g∆s(ψ,ϕ))q(x) = χqD2(ψ)(%B(ϕx)− ϕ∗%A(x)).

This follows easily from (3.18) since D1 is a derivation. Finally, we ob-
serve:

(3.20) Lemma. %B(ϕx)− ϕ∗%A(x) = D1(ϕ)(x).

The proof of Lemma (3.20) requires a lengthy computation with the
definitions of %B , %A and D2(ϕ). By (3.19) and (3.20) we thus get

(3.21) (g∆s(ψ,ϕ))q(x) = χqD2(ψ)D1(ϕ)(x)
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and this yields the formula in (3.6). In fact, (3.21) yields an easy algebraic
description of the cocycle ∆s in terms of the derivations D1 and D2 above
since g is injective.

4. On the cohomology class {nil} and James–Hopf invariants on
M2. In this section we prove a further formula for the class {M2}, which,
however, does not determine {M2} completely.

For the exterior square Λ2(B) of an abelian group B we have the exact
sequence (3.1) which induces the exact sequence

Ext(A,ΓB)H∗→Ext(A,⊗2B)
q∗→Ext(A,Λ2B)→ 0

and hence we have the binatural short exact sequence

(4.1) H∗ Ext(A,ΓB)
i½ Ext(A,⊗2B) ³ Ext(A,Λ2B)

together with the surjective map

H ′ : Ext(A,ΓB) ³ H∗ Ext(A,ΓB)

induced by H∗. The short exact sequence induces the Bockstein homomor-
phism

β : H1(Ab,Ext(−, Λ2))→ H2(Ab,H∗ Ext(−, Γ )).

(4.2) Theorem. The algebraic class {nil} ∈ H1(Ab,Ext(−, Λ2)) defined
below and the class {M2} of the homotopy category of Moore spaces in degree
2 satisfy the formula

H ′∗{M2} = β{nil} ∈ H2(Ab,H∗ Ext(−, Γ )).

This result is true in the cohomology of Ab. For the algebraic definition
of the class {nil} we need the following linear extension nil.

(4.3) Definition. Let 〈Z〉 be the free group generated by the set Z and
let Γn〈Z〉 be the subgroup generated by n-fold commutators. Then

(1) A = 〈Z〉/Γ2〈Z〉 =
⊕

Z

Z

is the free abelian group generated by Z and

(2) EA = 〈Z〉/Γ3〈Z〉
is the free nil(2)-group generated by Z.

We have the classical central extension of groups

(3) Λ2A
w½EA

q
³A.

The map w is induced by the commutator map with

(4) w(qx ∧ qy) = x−1y−1xy.
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Here the right-hand side denotes the commutator in the group EA. Using
(3) we get the linear extension of categories (compare also [3], [8])

(5) Hom(−, Λ2−)
+½ nil

ab³ ab.

Here ab and nil are the full subcategories of the category of groups consist-
ing of free abelian groups and free nil(2)-groups respectively. The functor
ab in (3) is abelianization and the action + is given by

(6) f + α = f + wαq

for f : EA → EB , α ∈ Hom(A,Λ2B). The right-hand side of (6) is a well
defined homomorphism since (3) is central.

(4.4) Definition. We define a derivation

nil : Ab→ Ext(−, Λ2)

which carries a homomorphism ϕ : A → B in Ab to an element nil(ϕ) ∈
Ext(A,Λ2B). The cohomology class{nil} represented by the derivation nil
is the class used in (4.2). For the definition of nil we choose for each abelian
group A a short exact sequence

0→ A1
dA→A0

q→A→ 0,

where A0, A1 are free abelian groups. We also choose a homomorphism dA :
EA1 → EA0 between free nil(2)-groups such that the abelianization of dA is
dA. For the homomorphism ϕ : A → B we choose a commutative diagram
in Ab

A1 A0 A

B1 B0 B

ϕ1

²²

dA //

ϕ0

²²

q //

ϕ

²²dB // q //

and we choose a diagram of homomorphisms

EA1 EA0

EB1 EB0

ϕ̄1

²²

d̄A //

ϕ̄0

²²
d̄B //

which by abelianization induces (ϕ0, ϕ1). This diagram, in general, cannot
be chosen to be commutative. Since, however, ϕ0dA = dBϕ1 there is a unique
element α ∈ Hom(A1, Λ

2B0) with

ϕ0dA + α = dBϕ1.

Here we use the action in (4.3)(6). Now let

nil(ϕ) ∈ Ext(A,Λ2B) = Hom(A1, Λ
2B)/d∗A Hom(A0, Λ

2B)
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be the element represented by the composition

(Λ2q)α : A1 → Λ2B0 → Λ2B.

One can check that nil(ϕ) does not depend on the choice of (ϕ0, ϕ1) and
(ϕ0, ϕ1) and that nil is a derivation, that is, nil(ϕψ) = ϕ∗ nil(ψ) +ψ∗ nil(ϕ).
This completes the definition of the cohomology class {nil}.

Next we use the derivation D1 on Ab defined as in (3.16). The derivation
D1 carries ϕ : A→ B to

D1(ϕ) ∈ Hom(A⊗ Z/2, Λ2(B)⊗ Z/2) = Ext(A⊗ Z/2, Λ2B)

and hence represents a cohomology class

{D1} ∈ H1(Ab,Ext(−⊗ Z/2, Λ2)).

Let

p2 : Ext(A⊗ Z/2, Λ2B)→ Ext(A,Λ2B)

be induced by the projection A ³ A⊗ Z/2.

(4.5) Proposition. Let A be the full subcategory of Ab consisting of
direct sums of cyclic groups. Then

i∗A(p2)∗{D1} = i∗A{nil}
in H1(A,Ext(−, Λ2)).

We do not know whether this formula also holds if we omit i∗A. Propo-
sition (4.5) implies that the formulas in (4.2) and (3.6) are compatible. For
the proof of (4.5) we need the following properties of nil(2)-groups. A group
G is a nil(2)-group if all triple commutators vanish in G. The commutators
in G yield the central homomorphism

(4.6) w : Λ2(Gab)→ G,

where G → Gab, x 7→ {x}, is the abelianization of G. We define w by the
commutator

w({x} ∧ {y}) = x−1y−1xy

for x, y ∈ G. Let M be a set and let f : M → G be a function such that
only finitely many elements f(m), m ∈ M , are nontrivial and let <, � be
two total orderings on the set M . Then we have in G the following formula
where we write the nonabelian group structure of G additively, the sums are
ordered as indicated.

∑�

m∈M
f(m) =

∑<

m∈M
f(m) + w

( ∑

m�m′
m′<m

{fm} ∧ {fm′}
)
.
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For a ∈ G and n ∈ Z let na = a + . . . + a be the n-fold sum in G in case
n ≥ 0, and let na = −|n|a for n < 0. Then one gets in G the formula

n
∑<

m∈M
f(m) =

∑<

m∈M
nf(m)− w

((
n

2

) ∑

m<m′
{fm} ∧ {fm′}

)
,

where
(
n
2

)
= n(n− 1)/2.

P r o o f o f (4.5). Let A and B be direct sums of cyclic groups and let
ϕ : A → B be given by ϕji ∈ Z as in (3.8). Let A0 be the free group
generated by the set of generators {αi} of A and let A1 be the free group
generated by {αi : ai 6= 0}. Then we choose (see (4.4))

dA : EA1 → EA0 , dA(αi) = aiαi.

Similarly we define dB . Moreover, we define ϕ1 and ϕ0 by the ordered sum

ϕ0(αi) =
∑<

j

ϕjiβj ∈ EB0 , ϕ1(αi) =
∑<

j

(aiϕji/bj)βj ∈ EB1 .

Hence we get α in (4.4) by the formula (see (4.6))

dBϕ1(αi)− ϕ0dA(αi) =
∑<

j

aiϕjiβj − ai
∑<

j

ϕjiβj

= w

(
ai
2

)∑

j<t

{ϕjiβj} ∧ {ϕtiβt}.

Hence nil(ϕ) ∈ Ext(A,Λ2B) is given by the formula (αi : Z/ai ⊂ A as in
(3.7))

(αi)∗ nil(ϕ) =
(
ai
2

)∑

j<t

ϕjiϕti(1⊗ βj ∧ βt),

where 1⊗βj∧βt ∈ Z/ai⊗Λ2B = Ext(Z/ai, Λ2B). Using the definition of D1

in the proof of (3.16) it is easy to check that (αi)∗p2D1(ϕ) coincides with the
right-hand side of the formula so that we actually have nil(ϕ) = p2D1(ϕ).
This proves (4.5).

We will need the following element which projects to nil(ϕ) above.

(4.7) Definition. For ϕ in the proof above let nil(ϕ) ∈ Ext(A,⊗2B) be
given by the formula

(α2)∗nil(ϕ) =
(
ai
2

)∑

j<t

ϕjiϕti(1⊗ βj ⊗ βt).

We clearly have Ext(A, p)nil(ϕ) = nil(ϕ) where p : ⊗2B ³ Λ2B is the
projection.
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Recall that for the bifunctor Ext(−,⊗2) on Ab we have the canonical
split linear extension

Ext(−,⊗2) ½ Ab× Ext(−,⊗2) ³ Ab.

Objects in Ab × Ext(−,⊗2) are abelian groups and morphisms (ϕ, α) :
A → B are given by ϕ ∈ Hom(A,B) and α ∈ Ext(A,⊗2B) with compo-
sition (ϕ, α)(ψ, β) = (ϕψ,ϕ∗β + ψ∗α). The derivation nil in (4.4) defines a
subcategory

(4.8) Ab(nil) ⊂ Ab× Ext(−,⊗2)

consisting of all morphisms (ϕ, α) : A→ B which satisfy the condition

p∗(α) = nil(ϕ) ∈ Ext(A,Λ2B).

Here p : ⊗2B ³ Λ2B induces p∗ = Ext(A, p). The exact sequence (4.1)
shows that we have a commutative diagram of linear extensions of categories

H∗ Ext(−, Γ ) Ab(nil) Ab
∩ ∩

Ext(−,⊗2) Ab× Ext(−,⊗2) Ab

+ // // ���
���

+ // //

(4.9) Lemma. The cohomology class represented by the linear extension
for Ab(nil) satisfies

{Ab(nil)} = β{nil} ∈ H2(Ab,H∗ Ext(−, Γ )),

where β is the Bockstein operator in (4.2).

P r o o f. Let s : Ext(A,Λ2B) → Ext(A,⊗2B) be a set-theoretic split-
ting of Ext(A, p) = p∗. Then β{nil} is represented by the 2-cocycle c =
i−1δ(s nil), where i is the inclusion in (4.1) and where δ is the coboundary
in (1.5). Hence c carries the 2-simplex (ψ,ϕ) in Ab to

c(ψ,ϕ) = i−1(ψ∗s nil(ϕ)− s nil(ψϕ) + ϕ∗s nil(ψ)).

On the other hand, we define a set-theoretic section t for the linear extension
Ab(nil) by t(ϕ) = (ϕ, s nil(ϕ)). Then ∆t in (1.4) is given by

s nil(ψϕ) = ψ∗s nil(ϕ) + ϕ∗s nil(ψ) + i∆t(ψ,ϕ).

Hence c = −∆t yields the lemma. In fact, since the elements in (4.9) are of
order 2 we can omit the sign.

For Moore spaces M(A, 2) = ΣMA and M(B, 2) = ΣMB as in (2.2) we
have the James–Hopf invariant ([12], [5])

(4.10) [ΣMA, ΣMB ]
γ2→[ΣMA, ΣMB ∧MB ] = Ext(A,B ⊗B),

which satisfies for α ∈ Ext(A,ΓB) the formula

(1) λ2(ξ + α) = λ2(ξ) +H∗α.
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Hence γ2 induces a well defined function

(2) γ2 : Hom(A,B)→ Ext(A,Λ2B)

defined by γ2(ϕ) = q∗γ2(ξ) where ξ induces H2(ξ) = ϕ : A → B. One
can check that γ2 is a derivation which represents a cohomology class in
H1(Ab,Ext(−, Λ2B)). This cohomology class does not depend on the choice
of MA,MB above.

(4.11) Theorem. The cohomology class {γ2} given by the James–Hopf
invariant γ2 coincides with

{γ2} = {nil} ∈ H1(Ab,Ext(−, Λ2)).

Moreover , there is a full functor τ ,

M2 τ³ Ab(nil)
i⊂Ab× Ext(−,⊗2),

which is the identity on objects and which is defined on morphisms by

τ(ξ) = (H2ξ, γ2ξ).

The functor τ is part of the following commutative diagram of linear exten-
sions:

Ext(−, Γ ) M2 Ab

H∗ Ext(−, Γ ) Ab(nil) Ab

H′

²²

+ //

τ

²²

H2 //
������

������
+ // //

P r o o f o f (4.2). The existence of the functor τ shows that H ′∗{M2} =
{Ab(nil)}. Therefore we obtain (4.2) by (4.9).

(4.12) R e m a r k. We can give an alternative description of the functor
τ in (4.11) by use of the singular chain complex of a loop space which yields
the Adams–Hilton functor

C∗Ω : Ho(Top∗)→ Ho(DA)

between homotopy categories (compare [1] and also [2]). Here DA is the
category of Z-chain algebras. The functor C∗Ω restricted to M2 leads to the
following diagram where M̃2 ⊂ Ho(DA) is the full subcategory consisting
of C∗ΩM(A, 2), A ∈ Ab:

M2 M̃2 ⊂ Ho(DA)

Ab(nil) Ab ×Ext(−,⊗2)

τ

²²

C∗Ω //

i //

j ∼
OO
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where j is an equivalence of categories such that jiτ is naturally isomorphic
to C∗Ω.

P r o o f o f (4.11). The image category of the functor

τ : M2 → Ab× Ext(−,⊗2)

is Ab(nil) since we show

(1) γ2 = nil

for compatible choices of dA, d′A in (4.4) and (2.2). We use the equivalence
of linear track extension described in (VI.4.7) of [3]. This shows that a
triple (ϕ0, ϕ1, G) with G ∈ Hom(A1,⊗2B0) satisfying p∗G = α (see (4.4))
corresponds to a diagram

(2)

ΣMA1 ΣMA0

G′=⇒
ΣMB1 ΣMB0

Σϕ′1 ²²

Σd′A //

Σϕ′0²²

Σd′B
//

Here d′A and d′B induce dA and dB respectively and ϕ′0, ϕ
′
1 induces ϕ0, ϕ1

in (4.4). The track G′ is determined by G. This track determines a principal
map ϕ ∈ [ΣMA, ΣMB ] such that τ(ϕ) = (ϕ, (⊗2q)∗{G}), where {G} ∈
Ext(A,⊗2B0) is represented by G. This follows from the bijection (6)–(11)
in (VI.4.7) of [3]. Since p∗G = α we get γ2 = nil.

(4.13) Example. Let A and B be direct sums of cyclic groups as in (3.8)
and let sϕ ∈ [M(A, 2),M(B, 2)] be defined as in (3.9). Then the functor τ
in (4.11) satisfies

τ(sϕ) = (ϕ, nil(ϕ)),

where nil(ϕ) is defined in (4.7). We obtain this formula by the methods in
the proof of (4.11) above. In this case we can also compute the James–Hopf
invariant γ2(sϕ), which actually is γ2(sϕ) = nil(ϕ).

As a corollary of (4.2) we get:

(4.14) Proposition. {M2} is a (nontrivial) element of order 2.

P r o o f. We know that multiplication by 2 on Γ (A) is the composition

2 = PH : ΓA→ ⊗2A→ ΓA,

where P = [1, 1]. Hence also the composition

Ext(A,ΓB) H∗ Ext(A,ΓB) Ext(A,ΓB)
∩

Ext(A,ΓB) Ext(A,⊗2B) Ext(A,ΓB)

������
H′ // P ′ //

������
H∗ // P∗ //
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is a multiplication by 2. Therefore by (4.2) we get

2{M2} = (P ′H ′)∗{M2} = P ′∗H
′
∗{M2} = P ′∗ β {nil}.

Here the commutative diagram of short exact sequences

0 H∗ Ext(A,ΓB) Ext(A,⊗2B) Ext(A,Λ2B) 0

0 Ext(A,ΓB) Ext(A,ΓB) 0 0

//

P ′

²²

//

P∗
²²

//

²²

//

// // // //

shows that P ′∗β = 0.

(4.15) Proposition. Each element in H1(Ab,Ext(−, Λ2)) is of order
2, in particular , 2{nil} = 0.

P r o o f. Let A,B be abelian groups and let ϕ ∈ Hom(A,B). Let 2A =
2 id ∈ Hom(A,A) be multiplication by 2. Then we have

ϕ ◦ 2A = 2ϕ = 2B ◦ ϕ.
Now the derivation property of N with {N} ∈ H1(Ab,Ext(−, Λ2)) shows

N(ϕ ◦ 2A) = ϕ∗N(2A) + (2A)∗N(ϕ) = ϕ∗N(2A) + 2N(ϕ),

N(2B ◦ ϕ) = (2B)∗N(ϕ) + ϕ∗N(2B) = 4N(ϕ) + ϕ∗N(2B).

Hence we get 2N(ϕ) = ϕ∗N(2A)−ϕ∗N(2B), so that 2N is an inner deriva-
tion.

5. A subcategory of M2 given by diagonal elements. Let Z/2 ∗A
be the 2-torsion of the abelian group A. We construct a subcategory H of
the category of Moore spaces M2 with the following property.

(5.1) Theorem. There exists a subcategory H of M2 together with a
commutative diagram of linear extensions

Z/2 ∗ Ext(−, Γ ) H Ab
∩ ∩

Ext(−, Γ ) M2 Ab

+ // //
������

+ // //

The theorem shows that the class {M2} is in the image of

i∗ : H2(Ab,Z/2 ∗ Ext(−, Γ ))→ H2(Ab,Ext(−, Γ )),

where i is the inclusion Z/2 ∗ Ext(A,Γ (B)) ⊂ Ext(A,Γ (B)).

(5.2) Corollary. The extension M2 → Ab is split on any full subcat-
egory of Ab consisting of objects A,B with (Z/2) ∗ Ext(A,ΓB) = 0.

(5.3) Corollary. Let A be any abelian group for which the 2-torsion of
Ext(A,ΓA) is trivial. Then the group of homotopy equivalences of M(A, 2)
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is given by the split extension

Ext(A,ΓA) ½ E(M(A, 2)) ³ Aut(A),

where ϕ ∈ Aut(A) acts on a ∈ Ext(A,ΓA) by ϕ · a = (Γϕ)∗(ϕ−1)∗(a).

P r o o f o f (5.1). For a Moore space M(A, 2) = ΣMA we have the
diagonal element

(1) ∆A ∈ [ΣMA, ΣMA ∧MA] = Ext(A,A⊗A)

which is given by the suspension of the reduced diagonal MA →MA ∧MA.
Let [1A, 1A] : ΣMA∧MA → ΣMA be the Whitehead product for the identity
1A of ΣMA. Then

(2) [1A, 1A]∆A = −1A − 1A + 1A + 1A = 0

is the trivial commutator. This implies that also

(3) ∆A ∈ Ker{[1, 1]∗ : Ext(A,A⊗A)→ Ext(A,ΓA)}
with [1, 1] in (3.2). We have the short exact sequences (see (3.3))

0 Ext(A,Γ (A)⊗ Z/2) Ext(A,⊗2(A)⊗ Z/2) Ext(A,Λ2(A)⊗ Z/2) 0

Ext(AΓ (A)⊗ Z/2)

// H∗ // q∗ //

[1,1]∗

GGGGGGGGG##

//

{{wwwwwwwww

which shows by (3) that for the projection p : ⊗2A→ (⊗2A)⊗ Z/2 there is
a unique element ∆′A ∈ Ext(A,Γ (A)⊗ Z/2) with

(4) H∗∆′A = p∗∆A.

Now, using the surjection p∗ : Ext(A,ΓA)→ Ext(A,Γ (A)⊗Z/2), we choose
an element ∆′′A ∈ Ext(A,ΓA) with

(5) p∗∆′′A = ∆′A.

We call ∆′′A a diagonal structure for A. For the definition of the subcategory
H in M2 we choose such a diagonal structure for each abelian group A in
Ab. We define the set of morphisms in H with

(6) H(A,B) ⊂ [ΣMA, ΣMB ]

by the composition (compare (4.10))

[ΣMA, ΣMB ]
γ2−→Ext(A,B ⊗B)

[1,1]∗−→ Ext(A,ΓB),

and by the diagonal structures ∆′′A,∆
′′
B , namely

(7) ϕ ∈ H(A,B)⇔ [1, 1]∗γ2ϕ = −ϕ∗∆′′A + ϕ∗∆′′B .

We show that for ϕ ∈ H(A,B) and ψ ∈ H(B,C) we actually have
ψϕ ∈ H(A,C) so that H is a well defined subcategory of M2. For this we
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need the fact that γ2 is a derivation, that is,

γ2(ψϕ) = ψ∗γ2(ϕ) + ϕ∗γ2(ϕ).

Hence we get

[1, 1]∗γ2(ψϕ) = [1, 1]∗(ψ∗γ2(ϕ) + ϕ∗γ2(ψ))

= ψ∗[1, 1]∗γ2(ϕ) + ϕ∗[1, 1]∗γ2(ϕ)

= ψ∗(−ϕ∗∆′′A + ϕ∗∆′′B) + ϕ∗(−ψ∗∆′′B + ψ∗∆′′C)

= − (ψϕ)∗∆′′A + (ψϕ)∗∆′′C .

The crucial observation needed for the proof of Theorem (5.1) is the following
equation where we use the interchange map T : B ⊗ B → B ⊗ B with
T (x⊗ y) = y ⊗ x:

(8) (1− T )∗γ2(ϕ) = ϕ∗∆A − ϕ∗∆B .

This equation follows from the corresponding known property of James–
Hopf invariants (Appendix A of [4]) with respect to “cup products” which
in our case has the form

ϕ ∪ ϕ = ∆1,1ϕ+ (1 + T2,1)γ2(ϕ).

This equation is equivalent to (8). We now consider the following commu-
tative diagram.

Ext(A,ΓB) = Ext(A,ΓB) = Ext(A,ΓB)
↓+ ↓H∗ ↓ ·2

[ΣMA, ΣMB ]
γ2−→ Ext(A,B ⊗B)

[1,1]∗−→ Ext(A,ΓB)
↓µ ↓ ↓

Hom(A,B)
γ̄2−→ Ext(A,Λ2B)

[1,1]∗−→ Ext(A,Γ (B)⊗ Z/2)

The columns are exact sequences. Here γ2 is not a homomorphism; since,
however, (4.10)(1) holds we see that the induced function γ2 is well de-
fined. Moreover, we use [1, 1]H = ·2 so that [1, 1]∗ in the bottom row is well
defined.

We now claim that (8) implies the formula

(9) [1, 1]∗γ2(ϕ) = −ϕ∗∆′A + ϕ∗∆′B .

By the diagram above this shows that for any ϕ ∈ Hom(A,B) there is an
element ϕ which satisfies the condition in (7). Thus the functor H → Ab is
full, moreover the diagram above shows that H is part of a linear extension as
described in the theorem. In fact, for ϕ ∈ H(A,B) we have ϕ+α ∈ H(A,B)
if and only if 2α = 0.
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It remains to prove (9). For this consider the commutative diagram

Ext(A,B ⊗B) Ext(A,ΓB)

Ext(A,B ⊗B)

Ext(A,B ∧B) Ext(A,Γ (B)⊗ Z/2)

Ext(A,B ⊗B ⊗ Z/2)

²²

(1−ı̄)∗
SSSSSSSSSSSSSS))

//

p∗

²²p∗tkkkkkkkkkkkkkk55

//

²² H∗ttjjjjjjjjjjjjjjj

The square in this diagram coincides with the corresponding square in the
diagram above. Since for x⊗ y ∈ B ⊗B,

H[1, 1](x⊗ y) = x⊗ y + y ⊗ x ≡ x⊗ y − y ⊗ x mod 2,

we see that the diagram commutes. The homomorphism t is induced by
1 − T . On the other hand, H∗ in the diagram is injective. This shows that
(9) holds by the following equations:

H∗[1, 1]∗γ2(ϕ) = H∗p∗[1, 1]∗γ2ϕ = p∗(1− T )∗γ2ϕ

= p∗(ϕ∗∆A − ϕ∗∆B) = ϕ∗(p∗∆A)− ϕ∗(p∗∆B)

= ϕ∗(H∗∆′A)− ϕ∗(H∗∆′B) = H∗(ϕ∗∆′A − ϕ∗∆′B).

This completes the proof of Theorem (5.1).

Formula (9) in the proof of (5.1) above and (1) in the proof of (4.11)
show

[1, 1]∗ nil(ϕ) = [1, 1]∗ ϕ2(ϕ) = −ϕ∗∆′A + ϕ∗∆′B .
Hence the composition [1, 1]∗ nil with

[1, 1]∗ : Ext(A,Λ2B)→ Ext(A,ΓB ⊗ Z/2)

is an inner derivation. This implies

(5.4) Proposition. We have

[1, 1]∗{nil} = 0

in H1(Ab,Ext(−,Z/2⊗ Γ )).
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