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Rigidity of harmonic measure

by

I. P o p o v i c i and A. V o l b e r g (East Lansing, Mich.)

Abstract. Let J be the Julia set of a conformal dynamics f . Provided that f is
polynomial-like we prove that the harmonic measure on J is mutually absolutely contin-
uous with the measure of maximal entropy if and only if f is conformally equivalent to
a polynomial. This is no longer true for generalized polynomial-like maps. But for such
dynamics the coincidence of classes of these two measures turns out to be equivalent to
the existence of a conformal change of variable which reduces the dynamical system to
another one for which the harmonic measure equals the measure of maximal entropy.

1. Introduction. The harmonic measure in a dynamical context ap-
peared for the first time in Brolin’s paper [Br] where it was established that
the harmonic measure ω associated with the unbounded Fatou component
A∞(f) of a polynomial f is balanced, which means that its Jacobian is con-
stant. Later when the ergodic theory of rational maps was developed by
Lyubich [Ly1], [Ly2] and independently by Freire, Lopes and Mañé [FLM],
[M], this balanced measure was interpreted as the unique measure m of
maximal entropy.

When we have a dynamical system more general than polynomial, the
natural question of comparison of these two measures arises. For rational f
it was considered by Lopes in [Lo], where it was proved that if∞ ∈ C\J(f)
is a fixed point of f , then it follows from m = ω that f is a polynomial. We
will consider the local setting of the problem when f is defined only on a
neighborhood of an invariant compact set Jf . The question is to characterize
the situation when ω ≈ m, where “≈” denotes mutual absolute continuity. It
certainly happens when f is conformally equivalent to a polynomial. In this
paper we discuss the converse problem in the case when f is a generalized
polynomial-like map (GPL).

Let us pass to precise definitions. Let U , U1, . . . , Uk be k+ 1 topological
discs with real analytic boundaries such that U i ⊂ U , i = 1, . . . , k, and
U i ∩ U j = ∅, i 6= j. Consider a map f :

⋃k
i=1 Ui → U which is a branched
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covering of degree di < ∞ on each Ui. Set Kf =
⋂
n≥0 U

n, where Un =
f−n(U). We call Jf = ∂Kf the Julia set of f . It is also the boundary of
A∞ = A∞(f) = C\Kf . The degree of f is d = d1 + . . .+dk. Let us say that
f is polynomial-like (in the sense of Douady and Hubbard [DH]) if k = 1
and d = d1 ≥ 2.

Saying that two maps f , g are (conformally) conjugate we mean that
there is a (conformal) conjugation in some neighborhoods of the Julia sets.
Any GPL is quasiconformally conjugate to a polynomial, and pulling back
the measure of maximal entropy of this polynomial we obtain m = mf , the
measure of maximal entropy for f . In this paper, a GPL g is called maximal
if ωg = mg, where ωg denotes the harmonic measure evaluated at infinity.
As infinity has no special role for GPL we introduce the following class of
GPL.

We call f conformally maximal if there exists another GPL g which is
maximal and if there exists a conformal map h : Uf → Ug which conjugates
the dynamics: f = h−1 ◦ g ◦ h.

In this paper we prove the following theorems.

Theorem 1. Let f be a GPL. Then the following assertions are equiva-
lent :

1. f is conformally maximal.
2. ωf ≈ mf .

Theorem 2. Let f be a polynomial-like map. The following are equiva-
lent :

1. f is conformally conjugate to a polynomial.
2. ωf ≈ mf .

To prove these results we will use the technique of [LyV], [BV] and the
following result proved by the first author:

Theorem 3. Let f be a GPL. Then there exists a finite measure ν on
Jf such that ν is f -invariant and ν ≈ ωf .

Theorem 3 was proved independently by A. Zdunik [Z2]. She also derived
Theorems 1 and 2 from it. We give here our very short proof of Theorem 3.

Theorems 1 and 2 were proved by Z. Balogh [B] in the case when Jf is
totally disconnected without any assumptions of hyperbolicity. His proof is
very different from the one here or from Zdunik’s proof (which also differs
from ours). In particular, Balogh does not need to construct the invariant
harmonic measure (Theorem 3).

Let us mention that the results of Theorems 1, 2 and 3 were stated as
conjectures in [LyV], [BV] and [BPV], where particular cases were proved
(e.g. semihyperbolic case in [BV]).
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2. Existence of invariant harmonic measure. We will use the fol-
lowing result of Y. N. Dowker and A. Calderón which we found in [Fo]. We
formulate it in a convenient form.

Theorem A. Let µ be a probability measure on a compact set X. Let
T : X → X be a continuous endomorphism such that µ is completely nonsin-
gular with respect to T . Then there exists a T -invariant probability measure
λ absolutely continuous with respect to µ if and only if

µ(E) < 1⇒ sup
n
µ(f−nE) < 1.

If µ is ergodic then λ is ergodic.

To use Theorem A for X = Jf and µ = ωf we are going to estimate
ω(f−nE) via ω(E).

Fix an arbitrary Borel set E ⊂ J with ω(E) = 1 − ε < 1. Let Γ be a
smooth curve encircling J and separating it from ∂U and let Γn = f−n(Γ ).
The main things now are six notations.

Let ω and v denote the harmonic measures of E with respect to A∞(f)
and U \ Kf respectively. Let V and W denote the harmonic measures of
J \ E with respect to A∞ and U \Kf respectively. For any function φ let
φn denote φ ◦ fn where defined. As usual, ωΩ(S, z) denotes the harmonic
measure of S evaluated at z with respect to Ω.

First we need a simple lemma. Fix a compact set K in Ω and consider
two harmonic measures on ∂Ω with respect to Ω and with respect to Ω \K,
evaluated at the same point a ∈ Ω \K.

Lemma 2.1. The two harmonic measures on ∂Ω are boundedly equivalent.

P r o o f. We present the proof in the case when all points of ∂Ω are
regular. Only this case is used in what follows. Let O be a neighborhood of
∂Ω with smooth boundary and satisfying O ∩ (K ∪ {a}) = ∅. Let G and g
be Green’s functions of Ω and Ω \K respectively, with pole at a. Then by
Harnack’s principle, cG ≤ g ≤ G on the boundary of O. By the maximum
principle this inequality extends to O (both functions vanish on ∂Ω). Then
clearly the functions g − cG and G − g are subharmonic in O and so their
Riesz measures are nonnegative. The Riesz measures of G and g being equal
to our harmonic measures, we are done.

P r o o f o f T h e o r e m 3. We have to prove that

ωA∞(E,∞) ≤ 1− ε⇒ ωA∞(f−nE,∞) ≤ 1− δ.
As ω(∞) ≤ 1 − ε, we get W (∞) ≥ ε. Then W (ξ) ≥ cε on Γ and by
Lemma 2.1, V (ξ) ≥ δ on Γ . Then V n(ξ) ≥ δ on Γn. But these functions
vanish on ∂Un and so ωA∞(f−n(J \ E), ξ) ≥ δ on Γn. So ωA∞(f−nE, ξ) ≤
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1− δ on Γn. As Γn separates J from ∞ we get ω(f−nE) = ωA∞(f−nE,∞)
≤ 1− δ.

We are going to prove that the just constructed invariant harmonic
measure ν is boundedly equivalent to ω.

Theorem 4. There exist constants 0 < c1, c2 <∞ such that

c1 ≤ dν/dω ≤ c2.
P r o o f. Let us prove first the right inequality. We wish to repeat the

above considerations but it seems hard to get rid of the influence of ∂U .
However, we are going to prove that ω(E) ≤ ε ⇒ ω(f−nE) ≤ cε for a
certain finite c. The construction of an invariant measure in [Fo] then gives
the right inequality. Let us fix Γ as above and such that

max
ξ∈Γ

ωU\Kf (∂U, ξ) ≤ 1/2.

Then if Ωn is any component of Un and γn = Γn ∩ Ωn, we can write
ωU\Kf (∂U, fn(ξ)) = ωΩn\Kf (∂Ωn, ξ) and thus

(2.1) ωΩn\Kf (∂Ωn, ξ) ≤ 1/2, ξ ∈ γn.
We start with the chain of implications:

ω(∞) ≤ ε⇒ ω(ξ) ≤ CΓ ε for ξ ∈ Γ
⇒ v(ξ) ≤ CΓ ε for ξ ∈ Γ ⇒ vn(ξ) ≤ CΓ ε for ξ ∈ γn.

Let us compare u1(ξ) = vn(ξ) with u2(ξ) = ωA∞(f−nE, ξ) on γn for each
component Ωn of Un. By the Poisson formula in Ωn \Kf we have

u2(ξ)−
\

∂Ωn

u2(η) dωΩn\Kf (η, ξ) = u1(ξ).

Let u2(ξ0) = maxγn maxξ∈γn u2(ξ) = maxξ∈Γn u2(ξ). Then by (2.1) we have
u2(ξ0)(1− 1/2) ≤ u1(ξ0) ≤ CΓ ε. But Γn separates Jf from ∞ and so

ωA∞(f−nE,∞) = u2(∞) ≤ 2CΓ ε.

The left inequality can be proved in exactly the same way.

3. Automorphic harmonic function

Theorem 1. Let f be a GPL. Then the following assertions are equiva-
lent :

1. f is conformally maximal.
2. ωf ≈ mf .

P r o o f. We will be using the following notations: if u is a subharmonic
function then µu = ∆u is its Riesz measure. Let G be Green’s function of
A∞(f) with pole at ∞. We know that µG = ω. Let Φ = dµG◦f/dµG and
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φ = logΦ. Clearly Φ is bounded away from zero and infinity (this is just
Harnack’s inequality essentially). It will be important for us that Φ is the
Jacobian of ω with respect to f . Let % = dν/dω and γ = log %. The measures
ν and m are finite and invariant and m is ergodic. So ν ≈ m implies ν = m.
We start with the homology equation:

(3.1) φ− log d = γ ◦ f − γ ω-a.e. on J.

This is obvious from the computation of the Jacobians of the measures
ν = m.

To prove our result it is sufficient (and necessary) to construct an au-
tomorphic harmonic function τ ([LyV], [BV] and [BPV]), i.e. a function
satisfying the following:

1) τ is subharmonic in U , τ ≥ 0,
2) τ vanishes on Kf , τ > 0 on U \Kf ,
3) τ is harmonic in U \Kf ,
4) τ(fz) = dτ(z).

To construct such a function we first construct a disc B = B(x, r) cen-
tered at the Julia set and a nonnegative subharmonic function u in B such
that

(3.2) dω/dµu = eγ on B.

Let F with ω(F ) > 0 be a set on which γ is continuous. Let F0 ⊂ F with
ω(F0) > 0 be such that

(3.3) lim
ε→0

ω(B(y, ε) ∩ F )
ω(B(y, ε))

= 1.

We use the natural extension (J̃ , f̃ , m̃) of (J, f,m). Here f̃ is just the left
shift. We denote by π : J̃ → J the projection onto the “0” coordinate. Then
m̃(π−1(F0)) > 0 and by the ergodicity of m̃ one can choose x̃ such that
f̃−n(x̃) ∈ π−1(F0) with positive frequency. In particular, we have chosen
x ∈ Jf and the sequence of compatible inverse images xn of x such that
xn ∈ F0 with positive frequency. But one can do more (see [FLM], [Z1]):
we can choose B = B(x, r) such that on 3B there are univalent compatible
inverse branches Fn such that

diamFn(2B) ≤ e−nδ,
(3.4) xn = Fn(x) meets F0 with positive frequency,

Let us consider the family un = dnG ◦ Fn in 3B. Then by (3.1),

dω

dµun
(y) = eγ(y)−γ(Fn(y)), y ∈ Jf ∩ 3B.
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In particular, ‖µun‖ ≤ C < ∞ and moreover c1ω ≤ µun ≤ c2ω (see Theo-
rem 4 which gives the boundedness of γ).

Let {nk} be a subsequence such that γ(xnk)→ c as k →∞, and xnk ∈
F0. Without loss of generality we can think that

|γ(xnk)− c| ≤ 2−k,
ω(Fnk(2B) \ F )
ω(Fnk(2B))

≤ 2−k.

The last assertion follows from (3.3), (3.4). Let Ek = F−1
nk

(F ∩ Fnk(2B)).
Then

(3.5) |dω/dµnk − eγ−c| ≤ C12−k on Ek,

(3.6) µnk(2B \ Ek) ≤ C22−k.

Let K be a relatively closed subset of the disc B. We denote by S+(B,K)
the set of bounded subharmonic functions in B vanishing on K and positive
and harmonic in B \K. We use two standard lemmas.

Lemma 3.1. Let {vj} be a sequence of uniformly bounded functions from
S+(B,K). Let K be regular for the Dirichlet problem in C \K. Then there
exists a subsequence which converges pointwise to a function from S+(B,K).

Lemma 3.2. Let u belong to S+(2B,K) for some ball 2B of diameter less
than 1 and having cap(B ∩K) > 0. Then

sup
B
u ≤ CB,K‖µu‖.

So as ‖µunk ‖ ≤ C we conclude that unk are uniformly bounded. We
may think that the subsequence in Lemma 3.1 is {unk} itself; put u0 =
limk→∞ unk in B. The convergence is pointwise bounded and so µunk →
µu0 weakly. But (3.5) and (3.6) show that µunk → e−γ+cdω weakly. Thus
dµu0 = e−γ+cdω and u0e

c satisfies (3.2).
Now the construction of τ follows word for word the construction in

[LyV], [BV]. We sketch it here for the sake of completeness. We consider a
component Bθ of f−nB and define τ on it as follows:

τ(z) :=
1
dn
u(fnz).

In [LyV] or [BV] it is shown that τ (or its symmetrization) does not depend
on θ or n, that is, if Bθ1∩Bθ2 6= ∅ then τ (or its symmetrization) is the same
on this intersection. This follows quite easily from (3.2). Now τ is defined
on the set O =

⋃
f−nB. Using (2.2) it is easy to extend it to U . Theorem 1

is therefore proved.

P r o o f o f T h e o r e m 2. The circular model of Douady and Hubbard
associates with a polynomial-like map f an expanding real analytic endo-
morphism F of degree d of the unit circle T. If f is a polynomial, then
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F : z → zd. Polynomial-like maps are called externally equivalent if the
corresponding endomorphisms are analytically conjugate.

Theorem B ([DH]). Let f be a polynomial-like map of degre d. Then
f is conformally equivalent to a polynomial if and only if it is externally
equivalent to z → zd.

An automorphic harmonic function τ built in Section 3 gives this external
equivalence easily. This is done in [LyV], but we will sketch the proof here.
Let F be a Douady–Hubbard external map for f . Then F : A1 → A2 is
an analytic covering of degree d between annuli A1, A2 with A1 ⊂ A2 and
T ⊂ ∂A1 ∩ ∂A2. Given the f -automorphic harmonic function τ we can pull
it on A1, thus constructing an F -automorphic harmonic function T on A1

with T (Fz) = dT (z). Then T vanishes on the unit circle. We can extend
T through the circle by reflection to obtain a subharmonic function with
∆T = %dσ, where σ denotes the Lebesgue measure on the circle and % is real
analytic. But the automorphic equation shows that the Riesz measure ∆T
of T is a maximal measure for F . Thus mF is equivalent to the Lebesgue
measure and a theorem of Shub and Sullivan [SS] finishes the proof by
showing that F is analytically equivalent to z → zd.

4. Questions. We finish by formulating two questions:

1. Can one use the technique of [MR] to prove the theorems above?
2. Given a polynomial-like map f and its external map F : T→ T, is it

true that the harmonic measure on Jf is transferred to a measure absolutely
continuous with respect to Lebesgue measure on the circle?

Positive answers would give an easy proof of Theorem 2. But it will not
be possible to use it for Theorem 1 without extending the Douady–Hubbard
external model to GPL.

5. Nonlinearizability of harmonic measure. The method used for
the proof of Theorem 1 shows that the logarithm of the Jacobian of harmonic
measure φ can satisfy φ−ψ = γ◦f−γ with continuous ψ having only finitely
many values only if ψ is actually a constant function, equal to log d, and f
is conformally maximal.
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[MR] R. Mañ é and L. F. da Rocha, Julia sets are uniformly perfect , Proc. Amer.
Math. Soc. 116 (1992), 251–257.

[SS] M. Shub and D. Sul l ivan, Expanding endomorphisms of the circle revisited ,
Ergodic Theory Dynam. Systems 5 (1985), 285–289.

[Z1] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for
rational maps, Invent. Mat. 99 (1990), 627–649.

[Z2] —, Invariant measure in the class of harmonic measures for polynomial-like map-
pings, preprint 538, Inst. Math., Polish Acad. Sci., 1995.

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
U.S.A.
E-mail: irina@math.msu.edu

volberg@math.msu.edu

Received 28 April 1995;
in revised form 29 December 1995


