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The σ-ideal of closed smooth sets
does not have the covering property

by

Carlos E. U z c á t e g u i (Mérida)

Abstract. We prove that the σ-ideal I(E) (of closed smooth sets with respect to a
non-smooth Borel equivalence relation E) does not have the covering property. In fact, the
same holds for any σ-ideal containing the closed transversals with respect to an equivalence
relation generated by a countable group of homeomorphisms. As a consequence we show
that I(E) does not have a Borel basis.

1. Introduction. A σ-ideal I of compact subsets of a Polish space X is
said to have the covering property (see [4, 11], and the notion of I-regularity
of [8]) if for every analytic set A ⊆ X such that every closed subset of A
is in I there are countably many closed sets Fn in I such that A ⊆ ⋃n Fn.
The covering property for σ-ideals of compact sets is an abstraction of the
classical perfect set theorem for analytic sets. In fact, when I is the collec-
tion of closed countable subsets of 2ω (or any compact metric space), the
classical perfect set theorem says that I has the covering property. Besides
this example, we only know one more non-trivial σ-ideal that has the cov-
ering property, namely, the σ-ideal of closed sets of extended uniqueness in
the unit circle ([6]). In this article we will be concerned with the σ-ideal of
closed smooth sets with respect to a Borel equivalence relation (the defini-
tion appears in §3). We will show that it does not have the covering property.
Smooth sets appear in the study of Borel equivalence relations ([3]) and are
a generalization of the wandering sets studied in ergodic theory ([13]).

It follows from the results in [10] that it suffices to have the covering
property for Gδ sets in order to have it for analytic sets. Thus, by a stan-
dard argument with the Baire category theorem, the covering property is
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equivalent to the following: Let H be a Gδ set; if for every open set V with
V ∩H 6= ∅ the closure V ∩H is not in I, then there is K ⊆ H with K not
in I. So, in order to violate the covering property one needs to show that
there is a “small” Gδ set (i.e., with every closed subset belonging to I) with
“large” closure (i.e., locally not in I). Given an equivalence relation E on
X, a subset A of X is called an E-transversal (or just a transversal) if for
all x, y ∈ A if x 6= y then xE/y. Borel transversals are typical smooth sets.
We will construct Gδ transversals with locally non-smooth closure. In §2 we
present the basic construction which is similar to the non-Borel basis lemma
of [7]. Using this result, in §3 we show that if J is a σ-ideal containing the
closed transversals with respect to the equivalence relation generated by a
countable group of homeomorphisms of X then J does not have the covering
property.

The notion of calibration was introduced in [7] and used there to char-
acterize when a σ-ideal of compact sets can be extended to a σ-ideal of Gδ
sets. In fact, given a σ-ideal I of compact sets let Iint be the collection of
subsets A of X such that every closed subset of A belongs to I. Then I
is calibrated iff the collection of Gδ sets in Iint forms a σ-ideal ([7]). The
σ-ideals defined by measures or capacities are calibrated, but the σ-ideal of
meager closed sets is not calibrated. There are not many examples of not
calibrated σ-ideals. In fact, calibration is considered a very mild require-
ment. It is easy to see that calibration follows from the covering property.
In §3 we also present some results about It(E), the σ-ideal of closed sets
generated by the collection of closed transversals (where E is a Borel equiv-
alence relation on X). In particular, we show that It(E) is a Π1

1 , locally
non-Borel and not calibrated σ-ideal. In other words, for It(E) the failure
of the covering property is as strong as it can be.

Our notation is standard as in [9, 5] and concerning σ-ideals we refer the
readers to [7] and the references therein. X will always be a compact metric
space. We now recall some basic definitions and facts. Analytic sets, denoted
byΣ1

1, are continuous images of Borel sets. Co-analytic sets, denoted byΠ1
1,

are the complements of analytic sets. The collection of closed subsets of X,
which is denoted by K(X), equipped with the Hausdorff distance is a Polish
space. All the notions such as open sets, Borel sets, analytic sets, etc., in
K(X) will refer to the Hausdorff metric (for more details about the topology
and descriptive set theory of K(X) see [5]). A collection I of closed sets is
a σ-ideal if the following two properties hold: (1) If Kn ∈ I for all n ∈ ω
and K =

⋃
nKn is closed then K ∈ I. (2) I is hereditary , i.e., if K ∈ I

and F ⊆ K is closed then F ∈ I. A Π1
1 σ-ideal I satisfies the so-called

dichotomy theorem ([7]), namely either I is a true Π1
1 subset of K(X) or

a Gδ subset. Even more, every Σ1
1 σ-ideal is in fact Gδ ([7]). By Iint we

denote the collection of all subsets A of X such that every closed subset of
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A is in I. A σ-ideal I is calibrated if whenever for a closed set F ⊆ X there
is a sequence (Fn) of closed sets in I with F − ⋃n Fn ∈ Iint then F ∈ I.
We say that B ⊂ I is a basis for I if B is hereditary and I = Bσ, i.e.,
every K ∈ I is a countable union of sets in B. We say that I has a Borel
basis if there is a Borel subset of K(X) which is a basis for I. I is called
locally non-Borel if for every closed set F 6∈ I, I ∩ K(F ) is not Borel. We
say that I is thin if every collection of disjoint closed sets not in I is at most
countable. These notions were introduced in [7]. A very important criterion
known to imply the covering property is the following theorem due to Debs
and Saint Raymond ([2]): If I is a calibrated, locally non-Borel Π1

1 σ-ideal
with a Borel basis then I has the covering property. A proof of this result
can be found in [6], p. 208. ω<ω denotes the collection of finite sequences of
natural numbers. If s ∈ ω<ω and n ∈ N then s∧(n) is the concatenation of
s with n. 2ω is the Cantor space with the usual product topology.

2. Basic construction. We say that an equivalence relation E on X
is generated by a countable collection (gn) of homeomorphisms of X if for
every x and y in X, xEy if and only if there is n with gn(x) = y. For
such equivalence relations we will construct Gδ E-transversals with locally
non-smooth closure. The construction given here (Lemma 2.6) is similar to
that in §2, Lemma 7 of [7], but we will follow the proof given in [6] (Lemma 7,
p. 203); some familiarity with the latter will be helpful.

The following definitions capture what is needed from the construction.

Definition 2.1. Let O be a subset of X ×X and K ⊆ X. Put [K]O =
{y ∈ X : ∃z ∈ K, (y, z) 6∈ O}. We will say that a collection (On) of subsets
of X ×X satisfies (∗) if the following conditions hold.

(1) For every n, On is symmetric, and (x, x) 6∈ On for all x ∈ X.
(2) For every n, every closed nowhere dense subset K ⊆ X and every

non-empty open V in X, there is y ∈ V such that for all x ∈ K we have
(y, x) ∈ On. This is equivalent to saying that for every n, [K]On is a meager
set.

R e m a r k. The motivation behind the previous definition is the following:
Suppose g is a homeomorphism of X and let O = {(y, x) : g(x) 6= y & g(y) 6=
x & x 6= y}. Then [K]O = g[K] ∪ g−1[K] ∪ K, which is obviously meager
if K is meager. For the case where E is an equivalence relation generated
by a collection (gn) of homeomorphisms of X and On is defined as before,
A is an E-transversal if and only if for every x, y ∈ A with x 6= y we have
(x, y) ∈ ⋂nOn.

Definition 2.2. Let F be a collection of closed subsets of X. We will
say that a set A is locally not in F (or F-perfect) if for every open set V
with V ∩A 6= ∅ there is a non-empty K 6∈ F such that K ⊆ V ∩A.
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R e m a r k. When I is a σ-ideal of closed sets, a subset A of X is said
to be I-perfect if for all V open with V ∩ A 6= ∅ we have V ∩A 6∈ I. For
F = I, A is I-perfect if and only if A is locally not in F . When F is just
a hereditary family of closed sets then the usual argument with the Baire
category theorem shows that if F is a closed (or even Gδ) set locally not in
F then F cannot be covered by a countable collection of closed sets in F .

We will need the following lemma [6].

Lemma 2.3. Let K be a closed nowhere dense set , D ⊆ X a dense set
and V an open set with K ⊆ V . Then there is a countable discrete set
DK ⊆ D ∩ V with DK ∩K = ∅ such that DK = DK ∪K.

P r o o f. See [6], Lemma 5, p. 202.

Lemma 2.4. Let O be an open subset of X ×X such that (x, x) 6∈ O for
every x ∈ X and L be a closed subset of X such that [L]O is meager. Let
U ′ and W be open subsets of X with L ⊆ U ′. Then there are non-empty
open subsets V and U such that V ⊆ W , U ⊆ U ′, L ⊂ U , V ∩ U = ∅ and
V × U ⊆ O.

P r o o f. Let y ∈ W − [L]O, i.e., {y} × L ⊂ O. For every x ∈ L there are
open sets Ux and Vx such that x ∈ Ux, y ∈ Vx, Ux∩Vx = ∅ and Vx×Ux ⊆ O.
By a standard compactness argument we can find x1, . . . , xn in L such that
U = Ux1 ∪ . . . ∪ Uxn and V = Vx1 ∩ . . . ∩ Vxn satisfy the conclusion of the
lemma.

Lemma 2.5. Let O be a symmetric open subset of X × X such that
for every x ∈ X we have (x, x) 6∈ O and K be a nowhere dense set such
that [K]O is meager. Let D = {xm}m≥0 be a countable discrete set with
K ∩ D = ∅ such that D = K ∪ D. Let {Wm} be a collection of open sets
such that {xm} = D ∩Wm and Wm ∩Wl = ∅ for m 6= l. Then for every m
there is an open set Vm such that :

(a) Vm × Vl ⊆ O for m 6= l.
(b) Vm ⊆Wm and Vm ∩K = ∅.
P r o o f. Fix K, D, {xm}, {Wm} and O as in the hypothesis. Let Dm =

{xl : l ≥ m} for m ≥ 0. Notice that Dm = K ∪ Dm. We will define, by
induction on m, sequences of open sets Vm and Um such that:

(1) Vm ⊆ Vm ⊆Wm.
(2) Vm ∩ Um = ∅.
(3) Vm × Um ⊆ O.
(4) Dm ⊆ Um.
(5) Um+1 ⊆ Um and Vm+1 ⊆ Um.
(6) Vm ∩K = ∅.
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For m = 0 apply Lemma 2.4 to L = D0, U ′ = X and W = W0 to obtain
open sets V0 and U0 such that V0 ⊆ V0 ⊆ W0, D0 ⊆ U0 ⊆ X, V0 ∩ U0 = ∅
and V0 × U0 ⊂ O. Notice that V0 ∩K = ∅.

Suppose we have defined Vm and Um for m ≤ M satisfying (1)–(6).
Notice first that K ∪DM+1 = DM+1 ⊆ DM ⊆ UM and xM ∈ UM ∩WM+1.
Apply then Lemma 2.4 to L = DM+1, U ′ = UM and W = WM+1 ∩ UM to
get VM+1 and UM+1 satisfying (1)–(5). Notice that since K ⊆ UM+1, we
have VM+1∩K = ∅. The collection {Vm} satisfies (a) (here we need the fact
that O is symmetric) and (b).

Now we are ready to give the proof of the basic construction.

Lemma 2.6. Let F be a collection of non-empty meager closed sets such
that the collection of meager closed sets not in F is dense in K(X). Let (On)
be a collection of open subsets of X×X with property (∗) (as stated in 2.1).
Then there is a closed set K locally not in F and a Gδ set H ⊆ K such
that :

(a) H = K.
(b) For every x, y ∈ H with x 6= y we have (x, y) ∈ ⋂nOn.

P r o o f. We will define for each s ∈ ω<ω an open set Vs and a closed set
Ks such that:

(1) Vs 6= ∅, Ks ⊆ Vs and Ks 6∈ F .
(2) If n 6= m then Vs∧(n) ∩ Vs∧(m) = ∅.
(3) Vs∧(n) ⊆ Vs and Vs∧(n) ∩Ks = ∅.
(4) diam(Vs∧(n)) ≤ 2−lh(s).

(5)
⋃
n Vs∧(n) =

⋃
n Vs∧(n) ∪Ks.

(6) Ks ⊂
⋃
nKs∧(n).

(7) If n 6= m then Vs∧(n) × Vs∧(m) ⊆ Olh(s)+1.

The construction is by induction on lh(s). We start with V∅ = X and
K∅ a meager set not in F . Suppose we have defined Ks and Vs for s with
lh(s) ≤ k and satisfying (1)–(7). For each s with lh(s) = k let Ds be a
countable discrete set such that Ds ∩Ks = ∅, Ds ⊆ Vs and Ds = Ks ∪Ds

as in Lemma 2.3. Let {xsm}m≥0 be an enumeration of Ds and pick an open
set W s

n such that xsn ∈ W s
n, W s

n ∩ W s
m = ∅ for n 6= m, W s

n ⊆ Vs and
diam(W s

n) ≤ 2−n·lh(s).
Let D =

⋃
lh(s)=kDs. From (2) we see that D is discrete, D is meager

and D−D is closed. Apply Lemma 2.5 to O = Ok+1, K = D−D, D, {W s
n}

(for lh(s) = k and n ≥ 0) and get open sets V sn ⊆ W s
n satisfying (1)–(6) of

Lemma 2.5. Put Vs∧(n) = V sn and pick Ks∧(n) ⊆ Vs∧(n) with Ks∧(n) 6∈ F .
From the construction it follows that (1), (2), (4) and (7) hold.
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To check (3) notice that V sn ⊆ W s
n ⊂ Vs by construction and also V sn ∩

(D−D) = ∅. So if V sn ∩Ks 6= ∅, then V sn ∩ (Ds−Ds) 6= ∅. Since Ds−Ds ⊆
D −D, we have V sn ∩ (D −D) 6= ∅, which is a contradiction.

For (5), let x = Limi xi with xi ∈ Vs∧(ni). There are two cases to consider:
(i) If ni is eventually equal to k then x ∈ Vs∧(k) and we are done. (ii) If ni
is not eventually constant, then dist(xsni , xi) ≤ diam(W s

ni) → 0 as i → ∞.
Then from (2) and the fact that Ds = Ks ∪ Ds we see that x ∈ Ks. The
other part is proved analogously.

For (6), let x ∈ Ks. Then x = Limi x
s
ni for some subsequence (ni). Let

yi ∈ Ks∧(ni). Then dist(xsni , yi)→ 0 as i→∞, therefore x = Limi yi.
Let H =

⋂
n

⋃
lh(s)=n Vs and K = H ∪ ⋃sKs. As in the proof of

Lemma 7 in [6] (p. 203) it can be shown that K =
⋂
n

⋃
lh(s)=n Vs = H.

As diam(Ks) → 0, we deduce that K is locally not in F and from (2) and
(7), H satisfies (b). This finishes the proof.

3. Main results. A Borel equivalence relation E on X (Borel as a subset
of X × X) is said to be smooth if it admits a countable Borel separating
family, i.e., a collection (An) of E-invariant Borel subsets of X such that for
all x, y ∈ X,

xEy if and only if ∀n (x ∈ An ↔ y ∈ An).

A fundamental characterization of smooth Borel equivalence relations was
proved by Harrington, Kechris and Louveau in [3]: E is smooth if and only
if there is no continuous one-to-one function f : 2ω → X such that for all
α, β ∈ 2ω,

αE0β if and only if f(α)Ef(β),
where E0 is the equivalence relation defined in 2ω as follows:

αE0β if and only if ∃n ∀m > n α(m) = β(m).

It is not difficult to see that E0 is generated by a countable collection of
homeomorphisms of 2ω.

A set A ⊆ X is called E-smooth (or just smooth when there is no con-
fusion about E) if there is a Borel set B ⊇ A such that the restriction of
E to B is a smooth equivalence relation. A subset of a smooth set is also
smooth and a countable union of smooth sets is smooth, i.e., they form
a σ-ideal. So, we regard smooth sets as small sets. Every countable set is
smooth and in fact every Borel transversal is smooth. A characterization of
the analytic smooth sets in terms of measures is as follows: A finite, positive
Borel measure µ on X is called E-ergodic if for every µ-measurable invariant
set A, either µ(A) = 0 or µ(X − A) = 0. It is called E-non-atomic if for
every x ∈ X, µ([x]E) = 0. An analytic set A ⊆ X is smooth if and only if
µ(A) = 0 for every E-ergodic non-atomic measure µ ([12]).
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The following σ-ideal was introduced in [12]:

I(E) = {K ∈ K(X) : K is smooth with respect to E}.
It was proved there that

Theorem 3.1. Let E be a non-smooth Borel equivalence relation on a
compact Polish space X. Then I(E) is a calibrated , locally non-Borel , Π1

1
non-thin σ-ideal.

We will use the result of the previous section to show that I(E) does not
have the covering property (for E non-smooth). We will also present some
results about the σ-ideal generated by the collection of closed transversals.

Let B = {F ∈ K(X) : F is a transversal}. Then

F ∈ B if and only if ∀x, y [(x, y ∈ F & xEy)→ x = y].

Consider the following relation:

R(x, y, F ) if and only if (x, y ∈ F & xEy)→ x = y.

It is clear that R is Borel and B is Π1
1 . Denote by It(E) = (B)σ the σ-

ideal generated by B, that is to say,K ∈ It(E) if there are closed transversals
Kn ∈ B such that K =

⋃
nKn. Then It(E) is Π1

1 (see [7], p. 271), it
contains all singletons and therefore it is not Borel (Corollary 5.4 of [12]).
If, in particular, E is Fσ (for example E0) then R is Gδ and therefore B is
also Gδ, thus in this case It(E) has a Borel basis.

Theorem 3.2. Let E be an equivalence relation generated by a countable
collection of homeomorphisms of X. Let F be a collection of non-empty
meager closed sets such that the collection of meager closed sets not in F
is dense in K(X). Then there is a Gδ E-transversal H such that H is F-
perfect. In particular , if J is a σ-ideal of compact subsets of X such that the
collection of meager J-perfect sets is dense in K(X) and It(E) ⊆ J , then J
does not have the covering property.

P r o o f. Let (gn) be a countable collection of homeomorphisms of X such
that xEy if and only if there is n with gn(x) = y. Let On = {(x, y) ∈ X×X :
x 6= y & gn(x) 6= y & gn(y) 6= x}. Then [K]On = gn[K]∪ g−1

n [K]∪K, which
is meager if K is meager. Let F be a collection of closed sets as in the
hypothesis. Then by 2.6 there is an F-perfect closed set K and a Gδ dense
subset H of K with H an E-transversal. If F is hereditary then the Baire
category theorem implies that H cannot be covered by countably many sets
in F . From this the last claim follows.

Corollary 3.3. Let E be a non-smooth Borel equivalence relation on
X. Then I(E) does not have the covering property and does not have a Borel
basis.
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P r o o f. First, suppose we have shown that I(E) does not have the cov-
ering property. Toward a contradiction, suppose that I(E) has a Borel basis.
Then from 3.1 we know that all the hypotheses of the Debs–Saint Raymond
theorem (see the introduction) are satisfied and hence I(E) would have the
covering property, which contradicts our assumption.

To see that I(E) does not have the covering property, we first observe
that if I(E0) does not have the covering property then neither does I(E) (if
f is the function witnessing that E is not smooth and A is a counterexample
to the covering property for I(E0) then f(A) is a counterexample for I(E)).
Finally, for I(E0) the required assertion follows from 3.2.

R e m a r k. The fact that I(E) does not have the covering property means
that there is a Gδ set H that has measure zero with respect to every E-
ergodic, non-atomic measure, but it cannot be covered by a countable col-
lection of closed smooth sets. Notice that this is much stronger than just
saying there is one such measure µ with µ(H) > 0.

Now, we will examine more closely the σ-ideal It(E), since it seems to
be the cause for the failure of the covering property. In fact, we will show
that It(E) is not calibrated, i.e., for this σ-ideal the failure of the covering
property is as strong as it can be. We will need the following lemma.

Lemma 3.4. Let E be an equivalence relation on X and F be a closed set
which is locally not a transversal (i.e. locally not in the collection B defined
above). There is a continuous function f : 2ω → K(F ) such that :

(i) If γ is eventually zero, then f(γ) is finite.
(ii) If γ is not eventually zero, then f(γ) is locally not a transversal.

P r o o f. Let F be a closed set locally not a transversal. We will define a
sequence Fs, s ∈ 2<ω, such that:

(i) Fs is a finite subset of F .
(ii) If s ≺ t (i.e., s is an initial segment of t), then Fs ⊆ Ft.

(iii) For every s ∈ 2<ω, dist(Fs, Fs∧(i)) ≤ 2−lh(s).
(iv) For every s ∈ 2<ω, Fs∧(0) = Fs.
(v) For every x ∈ Fs, {y ∈ Fs∧(1) : dist(x, y) ≤ 1/2lh(s)+1} is not a

transversal.

We define Fs by induction on the length of s. Pick x0 ∈ F and let
F∅ = {x0}. Suppose for all s ∈ 2n we have defined Fs satisfying (i)–(v). Put
Fs∧(0) = Fs. Since F is locally not a transversal, for every x ∈ Fs we can pick
y, z ∈ F with yEz and such that dist(x, y) ≤ 1/2lh(s)+1. Put y, z ∈ Fs∧(1).

Now define f by f(γ) =
⋃
n Fγdn. It is not difficult to check that (ii)

and (iii) imply that f is continuous. If γ is eventually zero, then from (i)
and (iv) it is clear that f(γ) is finite. On the other hand, assume that γ has
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infinitely many 1’s. We will show that f(γ) is locally not a transversal. Let
V be an open set such that V ∩ f(γ) 6= ∅ and let x ∈ V ∩ f(γ) and choose
n0 such that {y ∈ Y : dist(x, y) < 1/2n0} ⊆ V . Let n > n0 be such that
γ(n) = 1 and put s = γdn. Then from (v) we see that V ∩ f(γ) is not a
transversal.

Next, we show that It(E) is not calibrated, for E non-smooth.

Theorem 3.5. Let E be a non-smooth Borel equivalence relation on X.
Then It(E) is a Π1

1 , locally non-Borel and not calibrated σ-ideal.

P r o o f. We have already shown that It(E) is Π1
1 and from 3.4 we see

that it is locally not Gδ; hence from the dichotomy theorem ([7]), It(E) is
locally not Borel.

We show first that It(E0) is not calibrated. Let x ∈ 2ω and F be the
collection of closed meager subsets F of 2ω such that [x]E0 ∩F is infinite. As
E0 is generated by a countable collection of homeomorphisms of 2ω, let (On)
be open subsets of 2ω × 2ω as in the remark after 2.1. Since the equivalence
class of x is dense, so is K(X) − F . Hence by 2.6 there is a closed set K
locally not in F and a Gδ dense H ⊂ K such that H is a transversal. Then
H and K do not satisfy the condition in the definition of calibration: In
fact, notice that K = H ∪⋃sKs and the sets Ks in the proof of 2.6 can be
chosen to be finite subsets of [x]E0 , hence they belong to It(E0).

For the general case we argue as follows. Let f be a 1-1 continuous
function witnessing that E is not smooth. The following facts are easy to
verify: (i) a Gδ subset H of 2ω is in It(E0)int iff f [H] is in It(E)int. (ii) K
is a E0-transversal iff f [K] is a E-transversal. Using these facts it is easy to
check that the counterexample to the calibration of It(E0) is transformed
by f into a counterexample to the calibration of It(E).

R e m a r k s. The Debs–Saint Raymond theorem (see the introduction)
was used to show that the σ-ideal of closed sets of uniqueness does not have
a Borel basis ([6], in contrast to what happens with extended uniqueness)
in the same way we did for I(E). We can also use it here to give a proof
of the previous result. In fact, suppose toward a contradiction that It(E0)
is calibrated. Then all hypotheses of the Debs–Saint Raymond theorem are
satisfied (recall that in this case the collection of closed transversals is Borel
and hence It(E0) has a Borel basis) and thus It(E0) would have the covering
property. We will show that under this assumption I(E0) would also have
the covering property, which contradicts 3.3. For countable Borel equivalence
relations we know that every smooth set admits a Borel transversal (see [1]).
Let B ⊆ X be an analytic smooth set and T be a Borel transversal for B.
Clearly T ∈ It(E0)int, hence there are closed transversals Fn such that
T ⊆ ⋃n Fn. It is easy to see then that B is covered by the sets [Fn]E which
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are Fσ smooth sets (recall that X is compact and x ∈ [F ]E if and only if
there is y ∈ F such that xEy, thus [F ]E is an Fσ set).
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