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A Ramsey theorem for polyadic spaces

by

M. B e l l (Winnipeg, Manitoba)

Abstract. A polyadic space is a Hausdorff continuous image of some power of the one-
point compactification of a discrete space. We prove a Ramsey-like property for polyadic
spaces which for Boolean spaces can be stated as follows: every uncountable clopen collec-
tion contains an uncountable subcollection which is either linked or disjoint. One corollary
is that (ακ)ω is not a universal preimage for uniform Eberlein compact spaces of weight
at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage. An-
other consequence is that the property of being polyadic is not a regular closed hereditary
property.

1. Introduction. For an infinite cardinal κ, let ακ be the Aleksandrov
one-point compactification of the discrete space κ and let ακτ be the Tikho-
nov product of τ copies of ακ. A Hausdorff space X is polyadic (Mrówka
[Mr70]) if there exist cardinals κ, τ such that X is a continuous image of
ακτ . The much-studied dyadic spaces are precisely the images of αωτ .

Our interest in polyadic spaces began with the problem of whether this
property was regular closed hereditary. Theorem 2.1 gives a new Ramsey-like
property that all polyadic spaces satisfy. We also use this theorem to solve a
problem in function space theory on uniform Eberlein compact spaces; see
Corollary 3.3. Corollary 3.5 shows that for hyperspaces H(X), polyadic is
equivalent to dyadic.

For n < ω, a collection O of sets is n-linked if for each O′ ⊂ O with
|O′| = n,

⋂O′ 6= ∅. We abbreviate 2-linked by linked. O is centered if for
each finite O′ ⊂ O,

⋂O′ 6= ∅. A ∆-system is a collection O of sets for
which there exists a set R (called the root of the ∆-system) such that if A
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and B are two distinct elements of O, then A ∩ B = R. A standard fact is
the following: if λ is an uncountable regular cardinal and 〈Fα : α < λ〉 is
a λ-sequence of finite sets, then there exists A ⊂ λ with |A| = λ such that
{Fα : α ∈ A} is a ∆-system.

All our spaces are assumed to be Hausdorff. We say that a space Y is
an image of a space X if there exists a continuous surjection f : X → Y . A
topological property P is imaging if P is transferred from a space to all of
its images, and P is hyper-extendible if P is transferred from a space to its
Vietoris hyperspace of all non-empty closed subsets.

2. The polyadic Ramsey theorem. Let us set our notation for a
standard Sierpiński graph which we will use a couple of times in this paper.
Let R be the set of real numbers, let A ⊂ R be of cardinality ω1, let <
denote the usual ordering on A and let ≺ denote a well-ordering on A. We
say < and ≺ agree on {x, y} if x < y ⇔ x ≺ y. Otherwise, we say that
they disagree on {x, y}. Define G ⊂ [A]2 by {x, y} ∈ G iff < and ≺ agree
on {x, y}. For x ∈ A, let Jx = {y ∈ A : {x, y} ∈ G}. The key property of
the Sierpiński graph G is that there exists no uncountable A′ ⊂ A on which
either < and ≺ agree for all of [A′]2 or on which < and ≺ disagree for all
of [A′]2. In addition, we also assume that for each x ∈ A, Jx and A \ Jx are
both uncountable.

We will also use 2 instances of the partition calculus arrow notation.
For an infinite regular cardinal λ, λ → (λ, ω) means that whenever the
doubletons of λ, i.e. [λ]2, are partitioned into sets A and B, then either
there is a subset C of λ with cardinality λ which is homogeneous for A, i.e.,
[C]2 ⊂ A, or there is a subsetD of λ with cardinality ω which is homogeneous
for B. For n < ω, ω → (ω)2

n means that whenever the doubletons of ω are
partitioned into sets A1, . . . , An, then there is an i < n and an infinite C ⊂ ω
such that C is homogeneous for Ai.

Let λ be an infinite cardinal. We say that a space has Property Qλ if
whenever 〈Uα, Vα〉α<λ is a sequence of pairs of open sets with Uα ⊂ Vα for
each α < λ, then there exists an A ⊂ λ with cardinality λ such that either
{Vα : α ∈ A} is linked or {Uα : α ∈ A} is disjoint. We say that a space
has Property Rλ if every collection of cardinality λ of clopen sets contains
a subcollection of cardinality λ which is either linked or disjoint. Since, in
a Boolean space, a clopen set Bα can be placed between Uα and Vα, these
2 properties are equivalent in Boolean spaces. Property Q and Property R
abbreviate Property Qω1 and Rω1 respectively.

Theorem 2.1. Every polyadic space satisfies Property Qλ for each regu-
lar cardinal λ > ω.
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P r o o f. Let λ be a regular cardinal > ω and let P be a continuous image
of ακτ for some κ, τ . Since Property Qλ is an imaging property, it suffices
to show that ακτ has Property Qλ. Since ακτ is a Boolean space, it suffices
to show that ακτ has Property Rλ. In exactly the same way that one proves
the Noble–Ulmer theorem that a product is ccc iff every finite subproduct
is ccc (by using a ∆-system of finite supports) one can prove that a product
of Boolean spaces satisfies Property Rλ iff every finite subproduct satisfies
Property Rλ. So, it suffices to show that for all n < ω and all κ, ακn satisfies
Property Rλ. This is Lemma 2.5.

For a brief moment only let us consider Property S: every uncountable
collection of open sets contains an uncountable subcollection which is either
linked or disjoint. We mention this only to show why in Properties Q and R
we do not just deal with a single family of open sets but with pairs of open
sets or clopen sets. A space has Property K (the property of Knaster) if every
uncountable open collection contains an uncountable linked subcollection.
We have the following:

Proposition 2.2. Property S is equivalent to Property K.

P r o o f. Assume X has Property S. Let O be an open family with |O| =
ω1. We show that O does not contain an uncountable disjoint subfamily. If
so, let O′ be an uncountable disjoint subfamily of O. Let G be a standard
Sierpiński graph on A ⊂ R. Let ϕ be a bijection ϕ : [A]2 → O′. For each
x ∈ A, put Ux =

⋃
{x,y}∈G ϕ({x, y}). Then, for each x ∈ A, Ux is open and,

furthermore, Ux ∩ Uy 6= ∅ iff {x, y} ∈ G. So, the collection {Ux : x ∈ A}
violates Property S. Hence, O must contain an uncountable linked subfamily
and therefore we have shown that X has Property K.

Thus, the polyadic space αω1 has Property Q but does not have Pro-
perty S.

Example 2.3. In the definition of Property Qλ we cannot replace linked
by centered (or even 3-linked) and still have Theorem 2.1.

Indeed, in αω2
1 , for each α < ω1, put Bα = ({α} × αω1) ∪ (αω1 × {α}).

The collection {Bα : α < ω1} is linked but contains no uncountable 3-linked
subcollections.

αω1 satisfies the stronger Property T: every uncountable clopen collec-
tion contains an uncountable subcollection which is either centered or dis-
joint. The above Bα’s show that Property T is not productive (also that the
property gotten from T by replacing centered with 3-linked is not produ-
ctive). We use special knowledge of ακ to get Lemma 2.5 but this leaves
open
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Question 2.4. Among Boolean spaces, is Property R productive? Or
even more strongly , if a Boolean space X has Property T, does X2 have
Property R?

Lemma 2.5. For every n < ω, for every cardinal κ, and for every regular
cardinal λ > ω, ακn has Property Rλ.

P r o o f. Let B = {bα : α < λ} be a clopen family in ακn of cardinality
λ. Let us assume that B does not contain a linked subfamily of cardinality
λ. We now work towards producing a disjoint subfamily of cardinality λ.
By thinning to a subfamily of cardinality λ we can assume that there exists
m < ω such that for each α < λ,

bα =
⋃

i<m

rαi =
⋃

i<m

∏

k<n

rαi (k),

where for all i < m and all k < n either rαi (k) is a finite subset of κ of a
constant size for every α < λ or rαi (k)∩ κ is a co-finite subset of κ for every
α < λ. Define an indicator function I : m × n → 2 by I(i, k) = 0 iff for
all α < λ, rαi (k) is a finite subset of κ. By applying a ∆-system argument
for each i < m and each k < n, we also assume that Rik is a root for
{rαi (k) : α < λ} if I(i, k) = 0 and Rik is a root for {κ \ rαi (k) : α < λ} if
I(i, k) = 1.

We will show that the following holds:

(∗) for all i, j < m there exists H ⊂ λ with cardinality λ such that α < β

in H implies rαi ∩ rβj = ∅.
Then, after m2 successive applications of (∗) we get a K ⊂ λ with cardinality
λ such that α < β in K implies bα ∩ bβ = ∅. This would complete the proof
of the lemma.

P r o o f o f (∗). Fix i, j < m. Define a case function ψ with domain n
by ψ(k) = 2I(i,k)3I(j,k). We may assume that

(S1) for all k < n with ψ(k) = 3,

¬[Rik ⊂ Rjk & (∀α < λ)Rik = rαi (k)]

and that

(S2) for all k < n with ψ(k) = 2,

¬[Rjk ⊂ Rik & (∀α < λ)Rjk = rαj (k)]

(otherwise we would get (∗) for i, j immediately with H = λ).
Define a subset P of [λ]2 by {α < β} ∈ P iff rαi ∩rβj 6= ∅. Since λ→ (λ, ω)

and our main overall assumption implies that there is no subset of λ of
cardinality λ that is homogeneous for P , we get a countably infinite A ⊂ λ
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such that [A]2 ∩ P = ∅. Since ω → (ω)2
n, we get a k < n and an infinite

B ⊂ A such that α < β in B implies rαi (k)∩ rβj (k) = ∅. Clearly, ψ(k) 6= 6. If

ψ(k) = 2, then rβj (k) ⊂ κ \ rαi (k) implies Rjk ⊂ Rik. Put r = |Rik|. Choose
a 2-element subset C ⊂ B and an (r + 1)-element D ⊂ B such that α ∈ C
and β ∈ D ⇒ α < β. Since we have two ∆-systems, our inclusion gives us⋃
β∈D r

β
j (k) ⊂ Rik. Now (S2) implies |Rik| ≥ r + 1; a contradiction. In an

analogous fashion, using (S1), we get ψ(k) 6= 3.
Hence, ψ(k) = 1, and thus we get Rik ∩Rjk = ∅. We now apply thinning

to complete the proof of (∗). There are only finitely many α’s in λ such
that rαi (k) ∩ Rjk 6= ∅. Remove these α’s. The remaining α’s are such that
rαi (k)∩Rjk = ∅. For each remaining α there exist only finitely many β > α

with rαi (k) ∩ rβj (k) 6= ∅. Now we can inductively construct an H ⊂ λ of

cardinality λ such that α < β in H implies rαi (k) ∩ rβj (k) = ∅. So, we have
proved (∗) and hence completed the proof of Lemma 2.5.

3. Applications

Example 3.1: An open U ⊂ αω2
1 such that U is not polyadic.

Let G be a standard Sierpiński graph on the set ω1. Put U = {(α, β) :
{α, β} ∈ G}. For each α < ω1, put Bα = ({α}×αω1)∪ (αω1×{α}) and put
Uα = Bα∩U . Then Uα∩Uβ 6= ∅ ⇔ {α, β} ∈ G. The collection {Uα : α < ω1}
violates Property R, so U is not polyadic.

Our first application relates to the structure of polyadic spaces. The
dyadic property is known to be both zeroset and regular closed hereditary.
Gerlits [Ge78] has shown that the polyadic property is zeroset hereditary.
Thus, we have

Corollary 3.2. The polyadic property is not regular closed hereditary.

Problem 4 in Benyamini, Rudin and Wage [BRW77] asks whether ακω

is a universal preimage for uniform Eberlein compact spaces of weight at
most κ. They prove in this paper that uniform Eberlein compact spaces of
weight at most κ are precisely the images of closed subspaces of ακω. So,
the above example U gives us

Corollary 3.3. ακω is not a universal preimage for uniform Eberlein
compact spaces of weight at most κ.

Problem 3 of [BRW77] of whether there is some closed subspace of ακω

which is a universal preimage for uniform Eberlein compact spaces of weight
at most κ is still open. We can phrase the negation of this problem as

Question 3.4. Is it true that for every closed H ⊂ ακω, there exists a
closed K ⊂ ακω such that K is not an image of H?
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Our final application will deal with the hyperspace H(X) of all non-
empty closed subsets of a compact space X. We endow H(X) with the
Vietoris topology. Mrówka [Mr70] has shown that ifX is a compact orderable
space with H(X) polyadic, then X must be first countable. From the theo-
rem of Gerlits [Ge78] that character = weight for polyadic spaces, it follows
that X must be metrizable. Mrówka uses a property called (K1) in order to
prove his theorem:

(K1) the closure of a Gδ open set U coincides with the sequential closure
of U .

Mrówka proves that every polyadic space satisfies the property (K1). We
will need this result to improve Mrówka’s theorem by reducing polyadicity of
H(X) to dyadicity of H(X) for any compact space. Our hyperspace notation
is as follows: If O is a collection of subsets of X, then 〈O〉 = {F ∈ H(X) :
F ⊂ ⋃O and F ∩ O 6= ∅ for every O ∈ O}. The family {〈O〉 : O is a finite
family of open subsets of X} is an open base for H(X).

Corollary 3.5. If H(X) is polyadic, then H(X) is dyadic.

P r o o f. Assume that H(X) is polyadic. We will show that H(X) is ccc
and then invoke a theorem of R. Engelking (cf. [Mr70]) that says that a
ccc polyadic space is dyadic. We first show that X is ccc. If not, let M
be an uncountable maximal disjoint open family in X. Then X is in the
H(X) closure of

⋃{〈M′〉 :M′ is a finite subset ofM}. By Mrówka’s result,
H(X) has the property (K1) and so we can choose, for n < ω, finite subsets
Mn ⊂ M such that X ∈ ⋃n<ω〈Mn〉. Pick M ∈ M \ ⋃n<ωMn. Then
X ∈ 〈{M,X}〉 and 〈{M,X}〉 ∩⋃n<ω〈Mn〉 = ∅. This contradiction proves
that X is ccc.

Theorem 2.1 implies that H(X) has Property Q. It is easily seen that
therefore X has Property Q. But a regular ccc space with Property Q has
Property K. Property K is hyper-extendible (note that ccc is not hyper-
extendible; think of a Souslin continuum), so H(X) has Property K and the
proof is complete.

We remark that Shapiro [Sh76] has shown that if H(X) is dyadic, then
the weight of X is at most ω1. Thus it follows that if H(X) is polyadic, then
w(X) ≤ ω1.
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