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A Ramsey theorem for polyadic spaces
by

M. Bell (Winnipeg, Manitoba)

Abstract. A polyadic space is a Hausdorff continuous image of some power of the one-
point compactification of a discrete space. We prove a Ramsey-like property for polyadic
spaces which for Boolean spaces can be stated as follows: every uncountable clopen collec-
tion contains an uncountable subcollection which is either linked or disjoint. One corollary
is that (ak)® is not a universal preimage for uniform Eberlein compact spaces of weight
at most k, thus answering a question of Y. Benyamini, M. Rudin and M. Wage. An-
other consequence is that the property of being polyadic is not a regular closed hereditary

property.

1. Introduction. For an infinite cardinal %, let ax be the Aleksandrov
one-point compactification of the discrete space k and let ax™ be the Tikho-
nov product of 7 copies of ak. A Hausdorff space X is polyadic (Mréwka
[Mr70]) if there exist cardinals x, 7 such that X is a continuous image of
ak”. The much-studied dyadic spaces are precisely the images of aw™.

Our interest in polyadic spaces began with the problem of whether this
property was regular closed hereditary. Theorem 2.1 gives a new Ramsey-like
property that all polyadic spaces satisfy. We also use this theorem to solve a
problem in function space theory on uniform Eberlein compact spaces; see
Corollary 3.3. Corollary 3.5 shows that for hyperspaces H(X), polyadic is
equivalent to dyadic.

For n < w, a collection O of sets is n-linked if for each O’ C O with
|O'| = n, O # 0. We abbreviate 2-linked by linked. O is centered if for
each finite @' C O, NO" # 0. A A-system is a collection O of sets for
which there exists a set R (called the root of the A-system) such that if A
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and B are two distinct elements of O, then AN B = R. A standard fact is
the following: if A is an uncountable regular cardinal and (F, : a < A) is
a A-sequence of finite sets, then there exists A C A with |A| = A such that
{Fy:a¢€ A} is a A-system.

All our spaces are assumed to be Hausdorff. We say that a space Y is
an image of a space X if there exists a continuous surjection f: X — Y. A
topological property P is imaging if P is transferred from a space to all of
its images, and P is hyper-extendible if P is transferred from a space to its
Vietoris hyperspace of all non-empty closed subsets.

2. The polyadic Ramsey theorem. Let us set our notation for a
standard Sierpinski graph which we will use a couple of times in this paper.
Let R be the set of real numbers, let A C R be of cardinality wy, let <
denote the usual ordering on A and let < denote a well-ordering on A. We
say < and < agree on {z,y} if < y < x < y. Otherwise, we say that
they disagree on {x,y}. Define G C [A]? by {z,y} € G iff < and < agree
on {z,y}. For x € A, let J, = {y € A: {x,y} € G}. The key property of
the Sierpinski graph G is that there exists no uncountable A" C A on which
either < and < agree for all of [A4]? or on which < and < disagree for all
of [A']?. In addition, we also assume that for each x € A, J, and A\ J, are
both uncountable.

We will also use 2 instances of the partition calculus arrow notation.
For an infinite regular cardinal A, A — (A\,w) means that whenever the
doubletons of A, i.e. [\]?, are partitioned into sets A and B, then either
there is a subset C' of A with cardinality A which is homogeneous for A, i.e.,
[C]? C A, or there is a subset D of A with cardinality w which is homogeneous
for B. For n < w, w — (w)? means that whenever the doubletons of w are
partitioned into sets A, ..., A,, then there is an i < n and an infinite C' C w
such that C' is homogeneous for A;.

Let A be an infinite cardinal. We say that a space has Property Q) if
whenever (U,, Va)a<x is a sequence of pairs of open sets with U, C V,, for
each a < A, then there exists an A C A with cardinality A such that either
{Va : @ € A} is linked or {U, : a € A} is disjoint. We say that a space
has Property Ry if every collection of cardinality A of clopen sets contains
a subcollection of cardinality A which is either linked or disjoint. Since, in
a Boolean space, a clopen set B, can be placed between U, and V,, these
2 properties are equivalent in Boolean spaces. Property Q and Property R
abbreviate Property Q,, and R, respectively.

THEOREM 2.1. Every polyadic space satisfies Property Qx for each regqu-
lar cardinal X > w.
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Proof. Let A be a regular cardinal > w and let P be a continuous image
of ak™ for some k, 7. Since Property Q) is an imaging property, it suffices
to show that ax™ has Property Q. Since ax” is a Boolean space, it suffices
to show that ax”™ has Property R, . In exactly the same way that one proves
the Noble-Ulmer theorem that a product is ccc iff every finite subproduct
is ccc (by using a A-system of finite supports) one can prove that a product
of Boolean spaces satisfies Property Ry iff every finite subproduct satisfies
Property R. So, it suffices to show that for all n < w and all k, ar™ satisfies
Property R). This is Lemma 2.5. »

For a brief moment only let us consider Property S: every uncountable
collection of open sets contains an uncountable subcollection which is either
linked or disjoint. We mention this only to show why in Properties Q and R
we do not just deal with a single family of open sets but with pairs of open
sets or clopen sets. A space has Property K (the property of Knaster) if every
uncountable open collection contains an uncountable linked subcollection.
We have the following:

PROPOSITION 2.2. Property S is equivalent to Property K.

Proof. Assume X has Property S. Let O be an open family with |O| =
w1. We show that O does not contain an uncountable disjoint subfamily. If
so, let O" be an uncountable disjoint subfamily of O. Let G be a standard
Sierpinski graph on A C R. Let ¢ be a bijection ¢ : [A]*> — O'. For each
x €A put U, = U{az,y}eG ©({z,y}). Then, for each x € A, U, is open and,
furthermore, U, N U, # 0 iff {z,y} € G. So, the collection {U, : z € A}
violates Property S. Hence, O must contain an uncountable linked subfamily
and therefore we have shown that X has Property K. m

Thus, the polyadic space aw; has Property Q but does not have Pro-
perty S.

EXAMPLE 2.3. In the definition of Property () we cannot replace linked
by centered (or even 3-linked) and still have Theorem 2.1.

Indeed, in aw?, for each o < wy, put B, = ({a} x aw;) U (aw; x {a}).
The collection {B, : @ < w; } is linked but contains no uncountable 3-linked
subcollections.

aw, satisfies the stronger Property T: every uncountable clopen collec-
tion contains an uncountable subcollection which is either centered or dis-
joint. The above B,’s show that Property T is not productive (also that the
property gotten from T by replacing centered with 3-linked is not produ-
ctive). We use special knowledge of ak to get Lemma 2.5 but this leaves
open
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QUESTION 2.4. Among Boolean spaces, is Property R productive? Or
even more strongly, if a Boolean space X has Property T, does X? have
Property R?

LEMMA 2.5. For every n < w, for every cardinal k, and for every reqular
cardinal A > w, ar™ has Property Ry.

Proof. Let B = {b, : & < A} be a clopen family in ax™ of cardinality
A. Let us assume that B does not contain a linked subfamily of cardinality
A. We now work towards producing a disjoint subfamily of cardinality .
By thinning to a subfamily of cardinality A we can assume that there exists
m < w such that for each a < A,

bo=Jri=U [I®).
i<m i<mk<n
where for all i < m and all k < n either r®(k) is a finite subset of x of a
constant size for every a < A or r{*(k) Nk is a co-finite subset of x for every
a < A. Define an indicator function I : m x n — 2 by I(i,k) = 0 iff for
all « < A, rf*(k) is a finite subset of k. By applying a A-system argument
for each 7 < m and each &k < n, we also assume that R;; is a root for
{ré&(k) : a < A} if I(i,k) = 0 and Ry is a root for {x \ r&(k) : a < A} if
I(i,k) = 1.
We will show that the following holds:
(%)  for all 4,5 < m there exists H C A with cardinality A such that a <
in H implies ¥ N 7"]@ = 0.

Then, after m? successive applications of (¥) we get a K C \ with cardinality

A such that o < # in K implies b, N bg = ). This would complete the proof
of the lemma.

Proof of (). Fix 4,j < m. Define a case function ¢ with domain n
by ¥(k) = 21R)31G:4)  We may assume that
(S1) for all k£ < n with ¥(k) = 3,
S[Rik C Rjr & (Vo < N Ry, =i (k)]
and that
(S2) for all k£ < n with (k) = 2,
S[Rjr C Rip & (Vo < XN)Rji, = r5(k)]

J

(otherwise we would get (x) for ¢, j immediately with H = \).
Define a subset P of [\]? by {a < 8} € P iff rg ﬂrf # (). Since A — (\,w)
and our main overall assumption implies that there is no subset of A of
cardinality A that is homogeneous for P, we get a countably infinite A C A
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such that [A]> N P = (). Since w — (w)2, we get a k < n and an infinite

n’

B C A such that a < @ in B implies 7 (k) ﬂrf(k:) = (). Clearly, ¥ (k) # 6. If

(k) = 2, then rf(k) C &\ r¥(k) implies Rji C Rix. Put r = |R;|. Choose
a 2-element subset C' C B and an (r + 1)-element D C B such that o € C
and 8 € D = a < (. Since we have two A-systems, our inclusion gives us
Usen rf(k‘) C Rix. Now (S2) implies |R;x| > r + 1; a contradiction. In an
analogous fashion, using (S1), we get ¥ (k) # 3.

Hence, (k) = 1, and thus we get R;; N R, = (). We now apply thinning
to complete the proof of (x). There are only finitely many «’s in A such
that 7%(k) N R, # 0. Remove these o’s. The remaining o’s are such that
r&(k) N R;, = (. For each remaining « there exist only finitely many 3 > «

1

with r&*(k) N 7“]’6 (k) # 0. Now we can inductively construct an H C A of
cardinality A such that o < § in H implies (k) N rf (k) = (. So, we have
proved (*) and hence completed the proof of Lemma 2.5. m

3. Applications

EXAMPLE 3.1: An open U C aw? such that U is not polyadic.

Let G be a standard Sierpinski graph on the set wy. Put U = {(«, ) :
{a, B} € G}. For each a < wy, put B, = ({a} x awr) U (aw; x {a}) and put
Uy = BoNU. Then U,NUg # 0 < {a, B} € G. The collection {U,, : o < wq}
violates Property R, so U is not polyadic.

Our first application relates to the structure of polyadic spaces. The
dyadic property is known to be both zeroset and regular closed hereditary.
Gerlits [GeT78] has shown that the polyadic property is zeroset hereditary.
Thus, we have

COROLLARY 3.2. The polyadic property is not reqular closed hereditary.

Problem 4 in Benyamini, Rudin and Wage [BRW77] asks whether ak®
is a universal preimage for uniform Eberlein compact spaces of weight at
most . They prove in this paper that uniform Eberlein compact spaces of
weight at most k are precisely the images of closed subspaces of ak®. So,
the above example U gives us

COROLLARY 3.3. axk® is not a universal preimage for uniform Eberlein
compact spaces of weight at most k.

Problem 3 of [BRW77] of whether there is some closed subspace of ak®”
which is a universal preimage for uniform Eberlein compact spaces of weight
at most k is still open. We can phrase the negation of this problem as

QUESTION 3.4. Is it true that for every closed H C ar®, there exists a
closed K C ak® such that K is not an image of H?
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Our final application will deal with the hyperspace H(X) of all non-
empty closed subsets of a compact space X. We endow H(X) with the
Vietoris topology. Mréwka [Mr70] has shown that if X is a compact orderable
space with H(X) polyadic, then X must be first countable. From the theo-
rem of Gerlits [Ge78] that character = weight for polyadic spaces, it follows
that X must be metrizable. Mréwka uses a property called (K;) in order to
prove his theorem:

(Ky)  the closure of a G5 open set U coincides with the sequential closure
of U.

Mréwka proves that every polyadic space satisfies the property (K;). We
will need this result to improve Mréwka’s theorem by reducing polyadicity of
H(X) to dyadicity of H(X) for any compact space. Our hyperspace notation
is as follows: If O is a collection of subsets of X, then (O) = {F € H(X) :
FclJO and FNO # 0 for every O € O}. The family {(O) : O is a finite
family of open subsets of X} is an open base for H(X).

COROLLARY 3.5. If H(X) is polyadic, then H(X) is dyadic.

Proof. Assume that H(X) is polyadic. We will show that H(X) is ccc
and then invoke a theorem of R. Engelking (cf. [Mr70]) that says that a
ccc polyadic space is dyadic. We first show that X is ccc. If not, let M
be an uncountable maximal disjoint open family in X. Then X is in the
H(X) closure of [J{(M’) : M’ is a finite subset of M}. By Mréwka’s result,
H(X) has the property (K;) and so we can choose, for n < w, finite subsets
M, C M such that X € U, ,(My). Pick M € M\ U, ., Mn. Then
X e {M,X}) and {M,X}) N, . (Mn) = 0. This contradiction proves
that X is ccc.

Theorem 2.1 implies that H(X) has Property Q. It is easily seen that
therefore X has Property Q. But a regular ccc space with Property Q has
Property K. Property K is hyper-extendible (note that ccc is not hyper-
extendible; think of a Souslin continuum), so H(X) has Property K and the
proof is complete. =

We remark that Shapiro [Sh76] has shown that if H(X) is dyadic, then
the weight of X is at most w;. Thus it follows that if H(X) is polyadic, then
w(X) < ws.

n<w
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