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On the real cohomology of spaces of free
loops on manifolds

by

Katsuhiko K u r i b a y a s h i (Okayama)

Abstract. Let LX be the space of free loops on a simply connected manifoldX. When
the real cohomology of X is a tensor product of algebras generated by a single element,
we determine the algebra structure of the real cohomology of LX by using the cyclic bar
complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of
the real cohomology of LX can be represented by differential forms on LX through Chen’s
iterated integral map. Let T be the circle group. The T-equivariant cohomology of LX is
also studied in terms of the cyclic homology of Ω(X).

Introduction. Let X be a simply connected finite-dimensional manifold
whose real cohomology is a tensor product of truncated polynomial algebras
and exterior algebras. We call such a commutative algebra a TE-algebra. Let
LX be the space of free loops on X, that is, the space of all smooth maps
from the circle group T to X. The purpose of this paper is to determine the
algebra structures of the real cohomology of LX when the real cohomology
ring of X is a TE-algebra, and of the T-equivariant real cohomology of LX
when the real cohomology of X is isomorphic to that of a sphere. Moreover,
we will represent generators of the real cohomology and of the T-equivariant
real cohomology of LX by explicit elements in the Hochschild homology and
in the cyclic homology of the de Rham complex of X respectively.

Let X be a simply connected space and F(X) the fiber square

LX X

X X ×X

//

²²
∆

²²
∆

//

where ∆ is the diagonal map. In the case where X is not a manifold, we
regard LX as the space of all continuous loops on X. Let k be a field of
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characteristic zero. In [21], L. Smith has explicitly constructed a projective
resolution, which is called a Koszul type resolution, of a graded complete
intersection (GCI) algebra Λ over k as a Λ⊗ Λ-module and used it to cal-
culate TorΛ⊗Λ(Λ,Λ). The Koszul type resolution and the Eilenberg–Moore
spectral sequence of F(X) are relevant to the study of the space LX. For
instance, by applying the result [22, Proposition 4.4.5] of M. Vigué-Poirrier
to our case, we obtain

Theorem A. Let X be simply connected and formal. Then

H∗(LX; k) ∼= Tot Tor∗,∗H∗(X;k)⊗H∗(X;k)(H
∗(X; k),H∗(X; k))

as algebras.

For example, let G be a compact connected Lie group and H a maximal
rank subgroup of G. Since the homogeneous space G/H is formal, we can
express the algebra H∗(L(G/H); k) via the torsion functor.

Let X be a simply connected manifold. Chen’s iterated integral map σ
([7]) may be regarded as a de Rham version of the Eilenberg–Moore map
([20], [19]) because σ induces an algebra isomorphism from the Hochschild
homology of the de Rham complex Ω(X) of X to the de Rham cohomology
H∗de Rham(LX). Since the Hochschild complex of Ω(X) is a double complex,
in consequence, we obtain a spectral sequence converging to H∗(LX;R). We
call it the Hochschild spectral sequence. When H∗(X;R) is a TE-algebra, by
virtue of the Hochschild spectral sequence and Theorem A, we get an explicit
form of the algebra H∗(LX;R). Moreover, all generators of the cohomology
can be represented by differential forms on LX which are images by the
iterated integral map (Theorem 2.1).

Cyclic homology groups defined by A. Connes for any associative algebra
have been studied and generalized in [5], [10], [12] and [16]. In particular,
T. G. Goodwillie [10] has extended Connes’s construction to differential
graded algebras (DGAs). J. D. S. Jones [12] has studied the cyclic homol-
ogy theory for DGAs. One of his results asserts that the cyclic homology
group for the singular complex S∗(X) is isomorphic to the T-equivariant
cohomology of LX. A de Rham version of the result has been shown by
E. Getzler, J. D. S. Jones and S. Petrack [9]: the cyclic homology of Ω(X)
induced from the cyclic bar complex or its normalized complex is isomorphic
to the homology of a de Rham model for T-equivariant differential forms on
LX by the isomorphism induced from the iterated integral map, where the
de Rham model is larger than the usual one (see [2], [17]), but equivalent.
They have also given an A∞-algebra structure on the normalized cyclic bar
complex of Ω(X) and on the de Rham model and shown that the iterated in-
tegral map is a morphism of A∞-algebras. Therefore we see that the spectral
sequence (e.g. [10, II.2.4]) which is constructed from the normalized com-
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plex converges to the T-equivariant real cohomology of LX as an algebra.
The spectral sequence enables us to consider the cohomology H∗T(LX;R) in
terms of cyclic homology theory. In consequence, when H∗(X;R) is isomor-
phic to H∗(Sq;R), we can determine the algebra structure of H∗T(LX;R)
and represent all the algebra generators of H∗T(LX;R) by elements of the
cyclic homology of Ω(X) through the iterated integral map.

The algebra structure of the cohomology and T-equivariant cohomology
of the space of free loops on a simply connected space whose rational coho-
mology is a GCI-algebra was studied in [24] and [1]. Since every TE-algebra
is a GCI-algebra, our results about the algebra structure of H∗(LX;R) and
H∗T(LX;R) are not new. The novelty here is that the generators of the al-
gebras H∗(LX;R) and H∗T(LX;R) are represented by explicit elements in
the cyclic bar complex of the de Rham complex of X and so by differential
forms on LX through the iterated integral map.

The paper is organized as follows. In §1, we recall some results of [9].
Our results are stated in §2. In §3, we prepare a lemma to determine
TorΛ⊗Λ(Λ,Λ) as an algebra whenever Λ is a TE-algebra. Moreover, an iso-
morphism from the Hochschild homology to TorΛ⊗Λ(Λ,Λ) is given explicitly.
§4 and §5 are devoted to proving our theorems completely.

The author wishes to thank Akira Kono for helpful conversations and
for pointing out errors in the first version of the manuscript.

1. The iterated integral map. In order to explain the result of [9] more
carefully, we recall the definitions of the (normalized) cyclic bar complex, the
de Rham model of T-equivariant differential forms on LX and the iterated
integral map.

The cyclic bar complex C(Ω(X)) of the de Rham complex (Ω(X), d) has
three operators b0, b1 and B which are called the exterior differential, the
Hochschild boundary operator and the Connes coboundary operator respec-
tively. The complex C(Ω(X)) is defined as follows:

C(Ω(X)) =
∞∑

k=0

Ω(X)⊗Ω(X)⊗k,

deg(ω0, . . . , ωk) = degω0 + . . .+ degωk − k for (ω0, . . . , ωk) ∈ C(Ω(X)),

b0(ω0, . . . , ωk) = −
k∑

i=0

(−1)εi−1(ω0, . . . , ωi−1, dωi, ωi+1, . . . , ωk),

b1(ω0, . . . , ωk) = −
k−1∑

i=0

(−1)εi(ω0, . . . , ωi−1, ωiωi+1, ωi+2, . . . , ωk)

+ (−1)(degωk−1)εk−1(ωkω0, . . . , ωk−1)
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and

B(ω0, . . . , ωk) =
k∑

i=0

(−1)(εi−1+1)(εk−εi−1)(1, ωi, . . . , ωk, ω0, . . . , ωi−1)

−
k∑

i=0

(−1)(εi−1+1)(εk−εi−1)(ωi, . . . , ωk, ω0, . . . , ωi−1, 1),

where εi = degω0 + . . .+ degωi − i.
Let b = b0 + b1 be the total boundary operator on C(Ω(X)). The oper-

ators b and B satisfy the formulas b2 = bB +Bb = B2 = 0.
Let D(Ω(X)) be the subspace of C(Ω(X)) generated by the image of the

operators Si(f) and bSi(f)+Si(f)b, where f ∈ Ω0(X) and Si(f)(ω0, . . . , ωk)
= (ω0, . . . , ωi−1, f, ωi, . . . , ωk), i ≥ 1. The normalized cyclic bar complex
N(Ω(X)) is the quotient complex C(Ω(X))/D(Ω(X)).

To describe the main theorem of [9], we recall the definition of the iter-
ated integral map. Let ϕt (t ∈ T) be the circle action on LX, generated by
the vector field T , and ι the interior product with T . Let et : LX → X de-
note the evaluation map at time t. The iterated integral map σ : N(Ω(X))→
Ω(LX) is defined by

σ(ω0, . . . , ωk) =
\
∆k

ω0(0) ∧ ιω1(t1) ∧ . . . ∧ ιωk(tk) dt1 . . . dtk,

where ∆k is the k-simplex {(t1, . . . , tk) ∈ Rk | 0 ≤ t1 ≤ . . . ≤ tk ≤ 1} and
ω(t) = e∗tω. Under the above notations and definitions, the main result of
[9] is stated as follows.

Theorem 1.1 [9, Theorem A, Theorem 3.1, Proposition 4.1]. Suppose
that X is a simply connected finite-dimensional manifold. Then

(1) the iterated integral map defines morphisms of DGAs

(C(Ω(X)), b)→ (N(Ω(X)), b) σ→ (Ω(LX), d),

and these induce isomorphisms on cohomology ,
(2) the iterated integral map

σ : (N(Ω(X))[u], b+ uB)→ (Ω(LX)[u], d+ uP̃ )

is a morphism of A∞-algebras and an isomorphism on cohomology , where
P̃ (ω) =

T1
0 ιϕ

∗
tω dt.

We merely need the algebra structure of N(Ω(X))[u] and Ω(LX)[u]. For
details of the A∞-algebra structure, see [9] or [8].

Note that the algebra structures of (C(Ω(X)), b) and (N(Ω(X)), b) are
given by the shuffle product S:
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S(α, β)

= (−1)deg β0(degα1+...+degαp−p)
∑

σ:(p,q)-shuffle

(−1)s(σ)(α0β0, ξσ(1), . . . , ξσ(p+q)),

where α = (α0, . . . , αp), β = (β0, . . . , βq), (ξ1, . . . , ξp+q) = (α1, . . . , αp,
β1, . . . , βq) and s(σ) =

∑
(deg ξi + 1)(deg ξp+j + 1), summed over all pairs

(i, p+ j) with σ(i) > σ(p+ j), 1 ≤ i ≤ p, 1 ≤ j ≤ q.
Although the usual de Rham model of T-equivariant differential forms

on LX is the complex (Ω(LX)T[u], d+ uι), since the inclusion map i :
(Ω(LX)T[u], d + uι) → (Ω(LX)[u], d + uP̃ ) is a morphism of algebras and
induces an isomorphism on cohomology, we use (Ω(LX)[u], d+ uP̃ ) as a
complex which defines the T-equivariant cohomology H∗de Rham,T(LX).

From the considerations of Beggs [3, Note 6.8], we obtain H∗(LX) ∼=
H∗de Rham(LX) as algebras and H∗T(LX) ∼= H∗de Rham,T(LX) as algebras and
as H∗(BT) = R[u]-modules. In consequence, we have two isomorphisms of
algebras:

H(C(Ω(X)), b)
H(σ)−→ H∗(LX)

H(θ)←− Tor∗S∗(X×X)(S
∗(X), S∗(X)),

where σ and θ are the iterated integral map and the Eilenberg–Moore map
([20], [19]) respectively. So we obtain two methods to determine the algebra
structure of H∗(LX). One method is to calculate the cyclic bar complex.
The other method is an application of the Eilenberg–Moore spectral se-
quence which has been used by L. Smith [21]. In explicit calculations of
the Hochschild homology and cyclic cohomology, spectral sequences stated
below are useful. Since (C(Ω(X)), b0, b1) is regarded as a filtered double
complex such that

(C(Ω(X)))−p,q = [Ω(X)⊗Ω(X)⊗p]q

and

F p(C(Ω(X)))n =
∑

−i+j=n
−i≥p

[Ω(X)⊗Ω(X)⊗i]j ,

we can construct a spectral sequence ([4], [19]) converging to H(C(Ω(X)), b)
∼= H∗de Rham(LX). From the definition of the filtration of C(Ω(X)), we see
that the E2-term of the spectral sequence is isomorphic to the Hochschild
homology H(C(H∗de Rham(X)), b1). The filtration of the complex C(Ω(X))
also respects the algebra structure. Hence we conclude that the spectral
sequence converges to its target as an algebra and that the isomorphism
from the E2-term to the Hochschild homology is a morphism of algebras.
Similarly from the filtered double complex (N(Ω(X))[u], b, uB) such that

(N(Ω(X))[u])p,q = R[u]2p ⊗Nq−p(Ω(X))
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and

F p(N(Ω(X))[u])n =
∑

i+j=n
i≥p

R[u]2i ⊗Nj−i(Ω(X))

we can obtain another spectral sequence [10, II.2.4] converging to
H(N(Ω(X))[u], b+ uB), that is, to H∗de Rham,T(LX) as an algebra. We may
call the spectral sequences the Hochschild spectral sequence and the cyclic
spectral sequence associated with Ω(X) respectively.

To be exact, the homology H(N(Ω(X))[u], b+uB) is equal to the nega-
tive cyclic homology of the differential graded algebra (DGA) A∗ defined by
A−i = Ωi(X): H∗(N(Ω(X))[u], b+ uB) = HC−−∗(A) (see [8]). However, we
will call H(N(Ω(X))[u], b+uB) the cyclic homology of Ω(X) in this paper.

2. Results. Let Γk be a TE-algebra, that is,

Γk = Λ(y1, . . . , yn)⊗ k[x1, . . . , xm]/(xs1+1
1 , . . . , xsm+1

m ).

Let A be a ring and A[ω] an A-coefficient polynomial ring. We denote by
A[ω]≥1 the subalgebra of A[ω] consisting of polynomials whose constant
term is zero. We will denote algebra generators of H∗(X;R) and their rep-
resentatives with the same notations. By considering the Hochschild spectral
sequence associated with the de Rham complex Ω(X), we have

Theorem 2.1. Let X be a simply connected manifold whose real coho-
mology is a TE-algebra ΓR. Let %i be an element of the de Rham complex
Ω(X) satisfying d(%i) = xsi+1

i . Then there exists an isomorphism of algebras

ϕ : H :=
n⊗

j=1

{Λ(yj)⊗ R[(1, yj)]} ⊗
m⊗

i=1

{R[xi]/(x
si+1
i )⊗ Λ((1, xi))

⊕(xi, (1, xi))[αi]≥1/((si + 1)xsii (1, xi))[αi]}
→ H(C(Ω(X)), b) ∼= H(N(Ω(X)), b)

such that ϕ(z) = z, ϕ((1, z)) = (1, z),

ϕ(xiαki ) = xiα
k
i −

k∑
p=1

k(k − 1) . . . (k − p+ 1)γi,pα
k−p
i ,

ϕ((1, xi)αki ) = (1, xi)αki +
k∑
p=1

k(k − 1) . . . (k − p+ 1)ζi,p+1α
k−p
i ,

where z = xi or yj , and

αi = (xsi−1
i , xi, xi) + (xsi−2

i , x2
i , xi) + (1, xsii , xi) ∈ C(Ω(X)),
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ζi,p =
p∑

j=1

(1, %i, . . . , %i,
jth︷︸︸︷
xi , %i, . . . , %i) ∈ Cp,∗(Ω(X)),

γi,p = (si + 1)%iζi,p − (xi, %i, . . . , %i) ∈ Cp,∗(Ω(X)).

From Theorems 1.1 and 2.1, we have

Corollary 2.2. As algebras,

H∗(LX;R) ∼= H∗de Rham(LX) ∼= H(C(Ω(X)), b) ∼= H.

We can find some algebra generators of H∗T(LX;R) ∼= H∗de Rham,T(LX)
by using the cyclic spectral sequence and Theorem 2.1.

Proposition 2.3. Let X be a manifold satisfying the condition in The-
orem 2.1. Then there exists a monomorphism of algebras and R[u]-modules

i : R[u]⊗ R[v1, . . . , vn]⊗ Λ(ν1, . . . , νm)/(vju, νiu; 1 ≤ j ≤ n, 1 ≤ i ≤ m)

→ H∗de Rham,T(LX) ∼= H∗T(LX;R)

such that i(vj) =
T1
0 ιω

∗
t yj dt and i(νi) =

T1
0 ιω

∗
t xi dt.

In Proposition 2.3, when m = 0, that is, H∗(X;R) is an exterior alge-
bra, we see that the morphism i is an isomorphism if and only if n = 1.
The result is obtained by calculating H∗T(LS2l−1;R). By using the cyclic
spectral sequence and Theorem 2.1, we can determine the algebra structure
of H∗T(LS2l;R).

Theorem 2.4. Let X be a simply connected manifold whose real coho-
mology is isomorphic to that of a sphere Sq.

(1) If q = 2l − 1, there exists an isomorphism of algebras and R[u]-
modules

R[u]⊗ R[(1, y)]/((1, y)u)
ϕ2l−1−→ H(N(Ω(X))[u], b+ uB)

such that ϕ2l−1((1, y)) = (1, y) and ϕ2l−1(u) = u, where deg y = 2l − 1.
(2) If q = 2l, there exists an isomorphism of algebras and R[u]-modules

R[u]⊗ {Λ((1, x))⊕ ((1, x))[α]≥1}/((1, x)αku; k ≥ 0)
ϕ2l→ H(N(Ω(X))[u], b+ uB)

such that ϕ2l((1, x)) = (1, x), ϕ2l(u) = u and

ϕ2l((1, x)αk) = (1, x)αk +
k∑
p=1

k(k − 1) . . . (k − p+ 1)ζp+1α
k−p,

where deg x = 2l and α = (1, x, x).

If the reduced cyclic homology of Ω(X) is non-zero, then the cyclic ho-
mology of the algebra is not a free R[u]-module [23, Théorème 1]. So it is
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not easy to determine an explicit algebra structure of the cyclic homology
H(N(Ω(X))[u], b + uB) from the Künneth theorem [11, Theorem 3.1] and
Theorem 2.4 even if H∗(X;R) is isomorphic to the algebra ΓR. In a further
article [15], it is clarified that the algebra structure ofH(N(Ω(X))[u], b+uB)
can be represented by the Hochschild homology of Ω(X) and the Loday–
Quillen *-product.

3. Homological algebra. Let Λ be a non-negatively graded connected
commutative algebra over a field k of characteristic zero. Let K denote
a DGA Λ⊗ k[ω] equipped with a differential d satisfying d(ω) ∈ Λ and
d(λ) = 0 for any λ ∈ Λ.

Lemma 3.1. We have

H(K, d) ∼= Λ⊕Ann(dω)[ω]≥1/(dω)[ω]

as algebras, where Ann(dω) is the ideal of Λ which annihilates dω, and (dω)
is the ideal of Λ generated by dω.

P r o o f. For any
∑n
i=0 aiω

i ∈ Ker d,

0 = d
( n∑

i=0

aiω
i
)

=
n∑

i=1

(−1)deg aiiaidωω
i−1.

Therefore
∑n
i=0 aiω

i ∈ Λ ⊕ Ann(dω)[ω]≥1. For any a =
∑n
i=0 aidωω

i ∈
(dω)[ω], there exists β such that d(β) = a. In fact, we can take

β = (−1)deg a0a0ω +
n∑

i=1

(−1)deg ai

i+ 1
aiω

i+1.

Clearly (dω)[ω] contains Im d. Thus we have Lemma 3.1.

By applying Lemma 3.1 to the Koszul type resolution constructed by
L. Smith [21], we have

Proposition 3.2. As bigraded algebras,

Tor∗,∗ΓR⊗ΓR(ΓR, ΓR) ∼=
n⊗

j=1

{Λ(yj)⊗ k[νj ]} ⊗
m⊗

i=1

{k[xi]/(x
si+1
i )⊗ Λ(ui)

⊕ (xi, ui)[ωi]≥1/((si + 1)xsii ui)[ωi]}.
We can consider the algebra structure on (C(Λ), b1) induced from the

shuffle product S as that defined from a product on a projective resolution
of Λ as a Λ ⊗ Λ-module. In order to describe this more precisely, we recall
the standard resolution (S(Λ), ∂) of Λ as a Λ ⊗ Λ-module ([6], [18]). The
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resolution (S(Λ), ∂) is defined as follows:

S(Λ) = Λ⊗ Λ⊗ S̃(Λ), S̃(Λ) =
∞∑

k=1

Λ
⊗k
,

and

∂(λ0, ξ, λ1, . . . , λn)

= − (−1)deg λ1 deg ξ+deg λ0+deg ξ(λ0λ1, ξ, λ2, . . . , λn)

−
n−1∑

i=1

(−1)εi+deg ξ(λ0, ξ, λ1, . . . , λiλi+1, . . . , λn)

+ (−1)(εn−1+deg ξ)(deg λn+1)−deg λ0 deg λn(λ0, λnξ, λ1, . . . , λn−1),

where Λ = {λ ∈ Λ | deg λ > 1} and εi = deg λ0 + . . .+ deg λi − i.
Note that S̃(Λ) is regarded as a differential graded algebra [18] with the

shuffle product

(α1, . . . , αn) ∗ (β1, . . . , βm) =
∑

σ:(n,m)-shuffle

(−1)s(σ)(ξσ(1), . . . , ξσ(n+m)),

where (ξ1, . . . , ξp+q) = (α1, . . . , αp, β1, . . . , βq). This enables us to conclude
that (S(Λ), ∂, ∗′) is a differential graded algebra with the product ∗′ defined
by

(α0, λ, α1, . . . , αn) ∗′ (β0, λ
′, β1, . . . , βm)

= (−1)deg β0ε̃n+deg λ deg β0+deg λ′ε̃n(α0β0, λλ
′, (α1, . . . , αn) ∗ (β1, . . . , βm)),

where ε̃n = degα1 +. . .+degαn−n. Let m : Λ⊗Λ→ Λ be the product of Λ.
Since the DGAs (Λ⊗Λ⊗ΛS(Λ),±1⊗∂,m⊗∗′) and (Λ⊗ S̃(Λ), b1, S) are iso-
morphic, it follows that H(C(Λ), b1) ∼= H(Λ⊗ S̃(Λ), b1) ∼= TorΛ⊗Λ(Λ,Λ) as
algebras. In particular, by choosing the cohomology ring H∗(X;R) of a sim-
ply connected manifold X for Λ, we see that the E2-term of the Hochschild
spectral sequence associated with Ω(X) is isomorphic to

Tor∗,∗H∗(X;R)⊗H∗(X;R)(H
∗(X;R),H∗(X;R))

as an algebra. In order to represent elements in the spectral sequence by ele-
ments of C(Ω(X)), we need an explicit isomorphism from the Hochschild ho-
mology to Tor∗,∗H∗(X;R)⊗H∗(X;R)(H

∗(X;R),H∗(X;R)). It will be constructed
in Proposition 3.4.

R e m a r k 3.3. Let (S(Λ), ∂) be the standard resolution of Λ in the above
argument and (F , d) another projective resolution of Λ as a Λ ⊗ Λ-module
with a productmF . By the usual argument in homological algebra, we have a
morphism Ψ : (S(Λ), ∂)→ (F , d) of resolutions over the identity map id on Λ
which induces an isomorphism Torid⊗ id(id, Ψ) from H(Λ⊗Λ⊗ΛS(Λ),±1⊗∂)
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to H(Λ⊗Λ⊗Λ F ,±1⊗ d) as Λ-modules. The Λ⊗Λ-module Λ is regarded as
a Λ⊗Λ⊗Λ⊗Λ-module with the multiplication m̃ : Λ⊗Λ⊗Λ⊗Λ→ Λ⊗Λ
defined by

m̃(a⊗ b⊗ c⊗ d) = (−1)deg b deg cm(a⊗ c)⊗m(b⊗ d).

Therefore, we can consider the resolutions (S(Λ), ∂) and (F , d) as resolutions
of Λ as a Λ⊗Λ⊗Λ⊗Λ-module. Since mF ◦(Ψ⊗Ψ) and Ψ ◦∗′ are morphisms
of projective resolutions of Λ as a Λ⊗Λ⊗Λ⊗Λ-module over m : Λ⊗Λ→ Λ,
it follows that

Torm̃(m,mF ) Torid⊗ id⊗ id⊗ id(id⊗ id, Ψ ⊗ Ψ)

= Torm̃(m,mF ◦ (Ψ ⊗ Ψ))

= Torm̃(m,Ψ ◦ ∗′) = Torid⊗ id(id, Ψ) Torm̃(m, ∗′).
It turns out that Torid⊗ id(id, Ψ) is an isomorphism of algebras.

Let (F , d) be the Koszul type resolution ([21, Lemma 3.2], [14, Proposi-
tion 1.1]) whose differential d is minus the original one.

Proposition 3.4. There exists a morphism of ΓR-modules

θ : (ΓR ⊗ΓR⊗ΓR ΓR ⊗ ΓR ⊗ S̃(ΓR),±1⊗ ∂)→ (ΓR ⊗ΓR⊗ΓR F ,±1⊗ d)

such that θ(γ) = γ for any γ ∈ ΓR, θ((1, yj)) = νj , θ((1, xi)) = ui, θ(αi)
= ωi and the induced map H(θ) : H(C(ΓR), b1) → Tor∗,∗ΓR⊗ΓR(ΓR, ΓR) is an
isomorphism of algebras, where

αi = (xsi−1
i , xi, xi) + (xsi−2

i , x2
i , xi) + . . .+ (1, xsii , xi)

and (1, yj), (1, xi) ∈ ΓR ⊗ S̃(ΓR) = ΓR ⊗ΓR⊗ΓR ΓR ⊗ ΓR ⊗ S̃(ΓR).

P r o o f. To prove this proposition, we construct a morphism Ψ = {ψ−n}
of resolutions of ΓR as a ΓR ⊗ ΓR-module

ΓR ⊗ ΓR ⊗ S̃(ΓR) ΓR 0

F ΓR 0

//

Ψ={ψ−n}
²²

//

id

²²
// //

explicitly in low degrees of the resolutions. First, we define ψ0 : ΓR ⊗ ΓR →
ΓR ⊗ ΓR = F0 to be the identity map. By demanding that dψ−1|S̃−1(ΓR) =
ψ0∂, we define ψ−1|S̃−1(ΓR) by ψ−1((1, 1, xki )) = ζi,kui and ψ−1((1, 1, yj)) =
νj , where

ζi,k = (xk−1
i , 1) + (xk−2

i , xi) + . . .+ (1, xk−1
i )

and ζi,1 = 1. Moreover, we can define ψ−1 on ΓR ⊗ ΓR ⊗ S̃−1(ΓR) as a
morphism of ΓR ⊗ ΓR-modules. Since d, ∂ and ψ0 are morphisms of ΓR ⊗ ΓR-
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modules, it follows that dψ−1 = ψ0∂. Put

αi = (1, xsi−1
i , xi, xi) + (1, xsi−2

i , x2
i , xi) + . . .+ (1, 1, xsii , xi).

We can verify that ψ−1∂(αi) = d(ωi). Therefore, defining the map ψ−2 :
ΓR ⊗ ΓR ⊗ S̃−2(ΓR) → F by ψ−2(αi) = ωi, we see that dψ−2 = ψ−1∂.
Moreover, a morphism of resolutions Ψ is obtained by extending the maps
ψ−n (n = 0, 1 and 2). From the argument in Remark 3.3, we conclude that
θ = id⊗Ψ is the required morphism of ΓR-modules.

4. Proof of Theorem 2.1. Let X be a simply connected manifold
whose cohomology is a GCI-algebra:

H∗(X;R) ∼= H∗de Rham(X) ∼= Λ(y1, . . . , yn)⊗ k[x1, . . . , xm]/(τ1, . . . , τm).

We define a complex Ω̃(X) as follows:

Ω̃(X) = Λ(y1, . . . , yn)⊗ k[x1, . . . , xm]⊗ Λ(%1, . . . , %m),

with d(%i) = τi and d(yj) = d(xi) = 0. Let Φ be a well-defined homomor-
phism from Ω̃(X) toΩ(X) defined by Φ(yj) = yj , Φ(xi) = xi and Φ(%i) = %i,
where xi and yj in Ω(X) are representatives of xi and yj in H∗(X;R) re-
spectively, and %i in Ω(X) satisfies d(%i) = τi. Since τ1, . . . , τm is a regular
sequence, it follows that Φ induces an isomorphism on cohomology. Thus
we have a minimal model (Ω̃(X), d) of (Ω(X), d). Moreover, we define a
map h : Ω̃(X) → H∗(X;R) by h(yj) = yj , h(xi) = xi and h(%i) = 0. It
is obvious that h is a morphism of differential graded algebras and induces
an isomorphism on cohomology. Therefore we see that a simply connected
manifold whose cohomology is a GCI-algebra is formal. Since H(Ω̃(X), b)
and H(Ω(X), b) are isomorphic, we will consider the Hochschild spectral
sequence of Ω̃(X) instead of that of Ω(X).

The following proposition presents explicit closed elements representing
algebra generators in the E∞-term of the Hochschild spectral sequence. We
will also use the proposition to solve the extension problem of the spectral
sequence.

Proposition 4.1. The elements

ξi,k = xiα
k
i −

k∑
p=1

k(k − 1) . . . (k − p+ 1)γi,pα
k−p
i

and

ηi,k = (1, xi)αki +
k∑
p=1

k(k − 1) . . . (k − p+ 1)ζi,p+1α
k−p
i .

are closed in C(Ω̃(X), b).
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Proposition 4.1 follows from

Lemma 4.2. (1) b1ζi,p = b1γi,p = 0.
(2) (1, %i)p−1ζi,1 = (p− 1)!ζi,p.
(3) ζi,pb1αi = b0ζi,p+1.
(4) −γi,pb1αi = b0γi,p+1.

P r o o f. It is straightforward to check (1). Since (1, %i)ζi,p−1 = (p−1)ζi,p,
we have (2). By using (2) and (3), we can verify (3) and (4) respectively.

P r o o f o f T h e o r e m 2.1. Let {Er, dr} be the Hochschild spectral
sequence of the DGA Ω̃(X). By Proposition 3.4, we have

E∗,∗2
∼= H(C(H∗(X)), b1) ∼= Tor∗,∗ΓR⊗ΓR(ΓR, ΓR)

∼=
n⊗

j=1

{Λ(yj)⊗ k[(1, yj)]} ⊗
m⊗

i=1

{k[xi]/(x
si+1
i )⊗ Λ((1, xi))

⊕ (xi, (1, xi))[αi]≥1/((si + 1)xsii (1, xi))[αi]}.
Since the spectral sequence {Er, dr} converges to the algebra H∗(LX;R) ∼=
H∗de Rham(LX), from Theorem A it follows that {Er, dr} collapses at the
E2-term: E2

∼= E∞ ∼= E0. The elements xi, yj , (1, xi) and (1, yj) are closed
in C(Ω̃(X)). Therefore we can take the elements xi, yj , (1, xi) and (1, yj)
from H(C(Ω̃(X)), b) as representatives of xi, yj , (1, xi) and (1, yj) in E∗,∗0
respectively. Moreover, from Proposition 4.1, we can choose the closed ele-
ments ξi,k and ηi,k of C(Ω̃(X)) as representatives of xiαki and (1, xi)αki in
E∗,∗0 respectively. It remains to solve extension problems. We need to verify
that

xsi · ξi,k = 0,(4.1)

xsi · ηi,k = 0(4.2)

and

(1, xi) · ηi,k = 0(4.3)

in H∗(LX;R). Let Λi be a DGA R[xi]⊗ Λ(%i) equipped with a differential
d satisfying d(%i) = xsi+1

i . Since we can define a morphism f : Λi → Ω̃(X)
of DGAs so that f∗(xi) = xi, f∗((1, xi)) = (1, xi), f∗(ξi,k) = ξi and
f∗(ηi,k) = ηi,k on Hochschild homology, it suffices to verify (4.1)–(4.3) in
H(C(Λi), b) for any i, for solving the extension problems of H(C(Ω̃(X)), b).
Since totdeg xsii · xiαki − totdeg xliα

s
i > 0 when si + 1 > l and k > s it

follows that xsii · xiαki = 0 in H(C(Λi), b). Similarly, we can verify that
xsii · (1, xi)αki = 0 in H(C(Λi), b). From Lemma 4.2(2), we have (4.3). This
completes the proof.
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5. Proof of Proposition 2.3 and Theorem 2.4

P r o o f o f P r o p o s i t i o n 2.3. Let {Er, dr} be the cyclic spectral se-
quence (see §1) associated with the DGA Ω(X). The spectral sequence con-
verges to H(N(Ω(X))[u], b+ uB) as an algebra and satisfies

E∗,∗1
∼= R[u]⊗H(N(Ω(X)), b) (Ep,q1

∼= R[u]2p ⊗Hq−p(N(Ω(X)), b))

and d1 = uB, where B is the Connes coboundary operator. From Theorem
2.1, one can conclude that

E∗,∗1
∼= R[u]⊗

n⊗

j=1

{Λ(yj)⊗ R[(1, yj)]} ⊗
m⊗

i=1

{R[xi]/(x
si+1
i )⊗ Λ((1, xi))

⊕(xi, (1, xi))[αi]≥1/((si + 1)xsii (1, xi))[αi]}
Since d1(u) = d1((1, xi)) = d1((1, yj)) = 0, (1, xi) and (1, yj) survive to the
E2-term. The elements u, (1, xi) and (1, yi) of E∗,∗2 are represented by u,
(1, xi) and (1, yi) respectively, which are in N(Ω(X))[u]. Since u, (1, xi) and
(1, yj) are closed for the differential D = b + uB of N(Ω(X))[u], it follows
that dr(u) = dr((1, xi)) = dr((1, yj)) = 0 for any r (see [13]). We can define
morphisms of DGAs

ir : R[u]⊗ R[v1, . . . , vn]⊗ Λ(ν1, . . . , νm)→ E∗,∗r
so that ir(u) = u, ir(νi) = (1, xi) and ir(vj) = (1, yj), where r ≥ 1. Since
d1(xi) = u(1, xi), d1(yj) = −u(1, yj) and Im d1 ∩ E0,∗

1 = 0, it follows that
Ker i2 = (vju, νiu; 1 ≤ j ≤ n, 1 ≤ i ≤ m). Therefore, we can conclude that
the morphism of DGAs

i2 : A := R[u]⊗ R[v1, . . . , vn]

⊗ Λ(ν1, . . . , νm)/(vju, νiu; 1 ≤ j ≤ n, 1 ≤ i ≤ m)→ E∗,∗2

is a monomorphism. Since Im dr ∩ E0,∗
r = 0 for any r, it follows that i∞ :

A→ E∗,∗∞ = E∗,∗0 is a monomorphism.
Hence the algebra morphism i : A → H(N(Ω(X))[u], D) defined by

i(u) = u, i(vj) = (1, yj) and i(νi) = (1, xi) is a monomorphism. By Theorem
1.1, we have Proposition 2.3.

P r o o f o f T h e o r e m 2.4. (1) Let {Er, dr} be the cyclic spectral se-
quence associated with the DGA Ω̃(X). From Theorem 2.1, we see that

E∗,∗1
∼= R[u]⊗ Λ(y)⊗ R[(1, y)].

Since E∗,∗1 is the Koszul complex with differential d1(y) = (1, y)u, it follows
that

E∗,∗2
∼= R[u]⊗ R[(1, y)]/((1, y)u).

The elements u and (1, y) of N(Ω̃(X))[u] representing u and (1, y) of E∗,∗2 are
closed for the differential D. Hence we conclude that u and (1, y) survive to
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the E∞-term, that is, the spectral sequence collapses at the E2-term ([13]).
In order to determine the algebra structure of H(N(Ω̃(X))[u], D), we must
solve an extension problem. Since B(y) = (1, y), it follows that (1, y)u = 0
in H(N(Ω̃(X))[u], D). Therefore we obtain the required isomorphism ϕ2l−1.

(2) Let {Er, dr} be the cyclic spectral sequence associated with the DGA
Ω̃(X), where q = 2l. From Theorem 2.1, we have

E∗,∗1
∼= R[u]⊗ {R[x]/(x2)⊗ Λ((1, x))⊕ (x, (1, x))[α]≥1/(2x(1, x))[α]},

where α = (1, x, x). Any element z of E∗,∗1 is uniquely represented as follows:

z =
n∑

i=0

ξiu
i, ξi =

ki∑

j=0

(λijxαj + µij(1, x)αj),

where λij , µij ∈ R. If d1(z) = 0, then B(ξi) = 0 for any i. We obtain

ki∑

j=0

λij(1, x)αj = B(ξi) = 0.

Therefore λij = 0 for any i and j if z ∈ Ker d1. Since Im d1 = ImuB =
((1, x)αku; k ≥ 0), it follows that

E∗,∗2
∼= R[u]⊗ {Λ((1, x))⊕ ((1, x))[α]≥1}/((1, x)αku; k ≥ 0)

as algebras. Let m be the multiplication of N(Ω(X))[u] ([9]). By the defini-
tion, we see that m(a1, a2) = S(a1, a2) if a1 = (1, ω1, . . .) or a2 = (1, γ1, . . .).
From the definition of the Connes operator B, B((1, ω1, . . .)) = 0. Therefore
the element ηk of Proposition 4.1 is closed in N(Ω̃(X))[u], where the mul-
tiplication constructing ηk is replaced by m. In consequence, we can take
ηk ∈ N(Ω̃(X))[u] to represent (1, x)αk in E∗,∗2 . Moreover, it is possible to
take the closed elements u and (1, x) of N(Ω̃(X))[u] as representatives of
u and (1, x) in E∗,∗2 respectively. Hence the spectral sequence {Er, dr} col-
lapses at the E2-term. From Lemma 4.2(2), we see that (1, x) · ηk = 0 in
N(Ω̃(X))[u]. It remains to solve the extension problem such that ηku = 0
in H(N(Ω̃(X))[u], D). Since (1, x)αku = 0 in E1,∗

0 , the element ηku belongs
to F 2Hs(N(Ω̃(X))[u], D), where s = 2l + (4l − 2)k + 1. If p + q is odd,
then Ep,q0 = 0 for any p > 0 and q. This fact enables us to conclude that
F 2Hs(N(Ω̃(X))[u], D) = 0. Hence ηku = 0 in H(N(Ω̃(X))[u], D). The mor-
phism ϕ2l defined by ϕ2l(u) = u, ϕ2l((1, x)) = (1, x) and ϕ2l((1, x)αk) = ηk
is the required isomorphism.

R e m a r k 5.1. From Theorem 2.4, we see that the morphism i of Proposi-
tion 2.3 is an isomorphism if m = 0 and n = 1. In the case where m = 0 and
n > 1, the element ω = (yj , yi) − (yi, yj) (i 6= j) is closed in N(Ω̃(X))[u].
Since ω = yj(1, yi) − yi(1, yj), by Theorem 2.1, ω is a non-zero element
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in H(N(Ω̃(X)), b). Therefore the element ω appears on the edge of the
E2-term of the cyclic spectral sequence as a non-zero element and survives
to the E∞-term. We conclude that ω does not belong to Im i because the
degree of ω is odd.
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